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Abstract. A RPG-HATPRO ground-based microwave ra-

diometer (MWR) was operated in a deep Alpine valley dur-

ing the Passy-2015 field campaign. This experiment aims

to investigate how stable boundary layers during winter-

time conditions drive the accumulation of pollutants. In or-

der to understand the atmospheric processes in the valley,

MWRs continuously provide vertical profiles of temperature

and humidity at a high time frequency, providing valuable

information to follow the evolution of the boundary layer.

A one-dimensional variational (1DVAR) retrieval technique

has been implemented during the field campaign to optimally

combine an MWR and 1 h forecasts from the French con-

vective scale model AROME. Retrievals were compared to

radiosonde data launched at least every 3 h during two inten-

sive observation periods (IOPs). An analysis of the AROME

forecast errors during the IOPs has shown a large under-

estimation of the surface cooling during the strongest sta-

ble episode. MWR brightness temperatures were monitored

against simulations from the radiative transfer model ARTS2

(Atmospheric Radiative Transfer Simulator) and radiosonde

launched during the field campaign. Large errors were ob-

served for most transparent channels (i.e., 51–52 GHz) af-

fected by absorption model and calibration uncertainties

while a good agreement was found for opaque channels (i.e.,

54–58 GHz). Based on this monitoring, a bias correction of

raw brightness temperature measurements was applied be-

fore the 1DVAR retrievals. 1DVAR retrievals were found to

significantly improve the AROME forecasts up to 3 km but

mainly below 1 km and to outperform usual statistical re-

gressions above 1 km. With the present implementation, a

root-mean-square error (RMSE) of 1 K through all the at-

mospheric profile was obtained with values within 0.5 K be-

low 500 m in clear-sky conditions. The use of lower elevation

angles (up to 5◦) in the MWR scanning and the bias cor-

rection were found to improve the retrievals below 1000 m.

MWR retrievals were found to catch deep near-surface tem-

perature inversions very well. Larger errors were observed

in cloudy conditions due to the difficulty of ground-based

MWRs to resolve high level inversions that are still challeng-

ing. Finally, 1DVAR retrievals were optimized for the anal-

ysis of the IOPs by using radiosondes as backgrounds in the

1DVAR algorithm instead of the AROME forecasts. A signif-

icant improvement of the retrievals in cloudy conditions and

below 1000 m in clear-sky conditions was observed. From

this study, we can conclude that MWRs are expected to bring

valuable information into numerical weather prediction mod-

els up to 3 km in altitude both in clear-sky and cloudy-sky

conditions with the maximum improvement found around

500 m. With an accuracy between 0.5 and 1 K in RMSE, our

study has also proven that MWRs are capable of resolving

deep near-surface temperature inversions observed in com-

plex terrain during highly stable boundary layer conditions.
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1 Introduction

Atmospheric boundary layer (ABL) observations of temper-

ature and humidity profiles at a high temporal resolution are

necessary for the improvement of numerical weather predic-

tion (NWP) and for a better understanding of small-scale

phenomena. In fact, a new generation of convective scale

models has been developed over the last 10 years in order

to improve the forecasts of high-impact weather events like

heavy convection, precipitation, fog or low clouds. In order

to initialize convective scale models through data assimila-

tion algorithms, a denser network of ABL observations is

needed as it is the most important under-sampled part of

the atmosphere (National Research Council United States,

2010). In parallel, a better understanding of boundary layer

processes is essential to improve parameterizations used to

describe the evolution of phenomena at a smaller scale than

the model grid. To that end, observations enabling a fine de-

scription of the diurnal evolution in the ABL are important

to improve our knowledge and understanding of these small-

scale phenomena. Among them, ABL processes in moun-

tainous regions are an active area of research due to com-

plex atmospheric dynamics, anabatic and katabatic winds

and strong temperature inversions (Rotach and Zardi, 2007).

Urban valleys are often affected by severe pollution events

during wintertime anticyclonic conditions while the atmo-

spheric circulation in the valley is decoupled from the syn-

optic dynamics aloft (Lehner and Gohm, 2010; Gohm et al.,

2009; De Franceschi and Zardi, 2009; Silcox et al., 2012).

This is particularly the case in the Arve River valley near

the city of Chamonix, located in the French Alps where the

air quality is some of the worst in France. The Passy-2015

field campaign was conducted to improve our knowledge on

how pollutants are accumulated and dispersed during stable

episodes in this urbanized valley (Paci et al., 2016). To better

understand and forecast these pollution events, vertical pro-

files of temperature at a high temporal resolution can be valu-

able. In fact, information on the link between the atmospheric

stability and the amount of pollutant in the atmosphere, as

well as the description of temperature inversions and strati-

fications, can be studied (Silcox et al., 2012; Chemel et al.,

2016).

Radiosounding remains one of the most accurate methods

to measure temperature profiles but the cost and induced fi-

nite time resolution (once or twice per day usually for in-

strumented site) is a limitation to a fine description of the

boundary layer’s diurnal cycle. In contrast, ground-based mi-

crowave radiometers (MWRs) can provide continuous obser-

vations of temperature and humidity profiles at a high fre-

quency rate (up to 1 s for humidity profiles, a few minutes

for temperature). Even if the vertical resolution decreases

with altitude (Cimini et al., 2006), information from MWRs

mostly resides in the ABL (Löhnert and Maier, 2012) and

atmospheric profiles are provided in both clear- and cloudy-

sky conditions, making them useful for a long-term mon-

itoring of boundary layer dynamics. Atmospheric profiles

are generally retrieved from statistical regressions using a

long-term database of radiosoundings (Crewell and Lohn-

ert, 2007; Löhnert and Maier, 2012). This method relies on

a long time series of radiosonde (RS) profiles to represent

most of the atmospheric variability. However, such a large

number of RS profiles is rarely available. NWP models can

provide a database of atmospheric profiles when no RS is

available (Güldner, 2013). However, this method may not

be well suited in complex terrain for which forecast skills

are known to be less accurate, particularly due to unrep-

resented processes associated with subgrid-scale orography.

One-dimensional variational (1DVAR) retrievals have also

been used to retrieve in an optimal way temperature and hu-

midity profiles by combining observations and an a priori es-

timate of the atmospheric state. This a priori profile can be

represented by a climatological profile based on radiosound-

ing at an instrumented site (Löhnert et al., 2004, 2008) or a

short-term forecast from a NWP model. The 1DVAR tech-

nique was applied by Hewison (2006), Cimini et al. (2006),

Hewison (2007), Cimini et al. (2010) and Cimini et al. (2011)

using forecasts from a mesoscale model on various datasets

of MWR observations from the MeteoSwiss station of Pay-

erne to observations in Alaska or Vancouver during the 2010

Olympic Games. A root-mean-square error (RMSE) within

1.5 K was obtained for the three experiments by comparison

to radiosondes. Recently, Martinet et al. (2015) illustrated for

the first time a 1DVAR assimilation of real MWR observa-

tions into the convective scale model AROME (Application

of Research to Operations at MEsoscale; Seity et al., 2011)

and obtained an RMSE within 1 K in clear sky and 1.3 K in

cloudy sky, up to 6 km, with most of the information content

brought into the model being located below 3 km altitude.

During the Passy-2015 field campaign, a 14-channel

MWR has been operated from December 2014 to March

2015 in a deep and narrow Alpine valley. Although there

have already been MWR deployments on complex terrain

(Kneifel et al., 2010; Cimini et al., 2011; Massaro et al.,

2015), this study investigates the following questions:

– Can ground-based MWRs resolve temperature profiles

characterized by sharp temperature inversions during

very stable conditions in such a deep and narrow val-

ley?

– What added value can MWRs bring to NWP models in

stable conditions which are known to be a current issue

in NWP forecasts ?

To that end, a MWR has been deployed in a narrow Alpine

valley (less than 5 km between the closest mountain slope

and the instrument) with measurements going down to 5◦

elevation angle. This is the first time 1DVAR retrievals are

performed from a convective scale model in complex terrain

during which large forecast errors are observed.
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The paper begins with an overview of the instrumenta-

tion used in the Passy-2015 field campaign (Sect. 2) and

the 1DVAR algorithm (Sect. 3) followed by an analysis of

the AROME forecast errors during the experiment (Sect. 4).

Monitoring of the radiometer brightness temperature (BT)

measurements enabling the computation of a bias correction

is presented in Sect. 5. Finally, performance of 1DVAR re-

trievals compared to regressions is discussed in Sect. 6.

2 Instrumentation

2.1 The Passy-2015 field campaign

The Passy-2015 field campaign was designed in order to im-

prove our understanding of how the atmospheric dynamics

during wintertime anticyclonic conditions, leading to per-

sistent stable boundary layers, drives the accumulation and

dispersion of pollutants in the atmosphere of the Arve val-

ley around the city of Passy. This French urbanized valley is

known for severe pollution episodes with daily concentration

of PM10 (aerosols with diameter less than 10 µm) regularly

above 50 µgm−3. The valley is approximately 2000 m deep

and maximum 2 km wide (Fig. 1). The ground altitude is ap-

proximately 560 m a.g.l in the valley. A large number of in-

struments were deployed from the end of November 2014 to

the end of March 2015 on five instrumented sites in the val-

ley. Among them are microwave radiometers, wind profilers,

ceilometer, sodar, lidars, tethered balloons and instrumented

towers. A detailed presentation of the field campaign can be

found in Paci et al. (2016). Two intensive observation peri-

ods (IOPs) have been carried out during the campaign. The

observing system was reinforced during these periods with

radiosondes launched every 3 h and up to 1.5 h. The first IOP

took place from 6 to 14 February and the second one from 17

to 20 February.

2.2 HATPRO MWR

A HATPRO MWR (Rose et al., 2005) was deployed on site

1 (Fig. 1) and is oriented to scan the Passy valley in two op-

posite directions: Passy in the northeastern and Sallanches in

the northwestern direction. The HATPRO MWR measures

downwelling BTs in 14 channels. The first seven are located

on the upper-frequency wing of the 22.24 GHz water vapor

absorption line (called K-band), and the last seven are at

the 60 GHz oxygen complex band (called V-band). K-band

channels are used to retrieve atmospheric humidity and liq-

uid water content while V-band channels are used for atmo-

spheric temperature retrievals. Observations are made either

in zenith mode pointing at 90◦ or in boundary layer mode

scanning the atmosphere under lower elevation angles from

90 to 5.4◦. One boundary layer scan is performed in each di-

rection approximately every 10 min. The use of a boundary

layer scan was found to significantly improve the accuracy of

temperature profiles in the first kilometers, assuming that the

Figure 1. View of the area of interest, close to the city of Passy

in the Arve River valley. Microwave radiometer and radiosondes

were deployed at measurement site 1. Topographic maps from

www.geoportail.gouv.fr (IGN 2017).

atmosphere is horizontally homogeneous around the MWR

(Crewell and Lohnert, 2007). Even if this assumption is not

necessarily valid in complex terrain, the study of Massaro

et al. (2015) has shown a good accuracy of temperature pro-

files with no degradation due to the nearby mountain. The

radiometer needs to be well calibrated to exploit the optimal

calibration coefficients in order to convert detected intensi-

ties into BTs. To that end a liquid nitrogen cooled load con-

sidered as a blackbody at the boiling temperature of 77 K is

generally used (Küchler et al., 2016). A liquid nitrogen cal-

ibration was performed at the beginning of the experimental

campaign at the end of November 2014.

2.3 Ancillary data

In addition to the HATPRO MWR, observations by 84 RS

ascents are used to validate temperature profiles retrieved by

the MWR. VAISALA RS92 radiosondes with an expected

accuracy of 0.5 K in temperature and 5 % in relative hu-

midity were launched approximately every 3 h and up to

1.5 h during the IOPs. Radiosondes were launched at ap-

proximately 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00

and 21:00 UTC. They provide vertical profiles of pressure,

temperature, relative humidity and wind profiles at approxi-

mately 10 m vertical resolution. The temperature at 1.5 m is

www.atmos-meas-tech.net/10/3385/2017/ Atmos. Meas. Tech., 10, 3385–3402, 2017
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provided by an external weather station combined with the

RS measurements through the VAISALA software. A new

system to increase the frequency of radiosondes by recov-

ering previously launched probes has been used during the

field campaign (Legain et al., 2013). In order to be able to

pick up the probes, they should not drift too far away from

the launching site. As a consequence, most of the radioson-

des were released at about 2 km altitude to make sure they

could be picked up in the valley. A ceilometer Vaisala CT25K

deployed a few meters from the MWR is also used to deter-

mine the cloud base altitude. This cloud base can be used to

optimize the 1DVAR retrievals in cloudy conditions and to

separate clear-sky from cloudy-sky observations when ana-

lyzing the results.

3 Retrieval algorithm

3.1 1DVAR framework

A comparison of several methods to convert BTs into tem-

perature and humidity profiles have proven the 1DVAR tech-

nique to be the optimal one (Cimini et al., 2006; Martinet

et al., 2015) when the a priori profile and uncertainty esti-

mates are suitable. The 1DVAR framework used in this study

is based on the optimal estimation theory by Rodgers (2000).

MWR observations are combined with an a priori estima-

tion of the atmospheric state, which can be either a short-

term forecast or a previous RS profile. In this context, a pri-

ori refers to the first guess of the iterative algorithm, rep-

resenting a good estimate of the atmospheric conditions as

the starting point of the minimization. Each source of in-

formation is weighted by corresponding uncertainty called

the background-error-covariance matrix (B) for the a priori

profile and the observation-error-covariance matrix (R) for

the observation to find the optimal state. The background-

error-covariance matrix represents the auto-covariances and

cross-covariances of the first-guess errors. Thus, it defines

the variances of the first-guess errors at each vertical level

for each variable, the vertical correlations of the first-guess

errors at different levels and the correlation of these errors

between different variables (temperature and humidity, for

example). An observation operator, including interpolations

from model space to observation space and a radiative trans-

fer model, is needed to compute the equivalent observation

from the a priori. The method iteratively modifies the state

vector x from the a priori xb to minimize the following cost

function:

J (x) =
1

2
(x − xb)

T B−1(x − xb) +
1

2
(y − H(x))T

R−1(y − H(x)),

where H represents the observation operator, T represents

the transpose operator and −1 is the inverse operator. The

observation-error-covariance matrix R should take into ac-

count representativeness and forward model errors as well as

radiometric noise.

During the minimization process, a Levenberg–Marquardt

descent algorithm is applied by introducing a factor γ that

is adjusted after each iteration. If the cost function is not de-

creased with the new profile, the factor γ is multiplied by 10.

The iterative solution that minimizes the cost function J is

given by

xi+1 = xi +

(

(1 + γ )B−1
+ HT

i R−1Hi

)−1
×

(

HT
i R−1(y − H(xi)) − B−1(xi − xb)

)

, (1)

where Hi is the Jacobian matrix, which represents the sen-

sitivity of the observation operator to changes in the control

vector x (Hi=∂H(xi)/∂xi).

3.2 NWP model

In this study 1 h forecasts from the French convective scale

model AROME are used as a priori profiles or “back-

grounds”. AROME is a limited area model covering western

Europe with non-hydrostatic dynamical core. Since begin-

ning in 2015, the horizontal resolution of AROME has been

increased from 2.5 to 1.3 km as well as the number of vertical

levels from 60 to 90 (Brousseau et al., 2016). This increase

in horizontal and vertical resolutions is particularly useful to

better represent complex terrains. Vertical levels follow the

terrain in the lowest layers and isobars in the upper atmo-

sphere. The detailed physics of AROME are inherited from

the Meso-NH model (Lafore et al., 1997). Deep convection is

assumed to be resolved explicitly, but shallow convection is

parameterized following Pergaud et al. (2009). A bulk one-

moment microphysical scheme (Pinty and Jabouille, 1998)

governs the equations of the specific contents of six wa-

ter species (humidity, cloud liquid water, precipitating liq-

uid water, pristine ice, snow and graupel). This new version

also performs 3DVAR analyses every hour instead of every

3 h to optimize the use of frequent observations. All conven-

tional observations are assimilated together with wind pro-

filers, winds from space-borne measurements (atmospheric

motion vectors and scatterometers), Doppler winds (Mont-

merle and Faccani, 2009) and reflectivity (Wattrelot et al.,

2014) from ground-based weather radars, satellite radiances

and ground-based GPS measurements (Mahfouf et al., 2015).

3.3 Settings

In this study the control vector x consists of temperature

and humidity profiles on the same 90 levels as defined in

AROME. These levels cover the atmospheric range from the

ground up to 30 km, the vertical resolution decreasing with

altitude: 20–100 m below 1 km, 100–200 m from 1 to 5 km

around 400 m at 10 km. It is important to note here that the
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retrieval grid is finer than the true instrumental resolution but

matches the AROME model vertical resolution. The obser-

vation vector y consists of BT in all V-band channels (51.26,

52.28, 53.86, 54.94, 56.66, 57.3, 58 GHz) at zenith and only

opaque channels (above 54 GHz) at low elevation angles: 42,

30, 19.2, 10.2 and 5.4◦. This study only focusses on temper-

ature profiles, and thus only V-band channels are used. The

forward model operator used in this study is the line-by-line

Atmospheric Radiative Transfer Simulator 2 (ARTS2; Eriks-

son et al., 2011) and 1DVAR experiments are performed us-

ing the Qpack2 package (Eriksson et al., 2005) provided with

the ARTS2 software. For the radiative transfer simulations,

the gaseous absorption is calculated according to Rosenkranz

(1998) for O2 and water vapor. In simulations taking into ac-

count the liquid water absorption, the model of Liebe et al.

(1993) is used.

The observation-error-covariance matrix R is assumed to

be uncorrelated with a standard deviation of 0.5 K for chan-

nels 8 to 9 and 0.2 K for channels 10 to 14. These values have

been chosen empirically on the basis of previous studies by

Löhnert et al. (2008) and Hewison (2007). The same values

have been used in Martinet et al. (2015) with the instrument

used in this study and have shown to be good estimates of

the observation errors. In the future, a dedicated study will

be performed to review these values and quantify the correla-

tions in noise between the different channels by continuously

measuring the BTs of the internal blackbody target.

Information about instrumental errors can be obtained by

investigating differences between observations and simula-

tions from background profiles (short-term forecasts or ra-

diosondes). The monitoring of these differences, called O–B

(observations minus background) departures, is essential to

remove any systematic errors in the measurements, the for-

ward operator or the background profiles (De Angelis et al.,

2017). They are investigated in Sect. 5.

4 Evaluation of the AROME model during the

Passy-2015 field campaign

In real time during the Passy-2015 field campaign, temper-

ature profiles were retrieved from the MWR measurements

using linear regressions implemented within the HATPRO

proprietary software. The regression coefficients were pro-

vided by the RPG manufacturer to the national service Me-

teoSwiss and are based on the 1989–2005 Payerne RS data

via radiative transfer calculations. The Payerne coefficients

were chosen due to the lack of RS data close to the city of

Passy and for the similar climatic conditions between Passy

and Payerne.

In order to evaluate the performance of the AROME model

during the Passy-2015 experiment, Fig. 2 shows the time

series of temperature profiles observed by radiosondes, re-

trieved from the HATPRO MWR by the Payerne linear re-

gression coefficients and extracted from the AROME analy-

ses during the first IOP. The stable episode starts 9 February

and ends 13 February. During this event a persistent inversion

is observed, but we note that stability is depleted in the first

500 m every day between noon and 15:00 to 17:00 due to the

solar heating. The diurnal cycle and a very cold air mass (up

to −10 ◦C) close to the surface at night are very well detected

by the MWR. We observe a good agreement of the overall

atmospheric structure between RS data and MWR observa-

tions. The RMSE between the regressions and the radioson-

des are 0.7 K below 500 m except the first two points close to

the surface, which are below 1.3 K at 1200 m and increase up

to 2 K at 4000 m. These values are consistent with those re-

ported in Löhnert and Maier (2012) from another HATPRO

radiometer operated in a less complex terrain and from Mas-

saro et al. (2015) in a truly complex terrain in the Inn Valley.

This result confirms that microwave radiation that could orig-

inate from nearby slopes does not seem to degrade the quality

of MWR inversions. MWRs can thus be safely deployed in

complex terrain and then similar temperature accuracy to that

of flat and less complex terrain can be expected, at least if the

line of sight of the MWR is free of obstacles over distances

larger than about 5 km.

Figure 2 also demonstrates that the 10 min resolution

of the MWR observations during the field campaign is a

real advantage to complete the RS time series for a de-

tailed description of the boundary layer diurnal cycle. During

IOP 1, the 2015 operational version of the AROME model

missed the large cooling of the surface at nighttimes. The

AROME model demonstrated difficulties in properly repre-

senting such conditions, which is a well-known issue of cur-

rent NWP models. It induces large differences between the

RS observations and the AROME forecasts by up to −12 K

at the surface during the strongest stable event (10, 11 and 12

February).

To quantify the accuracy of the AROME analyses in the

valley during IOP 1, Fig. 3 shows temperature differences be-

tween RS and AROME at three different levels: 1.5, 1000 and

1500 m a.g.l. The measurement at 1.5 m comes from a well-

ventilated external weather station. To interpret these tem-

perature errors, the difference between the RS temperature

measurement at the boundary layer height zi and the surface

measurement from the external weather station is calculated:

1T = TRS(zi)−Tstation (1.5 m). To estimate the thin convec-

tive layer top during the day that develops under the effect of

solar heating, we used one of the standard definitions given

by Stull (2012) and Sullivan et al. (1998) as the height of

the maximum gradient of potential temperature. The esti-

mation of the boundary layer height in stable conditions is

more tricky and has been a longstanding problem, with defi-

nitions varying according to the application. Here, the stable

boundary layer top has been defined as the top of the sur-

face inversion of the stable layer using the definition from

Beyrich (1997). This definition is used when a positive tem-

perature gradient near the surface is found. The temperature

difference 1T quantifies the ABL stability. Negative values

www.atmos-meas-tech.net/10/3385/2017/ Atmos. Meas. Tech., 10, 3385–3402, 2017
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Figure 2. Time series of temperature profiles during IOP 1: (a) from

radiosounding with corresponding boundary layer heights (black

crosses); (b) from microwave radiometer; (c) from AROME analy-

ses. Altitudes are given in meters above ground level.

indicate convective conditions while positive values indicate

stable conditions that are more pronounced when the tem-

perature difference is larger. The term “stability index” will

be used in our analysis. We can note that the surface error

is relatively low at the beginning of the period (smaller than

5 K) and increases with the atmospheric stability. The sta-

bility index increases from 9 to 11 February and decreases

after to reach values similar to the beginning of the episode.

The stability index changes from positive (i.e., stable) to neg-

ative (i.e., unstable) every day between 12 and 18:00 UTC

approximately. The temperature errors of the AROME anal-

yses at the surface are consistent with the evolution of the

atmospheric stability. The largest errors reach −12 K on 11

February at 03:00 UTC (Fig. 4) when the stability is maximal

with a value of 14 K.

In contrast, the evolution of the 1000 m temperature er-

ror is not correlated with the atmospheric stability and shows

larger errors before the stable conditions (9 February), with

a stability index reaching −10 K. At the beginning of the

IOP, cloudy conditions with low-level clouds located around

1000 m were observed. This resulted in a sharp temperature

inversion at the cloud base (Fig. 4), which is also a known

source of error in NWP forecasts. At 1500 m a.g.l, the error

stays within 2 K during all the period showing a good ac-

curacy of the AROME analyses at an altitude corresponding

roughly to the averaged valley crest.

To summarize, the accuracy of the AROME analyses is de-

graded inside the valley, which is affected by an atmospheric

circulation decoupled from the synoptic dynamics above the

valley crest. The degradation of the AROME analyses is cor-

related with the establishment of the stable episode. The sur-

face cooling is strongly underestimated by AROME in this

context. However, above the top of the valley, the analysis

errors are much smaller and correspond to the expected ac-

curacy of the model. This result confirms the fact that MWRs

can bring valuable information in the altitude range where the

NWP error is the largest and where a lack of observations is

still observed in operational networks.

5 Observation minus background monitoring

5.1 Data screening

In order to remove discrepancies in the forward simulations

due to cloud mislocations in the forecast model, a screening

of MWR observations between clear- and cloudy-sky cases

has been performed. First of all, a sanity check is performed

to remove MWR observations for which the rain flag pro-

vided within the instrument data stream was activated. As the

HATPRO configuration was optimized to retrieve tempera-

ture profiles at a high vertical resolution, few zenithal obser-

vations were performed between two boundary layer scans.

Note that the small amount of data at zenith does not allow

the use of the standard deviation of MWR BT measurements

at 31 GHz to detect possible clouds in the field of view of

the instruments (Ebell et al., 2017). The cloud base height

provided by the CT25K ceilometer was thus used as a refer-

ence to identify cloudy-sky observations. If the lowest cloud

base height during a ±20 min window around the MWR ob-

servation is smaller than 6000 m, the observation is classified

as cloudy. In case no ceilometer observation is available, the

infrared radiometer temperature provided with the HATPRO

platform has to be smaller than −30 ◦C to consider the obser-

vation as liquid free (similar approach used in Martinet et al.,

2015).The result of this classification of radiosondes between

clear-sky and cloudy-sky observations is shown in Fig. 5 in

addition to the ceilometer cloud base height. Among the 84

radiosondes launched during the Passy-2015 field campaign,

56 were classified as clear sky.
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Figure 3. (a) Temperature differences between radiosondes and AROME analyses at three levels: 1.5 m in black, 1000 m in red and 1500 m

in blue. (b) Temperature differences between the radiosonde measurement at the boundary layer height and the surface measurement from

an external weather station. Altitudes are given in meters above ground level.
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Figure 4. Temperature profiles observed by the radiosonde (red

line) or extracted from the AROME analyses (black line): during

unstable conditions 7 February at 21:00 UTC (a) and during the

most stable period 11 February at 03:00 UTC (b). Altitudes are

given in meters above ground level.

5.2 O–B analysis from AROME forecasts

Monitoring observation minus background departures is an

important step before any assimilation. First of all, the best

estimate of the analysis state is obtained only if background

and observation errors follow Gaussian distribution with zero

mean. Quality-controlled and bias-free observations are thus

necessary to obtain a good estimate of atmospheric profiles.

Should not this be the case, a bias correction of the obser-

vations can be proposed to meet the requirements of vari-

ational assimilation. While Löhnert and Maier (2012) and

Navas-Guzmán et al. (2016) used RS to simulate the equiva-

lent brightness temperature spectrum, Martinet et al. (2015)

showed the possibility of using the AROME forecasts instead

of RS data. Using AROME forecasts enables the detection of

BT bias offset when no RS is available close to the MWR

site. However, a new source of error is added, coming from

possible systematic NWP errors. Even though differentiating

the different sources of errors (instrumental, forward model

and background errors) can be complex, this monitoring is

widely used in the satellite data community.

BT simulations were performed with the ARTS2 radiative

transfer model and 1 h AROME forecasts (temperature, hu-

midity) using 2 months of data (February and March 2015).

www.atmos-meas-tech.net/10/3385/2017/ Atmos. Meas. Tech., 10, 3385–3402, 2017



3392 P. Martinet et al.: Boundary layer temperature profiles from microwave radiometers

02-07 02-08 02-09 02-10 02-11 02-12 02-13 02-14 02-15 02-16 02-17 02-18 02-19 02-20
Date 

0

2000

4000

6000

8000

10000

C
ei

lo
m

et
er

 c
lo

ud
 b

as
e 

he
ig

ht
 [

m
]

RS clear

RS cloudy

Figure 5. Cloud base height retrieved from ceilometer CT25K during the two IOPs of the Passy-2015 experiment. Stars represent the launch

times of the radiosondes during the campaign classified as clear sky in red and cloud sky in blue. When no cloud was found by the ceilometer

(clear sky), a value of 10 000 m was chosen by default.

The closest AROME grid point in the valley with an altitude

difference of only 2 m compared to the MWR location was

used. Figure 6 shows the O–B departure as a function of the

ABL stability for one transparent channel (51.26 GHz) and

one opaque channel (58 GHz) and different elevation angles.

Only clear-sky observations are considered with a screen-

ing procedure described in Sect. 5.1. As radiosondes are not

available throughout the period, the atmospheric stability is

computed from MWR temperature profiles retrieved by lin-

ear regression. The temperature difference between 500 and

50 m is used. Different altitudes have been tested but 500 m

was found to best describe the development and destruction

of stability in the boundary layer, at least during the IOPs.

The MWR temperature retrieval at surface was not used as

large errors have been observed (1.9 K; see Fig. 9) and would

impact the evaluation of the stability. Instead, the second

level of the MWR retrievals (50 m) has been chosen as it has

shown a better accuracy with respect to RS measurements.

From this figure, we can observe that the O–B departures

at 58 GHz are highly correlated to the atmospheric stability,

which is not the case at 51.26 GHz. As opaque channels are

more sensitive to the lowest atmospheric layers, this result

indicates that the forward simulations are highly affected by

the larger AROME forecast errors in the boundary layer dur-

ing stable episodes. In contrast, the accuracy of the AROME

forecasts in the upper layers stays stable during the period.

The forward simulations at 51.26 GHz are thus quite stable

during the whole campaign. Larger errors are also found with

decreasing elevation angles for both transparent and opaque

channels. For opaque channels, this can be explained by an

increased sensitivity to atmospheric layers close to the sur-

face, where the largest errors in the AROME forecasts are ob-

served. For transparent channels, radiations from surround-

ing slopes can degrade the observations and atmospheric in-

homogeneities can cause larger discrepancies with the simu-

lation.

This section has shown that, in the particular case of the

Passy-2015 experiment, the use of AROME forecasts to infer

any systematic BT offset is not appropriate. In fact, the large

forecast errors during wintertime stable episodes exceed the

instrumental errors. The computation of O–B departures on a

larger time period could probably smooth the forecast errors

to only highlight instrumental errors like calibration jumps,

systematic errors and drifts. In order to correctly infer any BT

offset, the O–B departures are computed from the radioson-

des launched during the IOPs in the next section.

5.3 O–B analysis from radiosondes

Observation minus background departures have been com-

puted from RS profiles launched during the field campaign.

As most of the radiosondes did not reach more than 2 km

altitude above ground, it is important to complete the at-

mospheric profiles up to 30 km to avoid large discrepancies

in the simulation of transparent channels. Radiosondes were

interpolated into the AROME vertical grid below 2 km and

completed with AROME analyses above. As the accuracy of

AROME analyses is better than 1 K above 2 km, this com-

bination should not degrade the forward simulations. Fig-

ure 7 shows the bias and standard deviation of O–B depar-

tures at different elevation angles. We can note a stronger

dependency to the elevation angles for transparent channels

(51 to 52 GHz). These channels are more sensitive to cali-

bration errors for decreasing optical depth (higher elevation

angles). The largest bias (−4.2 K) is found at 52.25 GHz and

an elevation angle of 90◦, while it is below 0.5 K for opaque

channels. Standard deviations within 1 K are observed for all

channels and all elevation angles except at 51.25 GHz for el-

evation angles lower than 19.2◦ and for angles at 52.25 GHz
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Figure 6. Observation minus background (AROME forecasts) departures as a function of HATPRO temperature differences between 500

and 50 m and different elevation angles from 90 to 5.4◦.

at 5.4◦. This degradation could be due to an increase in at-

mospheric inhomogeneities, indicating that transparent chan-

nels are generally not used at low elevation angles (Crewell

and Lohnert, 2007). For opaque channels, bias and standard

deviation smaller than 0.2 K are observed at all angles ex-

cept 5.4◦, where the bias reaches 0.5 K. Similar values were

found in the study of Martinet et al. (2015) with the same

HATPRO instrument on a less complex terrain. The consis-

tency between both studies points out the good stability of

the instrument despite several deployments and calibrations.

An improvement in the calibration procedure has also been

observed with a significant decrease of standard deviation for

all channels (up to 3 times at 90◦). A similar bias shape was

found in Löhnert and Maier (2012) and Navas-Guzmán et al.

(2016), with a large negative bias at 52.25 GHz, as well as at

several sites in Europe (De Angelis et al., 2017).

This large bias can be due to a combination of calibration

errors and absorption model uncertainties (Hewison, 2006).

This analysis demonstrates that a constant bias correction

can be safely applied to the set of measurements used for

temperature retrievals: only zenith angle for frequency be-

low 53 GHz and all elevation angles above. It will be applied

and discussed in the next sections.

6 1DVAR retrievals

6.1 Background errors

In the operational AROME model, the background-error-

covariance matrix B is computed from an ensemble as-

similation that considers explicit observation perturbations

and implicit background perturbations through the cycling

(Brousseau et al., 2011). The AROME ensemble assimila-

tion is coupled to the operational ensemble assimilation at

global scale, AEARP (Berre et al., 2007). However, the ex-

pected background accuracy (diagonal terms of the B ma-

trix) suggests a forecast error of less than 1 K in the boundary

layer on average through all the AROME domain. This op-

erational B matrix significantly underestimates the AROME

forecast errors during the Passy-2015 experiment. A new B

matrix has thus been computed from the differences between

the AROME forecasts and the RS data in both clear sky and

cloudy skies, similarly to Cimini et al. (2011). The bias and

standard deviation of these differences compared to the oper-

ational background errors used for the assimilation of satel-

lite data are shown in Fig. 8. A large bias in temperature

of approximately −5 K is observed at the surface and cor-

responds to the large overestimation of the temperature by

AROME during the stable episodes. A standard deviation of

2 to 3 K, which is 2 to 3 times larger than the expected back-

ground error, is evident between the surface and 1700 m. The

temperature error at higher altitude is much smaller (∼ 1 K)

and closer to the value prescribed in the operational assimi-

lation system, corresponding to a decrease in the forecast er-

ror above the valley crest. Similar features were found with

ECMWF and NCEP models in an Arctic environment in the

study of Cimini et al. (2010). As the 1DVAR retrieval accu-

racy depends on how well the B matrix is defined, the diag-

onal terms of the B matrix (auto-covariance of the tempera-

ture errors) were simply replaced by the variance of the RS

minus AROME differences (i.e., the square of standard de-

viation values in Fig. 8) below 2 km. In order to provide sta-

tistically consistent increments at the neighboring levels of

the model, the vertical correlations of the operational B ma-

trix were conserved. Non-Gaussianity can also affect fore-

cast errors. Recently, Legrand et al. (2016) evaluated the

non-Gaussianity of analysis and forecast errors using a 90-

member AROME ensemble assimilation. It was found that

for all variables, non-Gaussianity exists but dynamical vari-

ables (vorticity and divergence) are more affected than tem-

perature and humidity. Data assimilation reduces this non-

Gaussianity at each cycle in regions covered well by obser-

vations. This ensemble assimilation does not exist for our

period, making the evaluation of this Gaussianity in our con-
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text complicated. However, it should affect higher moments

of the error distribution than those used in the B matrix.

6.2 Sensitivity of retrievals to elevation angles and bias

correction

The 1DVAR method with the settings previously described

has been applied to MWR observations during the two IOPs

of the Passy-2015 campaign. The retrievals are evaluated

against radiosondes and compared to the standard HATPRO

linear regressions with the Payerne coefficients. Here the RS

profiles are interpolated to the retrieval grid without taking

into account the smoothing errors due to the limited vertical

resolution of the MWR. In fact, this resolution is approx-

imately between 50 and 500 m and only four independent

pieces of information can be extracted from the signal (Löh-

nert and Maier, 2012). In contrast, the temperature profile

is sampled approximately every 10 m by the RS. In the fu-

ture, the averaging kernel matrix could be used to bring the

RS profile onto the MWR vertical resolution. According to

Sect. 5, a constant bias correction is removed from all chan-

nels before the 1DVAR algorithm. This bias correction is not

used for the linear regressions that directly come from the

uncorrected BT measurements and the HATPRO proprietary

software. Figure 9 evaluates temperature retrievals against

radiosondes in terms of bias and RMSE focussing only on

clear-sky profiles. For the sake of clarity Fig. 9 also shows

MWR retrievals either with regression or 1DVAR with a fo-

cus on the range 0–1000 m.

To evaluate the impact of the bias correction, 1DVAR re-

trievals with and without bias correction are also compared

while the impact of low elevation angles is investigated by

comparing retrievals using only zenith angle or all angles.

Very similar values of mean deviations are found (from

−0.4 to 0.2 K) for the two 1DVAR configurations imple-

menting a bias correction (zenith and boundary layer scan)

despite a decrease of the bias in the first 100 m with addi-

tional low elevation angles. Regressions show a larger bias

with values between −0.1 and 0.8 K. These values are re-

duced compared to those observed with neural networks in

Martinet et al. (2015). Without applying a bias correction to

the measurements, a small degradation in the 1DVAR bias is

observed below 1000 m. The maximum degradation is found

at 1150 m, where the bias reaches 0.7 K instead of −0.03 K.

1DVAR RMSE values are smaller than 0.8 K below 500 m

and within 1 K through all the atmospheric profile. Large

RMSE values are found close to the surface for all retrieval

methods (up to 1.6 K). The best accuracy of 1DVAR re-

trievals is found when the bias correction is applied to the

measurements and using all elevation angles up to 5.4◦. A

degradation below 1000 m in the 1DVAR retrievals is ob-

served when only observations at zenith are used in the min-
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imization. In this case, the RMSE values can reach 1.2 K in-

stead of 0.8 K with low elevation angles. This result demon-

strates the benefit of low elevation angles to resolve tem-

perature inversions below 1000 m. Below 1000 m, regres-

sions perform slightly better (differences between 0.1 and

0.2 K in RMSE) than 1DVAR. Above 1000 m 1DVAR out-

performs regressions whose RMSE values increase up to

2.5 K at 6000 m. Overall, 1DVAR retrievals provide the best

estimate of the atmosphere. The performance of 1DVAR re-

trievals is similar when using the standard deviations from

the operational B matrix and a custom B matrix computed

comparing AROME and RS profiles (not shown). This sug-

gests that the operational B matrix may be safely adopted for

other sites where RS profiles are not available for computing

a custom B matrix. However, in the future, it would be inter-

esting to investigate the sensitivity of the 1DVAR retrievals

to the flow dependency of the B matrix and particularly to the

vertical correlation lengths. The flow dependency and diurnal

cycle of forecast errors can be determined by implementing a

real-time AROME ensemble assimilation system (Ménétrier

et al., 2014). This is under development and should be avail-

able in 2018.

In order to investigate the large RMSE values observed

close to the surface in more detail, time series of the tempera-

ture difference between the surface (external weather station)

and the first HATPRO level are investigated in Fig. 10. This

difference is compared to the differences between the surface

station and tower measurements at 5 m. The evolution of the

temperature error is compared to the diurnal cycle of the tem-

perature difference between the surface (1.5 m) and the RS

measurement at the first level above (∼ 10 m a.g.l). Positive

values indicate stable atmosphere while negative values in-

dicate convective conditions. We note a correlation between

the decrease in the stability and the increase in the HATPRO

surface error. Maximum differences (−9 K) are found when

the stability is minimum, corresponding to a maximum of

convective activity during daytime. The MWR seems to sig-

nificantly underestimate the surface warming during the tran-

sition phase from stable to convective conditions. However,

MWR retrievals can easily be combined with surface sensors

to provide a higher accuracy at the surface. To test the fea-

sibility of combining surface measurements and MWR ob-

servations in a physical way, the tower measurement at 5 m

was included in the observation vector with a sharp surface-

peaked weighting function. The 1DVAR retrievals look very

similar to what was previously shown but a significant im-

provement in the RMSE at the surface was found with a de-

crease from 1.6 to 1 K, as expected (this configuration is used

later on in Fig. 13). In the future, this combination could thus

be used by deploying a well-calibrated surface station in par-

allel to the MWR.

6.3 Sensitivity of retrievals to the a priori

The previous section has investigated the capability of MWR

observations to be assimilated into NWP models by follow-

ing a similar approach to operational assimilation systems

(3DVAR, 4DVAR). However, in the context of field cam-

paigns and the study of boundary layer processes, it can be

interesting to get the best possible 1DVAR retrievals by us-

ing a more appropriate background profile. In the case of the

Passy-2015 field campaign, thanks to the high temporal res-

olution of RS, the previously launched RS can be used as

the background profile instead of the AROME 1 h forecast to

start the minimization from a more reasonable a priori pro-

file. The B matrix has also been recomputed according to

the differences between two successive radiosondes in order

to be consistent. In order to evaluate this new configuration

Fig. 11 compares the accuracy of 1DVAR retrievals whether

either 1 h AROME forecasts or the previously launched ra-

diosondes are used as backgrounds. As expected when ra-

diosondes are used as backgrounds, the bias is decreased dur-

ing the analysis, providing the best accuracy compared to the

other retrievals. In terms of RMSE, the 1DVAR accuracy is

improved between 400 and 1200 m and outperforms the re-

gressions through all the atmospheric profile except a slight

degradation at 1200 m. Using RS as backgrounds, RMSE

values are below 0.6 K in the first 1000 m and within 1 K

above.

An attempt to use the 1DVAR algorithm in cloudy condi-

tions is also shown in Fig. 11. The liquid water path is esti-

mated from HATPRO with a simple and classical dual chan-

nel algorithm using brightness temperature measurement at

23 and 31 GHz (Westwater, 1978). The liquid water con-

tent profile is estimated from the background temperature

and humidity profiles from a modified adiabatic assumption

(Karstens et al., 1994) in the layer where the relative humid-

ity exceeds 95 %. The computed liquid water content profile

is then scaled with the estimated liquid water path. The ob-

tained liquid water content profile is translated vertically to fit

the cloud base height provided by the ceilometer. In case no

atmospheric layer exceeds the 95 % relative humidity thresh-

old, a cloud layer is placed at the cloud base height provided

by the ceilometer with a geometrical thickness of one layer

and a liquid water path equal to the one derived from HAT-

PRO measurements. As MWRs are mostly sensitive to the in-

tegrated liquid water content rather than the vertical distribu-

tion of clouds, this configuration should be sufficient to take

into account the cloud contribution in the radiative transfer.

Note that only 25 profiles are taken into account in the statis-

tics, which makes the dataset too small for a good represen-

tativeness. A large degradation of the 1DVAR retrievals from

AROME forecasts is observed in cloudy conditions with an

increase of RMSE values up to 3 K at 1000 m. Contrary to

what one may think, this degradation does not seem to be

directly related to large background errors in the liquid wa-

ter content but more to the misrepresentation of cloud-based
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Figure 9. Vertical profiles of bias (dashed lines) and root-mean-square errors (solid lines) of MWR retrievals against radiosondes: 1DVAR

retrievals from AROME 1 h forecasts, all elevation angles and bias correction (green), all elevation angles but no bias correction (red), only

zenith angle and bias correction (blue) and linear regressions (black). Results on 56 clear-sky temperature profiles.
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temperature inversions in AROME. In fact, Fig. 5 shows that

most of the cloudy profiles are located at the beginning of

the first IOP between 7 and 9 February. This period corre-

sponds to the strong temperature inversion at 1000 m altitude

missed by AROME (Fig. 4), inducing large forecast errors

up to −9 K. As the information content from the microwave

radiometer is maximum below 1000 m and decreases with

altitude, the MWR likely does not bring enough information

during the analysis to correct the background profile. In addi-

tion to this decrease in information content, the large RMSE

value at 1000 m is likely due to the smoothing error related to

the low vertical resolution of MWRs. This is evident in the

bias, showing large positive to negative values going from

500 to 1500 m altitudes.

To confirm that this degradation does not come from large

errors in the liquid water content background profile, 1DVAR

retrievals have been performed using only opaque channels

(54–58 GHz). These channels are known to be less affected

by cloud liquid water emission contrary to transparent chan-

nels. Figure 12 shows the RMSE of 1DVAR retrievals, with

this reduced channel set differentiating the results between

clear-sky and cloudy-sky conditions. In clear-sky conditions,

using only opaque channels, a slight improvement between

900 and 1600 m and a degradation between 1600 and 3000 m

are observed, although these differences stay small (0.1 K in

RMSE). In cloudy-sky conditions, the same 1DVAR statis-

tics are found with different channel configurations. As trans-

parent channels are more affected by cloud liquid water emis-

sion, we could have expected to observe a larger degradation

when these channels are used if the liquid water content is not

well modeled. As few differences are observed with transpar-

ent channels included in cloudy conditions, the degradation

in cloudy conditions is likely to come from sharp elevated

temperature inversions.

In cloudy-sky conditions, regressions also show a degra-

dation with a RMSE of 2.2 K at 1000 m but are slightly bet-

ter than 1DVAR below 1300 m if AROME is used as back-

ground (Fig. 11). Above 1300 m, an increase in the bias

makes the regressions less accurate than both 1DVAR con-

figurations. The best performance is found if radiosondes

are used as backgrounds even though the RMSE values still

reach 1.8 K at 1000 m. This configuration shows that one

way to deal with sharp elevated temperature inversion with

MWRs could be to use a background profile already simulat-

ing this inversion.

In order to evaluate the added value brought by MWRs

to the background profile and how much improvement could

be expected in future data assimilation, Fig. 13 summarizes

the performance of the 1DVAR retrievals either from RS or
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from AROME backgrounds compared to the AROME fore-

cast errors. It also shows the performance of the “persistent”

method in which the last RS is used as an estimate of the

current conditions. As radiosondes were launched every 3 h

during the Passy-2015 campaign, it is interesting to investi-

gate whether MWRs could still offer information on atmo-

spheric changes during the 3 h time window. Note that when

the previously launched RS is used as background, the exter-

nal weather station was added to the observation vector.

In clear-sky conditions, as previously mentioned, we ob-

serve a large RMSE of the AROME forecasts up to 8 K

due to a positive bias up to 6 K in the AROME back-

ground that decreases with altitude. The RMSE profiles of

1DVAR retrievals indicate that a significant amount of in-

formation can be extracted from MWR observations to im-

prove the AROME backgrounds even though large errors be-

low 1500 m are observed in the a priori profile. This situation

is quite extreme as the background is very far from the truth

at the beginning of the minimization. However, the largest

background errors are found in the 0–1000 m range where

MWRs can best constrain the minimization due to the high

information content of the instrument in this altitude range.

In cloudy-sky conditions, AROME suffers from large er-

rors at both surface and 1000 m, corresponding to sharp

temperature inversions. A significant improvement of the

AROME forecasts is observed in the first 1200 m. Temper-

ature errors are decreased from 3.5 to 0.4 K at 200 m and

from 4.5 to 2.5 K at the cloud-based inversion. This result

demonstrates the potential benefit of assimilating MWR ob-

servations in NWP models in both clear-sky and cloudy-sky

conditions.

Even though RS could be launched at a high temporal res-

olution (here up to 3 h), the 10 min resolution of MWRs can

be valuable to fill in the gap between RS. In fact, we note

that even if radiosondes are launched every 3 h, significant

changes in the boundary layer temperature profiles are ob-

served between two adjacent RS with RMSE values larger

than 1 K below 1000 m and up to 4.4 K at the surface in

clear-sky conditions. In cloudy-sky conditions, errors up to

1.6 K in RMSE in the temperature profile are also associated

to the cloud-based inversion with this “persistent” method.

1-D assimilation of MWR observations manages to signifi-

cantly decrease the errors in the boundary layer mainly below

1500 m with values between 0.3 and 1.3 K in the first 1000 m.

MWR observations can thus fill in the gap between 3 h ra-

diosondes to provide valuable temperature profiles. This re-

sult also demonstrates how the MWR temporal resolution is

a necessity to complete our understanding and description of

the ABL diurnal cycle.

6.4 Examples of temperature profiles

In order to illustrate the capability of MWRs to resolve

deep near surface as well as elevated temperature inver-

sions, Fig. 14 shows temperature profiles during two op-

posite weather regimes: convective and cloudy conditions

on 7 February at 06:04 UTC and stable clear conditions on

13 February at 02:56 UTC. In each figure, temperature re-

trievals from different configurations (regression, 1DVAR

from AROME forecast, 1DVAR from radiosonde) are com-

pared to radiosonde. The a priori profile used in each con-

figuration, either the previously launched radiosonde or the

1 h AROME forecast, is also shown. First of all, we note

the difficulty of ground-based MWRs to resolve high level

inversions. Neither the regression nor the AROME 1DVAR

can catch the sharp inversions at 1000 m above ground level.

Only the RS 1DVAR is able to catch it because the mini-

mization starts from a background profile already simulating

an elevated inversion that is barely modified during the re-

trieval. Note that 1DVAR with AROME background shows

an elevated inversion, though the AROME profile is almost

linear. This already represents an improvement with respect

to the AROME background, which is much smoother. This

limitation is a well-known issue of MWRs; Massaro et al.

(2015) suggested the use of additional pressure and temper-

ature observations from meteorological stations on the sur-

rounding mountain slopes. Our study shows that another way

of improvement is to use an external information to infer the

presence of an elevated temperature inversion that will be in-

corporated in the background of the 1DVAR algorithm. An

improvement can also be expected from more appropriate

vertical correlations in the B matrix. In fact, correlations cur-

rently used probably smooth the increments and a reduction

on the vertical correlation length should lead to a beneficial

impact on the retrievals in such conditions. This approach

will be investigated in the future.

Contrary to the high-level inversion, MWRs can catch very

well clear-sky deep near-surface temperature inversions as

observed during the stable episode of the Passy-2015 cam-

paign. Both 1DVAR and regressions capture the structure of

the profile well, even though 1DVAR retrievals are slightly

more accurate than regressions. We again note the signifi-

cant improvement of the AROME profile in the lowest 500 m

thanks to the MWR information content brought during the

analysis.

7 Conclusions

Within the Passy-2015 field campaign, a HATPRO ground-

based microwave radiometer was operated in a deep Alpine

valley, making instrumental deployment due to surrounding

mountains difficult. A 1DVAR technique combining 1 h fore-

casts of the convective scale model AROME and observa-

tions from the HATPRO MWR was tested and evaluated

during two IOPs, focussing on wintertime stable boundary

layers out of 3 months of instrumental deployment. In such

complex terrain we could have expected the measurements to

be affected by surrounding mountains; one interesting result

of this study was that MWR observations are not affected in

www.atmos-meas-tech.net/10/3385/2017/ Atmos. Meas. Tech., 10, 3385–3402, 2017
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Figure 11. Vertical profiles of bias (dashed lines) and root-mean-square errors (solid line) of 1DVAR retrievals using either AROME 1 h

forecast (blue) or previously launched radiosonde (red) as background. 1DVAR retrievals are performed with bias correction and using all

elevation angles (90 to 5.4◦). Comparison with linear regressions (black line). Left panel shows results on 56 clear-sky temperature profiles
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Figure 12. Vertical profiles of root-mean-square errors of 1DVAR

retrievals using AROME 1 h forecasts as backgrounds. Either all

V-band channels (blue) or only opaque channels (red) are used. Re-

sults are differentiated by clear-sky (solid lines) or cloudy-sky con-

ditions (dashed lines)

such a narrow valley, even going down to 5◦ elevation angles.

Previous papers deploying MWRs in complex terrain are not

abundant; among them we can cite Kneifel et al. (2009),

Kneifel et al. (2010), Cimini et al. (2011); Xie et al. (2012)

and Massaro et al. (2015). In Kneifel et al. (2009) the terrain

is not as complex as in Passy, with a maximum elevation of

only 350 m, and only integrated water vapor retrievals are in-

vestigated. Neither Kneifel et al. (2009) nor Xie et al. (2012)

investigate temperature profile retrievals and the radiometer

is deployed at 2650 m above sea level, which differs from the

deployment at the bottom of the 2000 m deep Passy valley.

In Cimini et al. (2011), the terrain is more complex but the

1DVAR is investigated with a global NWP model at a 10 km

horizontal resolution and using only one elevation angle in

addition to the zenith. The radiometer measurements do not

go lower than an elevation angle of 15◦, which significantly

limits the possible perturbation from surrounding mountains.

Massaro et al. (2015) deploy the instrument in a valley with

a free viewing angle up to 28 km and only focus on regres-

sions. Regarding the Passy valley, the free line of sight is lim-

ited to 5 km in the Passy direction and 1DVAR retrievals from

a convective scale model are performed. Temperature gradi-

ents were also larger compared to those observed in Massaro

et al. (2015).

An evaluation of the accuracy of the AROME model was

first studied. A large underestimation of the surface cooling

up to −12 K during the most stable episode was observed.

This is a well-known issue of current NWP models that mo-

tivated, among other scientific questions, the preparation of

the Passy-2015 campaign. This issue is currently investigated

by the modeling community at CNRM and some significant

leads for improvement have already been found. During the

beginning of the IOP, AROME was found to smooth cloud-

based inversions, leading to larger errors at the cloud base

around 1000 m, while during clear-sky conditions the tem-

perature inversion is not large enough. The measured BT

measurements were compared with those simulated either

from AROME 1 h forecasts or RS and the ARTS2 radiative

transfer model. The goal of this monitoring is to propose a

bias correction to improve the retrieval of atmospheric pro-

files. The use of the AROME model to compute the instru-

mental bias correction was found to be inappropriate because

the BT deviations for opaque channels are mainly driven by

the large forecast errors in the boundary layer during sta-
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the previously launched radiosonde (cyan) are also shown.

ble conditions. The instrumental bias was thus inferred from

BT simulations with the RS launched during the campaign

in clear-sky conditions. A large negative bias was observed

for the most transparent channels with values up to −4.2 K

(52.28 GHz, 90◦), while the bias was below 0.5 K for opaque

channels and all elevation angles. Relatively low standard

deviations (within 1 K) were observed for channels and el-

evation angles used in the retrieval, demonstrating that the

biases can be safely removed by applying a constant bias

correction. The bias is close to that found in previous stud-

ies. This demonstrates that the bias can be assumed constant

as long as calibrations are performed properly. The second

part of this study evaluated 1DVAR retrievals in terms of

bias and RMSE against collocated radiosondes. By exploit-

ing the 1DVAR assimilation of MWR observations, the large

forecast errors close to the surface (up to 8 K in RMSE)

were decreased within 1 K through all atmospheric profiles

except the surface temperature (1.6 K RMSE). This result

is encouraging because it shows the high information con-

tent of MWRs in the boundary layer, specifically where the

AROME forecasts are less accurate and could be improved

by a dense network of ground-based instruments. 1DVAR re-
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trievals were found to outperform linear regressions above

1000 m, where RMSE values increase up to 2.5 K at 6000 m.

Linear regressions show similar performance below 1000 m.

The use of the elevation scanning mode was also found to

significantly improve the retrievals below 1000 m while the

use of a bias correction improves the retrievals below 2000 m.

These last results are not in agreement with the results in

Martinet et al. (2015). However, the dataset used in this study

contains mainly deep clear-sky near-surface temperature in-

versions for which low elevation angles can bring new in-

formation to the zenith mode. Finally, the use of an exter-

nal weather station to constrain the temperature retrieval at

the surface can decrease the RMSE values from 1.6 to 1 K,

which includes the uncertainty due to relative distance.

In order to improve 1DVAR retrievals for processes in the

context of field campaigns, RS previously launched during

the field campaign can be used as backgrounds in place of

AROME forecasts. Starting from an a priori profile already

closer to the true atmospheric state, a better estimation of

the optimal atmospheric profile should be observed. In clear-

sky conditions, this configuration leads to an improvement

of 1DVAR retrievals below 1000 m with RMSE values be-

low 0.6 K. An attempt to retrieve temperature profiles in

cloudy conditions was also studied. A significant degrada-

tion of both regressions and 1DVAR was found, in partic-

ular around 1000 m with RMSE values around 2 K for re-

gressions and 3 K for 1DVAR retrievals. This degradation

is significantly reduced when RS are used as backgrounds.

This degradation at 1000 m is probably due to cloud-based

temperature inversions not caught by the MWR and does not

seem to be directly related to large background errors in the

liquid water absorption. This study confirms the known diffi-

culty of MWRs to capture elevated temperature inversions in

cloudy-sky conditions at the level of the valley crest (Crewell

and Lohnert, 2007; Massaro et al., 2015) while highlighting

the high capability of MWRs to catch clear-sky deep near-

surface temperature inversions during stable boundary lay-

ers. MWR observations were also found to provide valuable

information between two adjacent RS to catch significant

changes in the ABL temperature profile.

Regarding the scientific questions addressed in Sect. 1, our

results show that MWRs are expected to bring valuable in-

formation into NWP models up to 3 km altitude but mainly

in the first kilometers in both clear-sky and cloudy-sky con-

ditions. With an accuracy between 0.5 and 1 K RMSE, our

study has proven MWRs to be capable of resolving deep

near-surface temperature inversions observed in complex ter-

rain during stable boundary layer conditions. This accuracy

can be obtained only if the MWR’s field of view is free of ob-

stacles and is similar to what was observed in less complex

terrain. Elevated temperature inversions are still challenging

due to the decreased vertical resolution of the instrument

with altitude. Using a more appropriate background, simu-

lating an elevated inversion was found to greatly improve

the retrievals. In the future, extra work needs to be under-

taken to decrease the correlation length of the background-

error-covariance matrix, which should improve the retrievals.

A new generation of MWRs also shows a larger sensitivity

which is expected to help resolve elevated inversions. Finally,

synergy with other passive and active instruments (infrared

radiometers and lidars) is expected to improve the vertical

resolution of the retrievals through all atmospheric columns

(Barrera-Verdejo et al., 2016).

The results shown in this study are encouraging and

demonstrate the potential for assimilating MWRs in opera-

tional convective scale models even though studies on larger

datasets and longer time periods should be done. The de-

velopment of the ground-based version of the fast radiative

transfer model RTTOV (RTTOV-gb; De Angelis et al., 2016)

paves the way for future data assimilation of brightness tem-

perature measurements, which should bring more in the as-

similation system than retrievals (Caumont et al., 2016). In

the context of urbanized valley, this study has proven the ca-

pability of MWRs for long-term monitoring to improve our

understanding of wintertime pollution events. Temperature

gradients linked to the atmospheric stability could be used to

better forecast wintertime pollution events. Scanning in two

different directions of the valley, MWR observations also of-

fer the possibility of investigating temperature heterogene-

ity in the valley and how these differences are linked to the

mesoscale circulation. This will be further investigated in a

future study.

In the future, 1DVAR retrievals will be extended to humid-

ity and liquid water content. Improvement in the definition of

the R and B matrices will also be carried out to be optimized

with the weather regime.
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