
 Open access Journal Article DOI:10.1007/S10766-017-0524-Z

Combining Hadoop with MPI to Solve Metagenomics Problems that are both Data-
and Compute-intensive — Source link

Han Lin, Zhichao Su, Xiandong Meng, Xu Jin ...+5 more authors

Institutions: University of Science and Technology of China, Lawrence Berkeley National Laboratory

Published on: 01 Aug 2018 - International Journal of Parallel Programming (Springer US)

Topics: Speedup

Related papers:

 Lit: A high performance massive data computing framework based on CPU/GPU cluster

 Parka: A Parallel Implementation of BLAST with MapReduce

 Design and Optimization of a Big Data Computing Framework Based on CPU/GPU Cluster

MATE-CG: A Map Reduce-Like Framework for Accelerating Data-Intensive Computations on Heterogeneous
Clusters

 Analysis of Resource Utilization on GPU

Share this paper:

View more about this paper here: https://typeset.io/papers/combining-hadoop-with-mpi-to-solve-metagenomics-problems-
481p86t7b0

https://typeset.io/
https://www.doi.org/10.1007/S10766-017-0524-Z
https://typeset.io/papers/combining-hadoop-with-mpi-to-solve-metagenomics-problems-481p86t7b0
https://typeset.io/authors/han-lin-1tcczzqigj
https://typeset.io/authors/zhichao-su-4bjunpzk6m
https://typeset.io/authors/xiandong-meng-1syq5uda1b
https://typeset.io/authors/xu-jin-3g9qf5fszk
https://typeset.io/institutions/university-of-science-and-technology-of-china-2l5rq4rx
https://typeset.io/institutions/lawrence-berkeley-national-laboratory-2kbhbepv
https://typeset.io/journals/international-journal-of-parallel-programming-1fxfuwxs
https://typeset.io/topics/speedup-2i1q29b9
https://typeset.io/papers/lit-a-high-performance-massive-data-computing-framework-zqrafr40xg
https://typeset.io/papers/parka-a-parallel-implementation-of-blast-with-mapreduce-1mw4yu273u
https://typeset.io/papers/design-and-optimization-of-a-big-data-computing-framework-2j8ba7heb0
https://typeset.io/papers/mate-cg-a-map-reduce-like-framework-for-accelerating-data-1dvqdxxw9a
https://typeset.io/papers/analysis-of-resource-utilization-on-gpu-46qptrorme
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/combining-hadoop-with-mpi-to-solve-metagenomics-problems-481p86t7b0
https://twitter.com/intent/tweet?text=Combining%20Hadoop%20with%20MPI%20to%20Solve%20Metagenomics%20Problems%20that%20are%20both%20Data-%20and%20Compute-intensive&url=https://typeset.io/papers/combining-hadoop-with-mpi-to-solve-metagenomics-problems-481p86t7b0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/combining-hadoop-with-mpi-to-solve-metagenomics-problems-481p86t7b0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/combining-hadoop-with-mpi-to-solve-metagenomics-problems-481p86t7b0
https://typeset.io/papers/combining-hadoop-with-mpi-to-solve-metagenomics-problems-481p86t7b0

Lawrence Berkeley National Laboratory
Recent Work

Title
Combining Hadoop with MPI to Solve Metagenomics Problems that are both Data- and
Compute-intensive

Permalink
https://escholarship.org/uc/item/2s45b05r

Journal
International Journal of Parallel Programming, 46(4)

ISSN
0885-7458

Authors
Lin, H
Su, Z
Meng, X
et al.

Publication Date
2018-08-01

DOI
10.1007/s10766-017-0524-z

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2s45b05r
https://escholarship.org/uc/item/2s45b05r#author
https://escholarship.org
http://www.cdlib.org/

Combining Hadoop with MPI to Solve

Metagenomics Problems that are both Data-

and Compute-intensive

Han Lin1, Zhichao Su1, Xiandong Meng2, Zhong Wang2, Hong An1

1 University of Science and Technology of China
2 DOE Joint Genome Institute, Genomics Division, Lawrence Berkeley National

Laboratory, Berkeley, CA 94720, USA
{linhan09, suzc}@mail.ustc.edu.cn
{xiandongmeng, zhongwang}@lbl.gov

han@ustc.edu.cn

Abstract. Metagenomics, the study of all microbial species cohabitants
in an environment, often produces large amount of sequence data varying
from several GBs to a few TBs. Analysing metagenomics data involving
several steps, some steps are data intensive, and some are compute in-
tensive. Typical bioinformatics pipelines attempt to analyse the entire
data set on computer servers with several terabytes of RAM, which is
very inefficient. To overcome this limit, here we propose a MapReduce
based solution to partition the data based on their species of origin. We
implemented the solution using BioPig, an analytic toolkit for large-scale
genomic sequence data based on Apache Hadoop and Pig. We simplified
data types and logic design, compressed k-mer storage and combined
Hadoop with MPI to improve the computational performance. After
these optimizations, we achieved up to 193x speedup for the rate-limiting
step and 8x speedup for the entire pipeline, respectively. The optimized
software is also capable to process datasets that are 16 times larger on
the same hardware platform. Results from this case study suggest the
combined Hadoop with MPI approach has great potential in large ge-
nomics applications that are both data-intensive and compute-intensive.

Keywords: Metagenomics, Hadoop, MPI, Optimization, Implementa-
tion, Pig Latin, BioPig, Big Data, Data-intensive, Compute-intensive

1 Introduction

Metagenomics represents the investigation of the microbes inside an environ-
ment(e.g. ocean, soil, and the human body) with sequencing technologies. The
recently developed next-generation sequencing technologies[1] have dramatically
increased the speed of DNA sequencing and enlarged the size of sequencing data.
In the occasion of metagenomic sequencing, a large amount of sequence samples
of various species are captured. To isolate every microbe from environmental
samples by experimental methods is nearly impossible. So computational filter-
ing of species is the key to solving the metagenomic problem.

The metagenomic sequence reads partition is a big-data problem, since the
input data sets could be as large as tens or hundreds of GBs or even many
TBs. Hadoop[2] is an open-source framework for big-data processing, which
contains four core components: Hadoop Common, Hadoop Distributed File Sys-
tem(HDFS) , Hadoop YARN[3] and MapReduce[4] programming model. Hadoop
Common provides the common utilities that support other modules; YARN is
responsible for job scheduling and cluster resource management; HDFS ensures
the reliable and distributed application data storage as well as high-throughput
access to that; MapReduce permits numbers of tasks running in a massively
parallel manner on a large-scale cluster. These features make Hadoop a very
popular framework for big-data processing.

BioPig[5] is an analytic toolkit for large-scale sequence data based on Pig[6],
which provides a SQL-style programming language called Pig Latin upon Hadoop’s
MapReduce programming model. With Pig Latin, programmer could write Map-
Reduce applications on a higher level. Pig Latin can be extended by using User
Defined Functions(UDFs), through which a user can control the data processing
in a fine-grained style. BioPig contains some examples and necessary UDFs for
genomic sequence data processing, such as sequence data load and store, k-mer
generator, N50 calculator, assembler caller.

Reads clustering is a common method in metagenomics. Dime[7] is a frame-
work for metagenomic sequence assembly, it provides a complete solution that
consists of reads partition, assembly and merging. MrMC-MinH[8] is an algo-
rithm for clustering metagenome reads based on Map-Reduce. However, none
of them has been tested on large amount of data sets. SeqPig[9] is another Pig-
based toolkit for process of large sequencing data sets. It also provides scalability
over many computing nodes.

In the input data set, every input biological sequence is called a read, as
usually mentioned by biologists. Every letter indicating a nucleotide(A, C, G
or T) is called a base. Sometimes a fifth letter “N” will be used for uncertain.
There are several common formats for storing reads. In our occasion, we use fastq
format, which is a text-based format for biological sequence and its corresponding
quality scores storing. A read sample represented in fastq format is showed in
Fig.1. The first line starts with an ‘@’ and followed by a READ ID, which is a
unique string representing the whole read. The second line is the sequence itself
followed by a separator ‘+’ in line 3. The last line is the sequence’s quality score.
Different character in this line indicates different quality of the corresponding
base. The length of line 2 and line 4 must be equal.

@READ ID

GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT

+

!’’*((((***+))%%%++)(%%%%).1***-+*’’))**55CCF>>>>>>CCCCCCC65

Fig. 1: A read in fastq format

K-mer is a significant concept in computational genomics. It refers to all
the possible subsequences(of length k) inside a read. Figure 5 shows a simple
example of a k-mer generator—generates k-mers from a read. K-mer step defines
how many bases to step forward when calculating next k-mer.

In this paper, we present the implementation and optimization of an al-
gorithm which partitions input reads based on the k-mer sharing information
between reads pairs. The implementation is tested over the input of millions
to hundreds of millions of reads. The methods to optimize our implementation,
including simplifying data types, compressing k-mer storage, simplifying logic
design, coupling MPI with Hadoop and making them work together, special-
ized Hadoop configurations, etc. are very instructive to similar work. And the
idea that combine MPI with Hadoop reveals a new way to deal with big-data
problems that are not both data-intensive and compute-intensive.

The rest of the paper is organized as follows. Section 2 presents our algorithm
for reads partition. Section 3 explains our implementation based on BioPig.
Section 4 presents the optimization strategies in detail. Section 5 shows the final
results we get and section 6 discusses the whole work.

2 Reads Partition Algorithm

The k-mer sharing reads partition algorithm consists of three parts: reads graph
generation, graph partition and reads retrieving. Reads graph generation
generates a reads graph whose vertices represent input reads and edges represent
k-mer sharing information among every reads pair. Graph partition is like a
kind of cluster operation. It finds out all the connected components of the reads
graph. The components that are in graph partition phase are disjoint subsets
which contain partitioned reads. Reads retrieving maps every input read into
different clusters according to the subset it belongs to. Reads graph generation
and graph partition algorithms are described by Algorithm 1 and 2 respectively.

2.1 Reads Graph Generation

The algorithm is showed in Algorithm 1. The initial input of reads graph gen-
eration phase R is a set of samples that each of which consists of a set of reads.
After processing, it outputs a reads graph RG, whose vertices represent reads
and edges indicate relations of every reads pair.

Every input sample Ri will be checked one by one. After calculating every
read’s k-mers, we count the number of occurrences of every k-mer in the sample
and filter the ones whose occurrence times is less than a min or greater than a
max threshold. The filtered results are stored in UF . After the filter operation,
the sample information is dropped.

The reserved information in UF is then used to check whether to keep an
edge. Edge weight is the number of shared k-mers in the corresponding reads
pair. Only the edges whose weight lies in the specified range are added into RG.

Algorithm 1 Reads Graph Generation

Input:

Reads Set, R = {R1, R2, ..., Rm};
K-mer length, k;
K-mer appearance threshold, min k appear and max k appear;
Edge weight threshold, min edge weight and max edge weight

Output: Reads Graph, RG

1: UF ← ∅
2: for Ri ∈ R do

3: S ← ∅
4: for r ∈ Ri do

5: k-mer set← k-mer generator(r, k) as {(k-mer, readid)}
6: S ← S ∪ k-mer set

7: end for

8: B ← group S by k-mer

9: CK ← count(k-mer in B)
10: F ← filter B by CK ≥ min k appear and CK ≤ max k appear

11: UF ← UF ∪ F

12: end for

13: E ← generate reads pair (ri, rj) from UF

14: RG← ∅
15: for (ri, rj) ∈ E do

16: CE ← count((ri, rj) in UF)
17: if CE ≥ min edge weight and CE ≤ max edge weight then

18: RG← RG ∪ {(ri, rj)}
19: end if

20: end for

21: return RG

2.2 Graph Partition

The algorithm is showed in Algorithm 2. Graph partition splits the generated
graph RG into disjoint subsets. Every subset is a connected component of the
input reads graph.

The input graph E is described in the format of (ri, rj) so that we can ignore
the isolated vertices. The found subsets are stored in a set V . For every new edge
(ri, rj), we try to find how many subsets in V containing the linked vertices ri
and rj . There are three possibilities:

1. No subset contains ri or rj . Create a new subset and add ri, rj into it.

2. One subset Vk containing ri and/or rj is found. Add these two vertices into
Vk.

3. Two subsets Vk and Vm are found. One contains ri while the other contains
rj . Combine the two subsets together.

Eventually, every subset’s elements will be assigned a unique value, which is
the tag of the subset.

Algorithm 2 Graph Partition

Input: Graph E = {(ri, rj)}, which ri and rj are both read ids.
Output: Disjoint subsets of vertices that indicate partitioned reads, V .
1: V ← ∅
2: for (ri, rj) ∈ E do

3: num found ← 0
4: for Vk ∈ V do

5: if ri ∈ Vk or rj ∈ Vk then

6: found[num found]← k

7: num found ← num found + 1
8: if num found > 2 then

9: break

10: end if

11: end if

12: end for

13: if num found = 0 then

14: Vk ← {ri, rj}
15: V ← V ∪ Vk

16: else if num found = 1 then

17: k ← found[0]
18: Vk ← Vk ∪ {ri, rj}
19: else if num found = 2 then

20: k ← found[0], m← found[1]
21: Vn ← Vk ∪ Vm

22: V ← V − {Vk, Vm}
23: V ← V ∪ Vn

24: end if

25: end for

2.3 Reads Retrieving

In order to reduce the size of intermediate results, we only keep least infor-
mation(read id) in the reads graph. So after graph partition phase, we should
retrieve all the information of the original reads. That’s the goal of reads re-
trieving. We chose to use a “join” operation, which is like the JOIN operation
in SQL to link the subset tags and the original reads. Finally, we could output
the partitioned reads into different files according to the subset tags.

3 Implementation

We implement the above reads partition algorithm with BioPig [5] , which is a
Hadoop-based analytic toolkit for large-scale sequence data. BioPig provides pro-
grammability, scalability and some user defined functions(UDFs) for genomics
data processing. We extend some of its functions and implement new UDFs we
need.

Figure 7(a) shows the main software stack we use. Our implementation works
with BioPig, which also works on Apache Pig[10]. Apache Pig is a platform for

data flow processing that provides a high-level language called Pig Latin[6]. It
works on Apache Hadoop through transforming the Pig Latin operations into a
series of map-reduce tasks. The generated map-reduce tasks will be submitted
to Hadoop cluster, which is responsible for scheduling these tasks and finish-
ing the calculations. Apache Hadoop, which is upon the layer of Java runtime
environment, contains three main modules: the distributed file system HDFS,
the scheduling framework YARN and Map-reduce task framework. The Hadoop
version we use is 2.7.3.

Pig Latin provides fundamental units (basic operations) to process interac-
tively or construct streaming data processing scripts for structural and unstruc-
tured data. It has basic operations LOAD and STORE for data input and output
respectively; it has relational operations like RANK, FILTER and ORDER as
well as SQL-like operations like GROUP and JOIN. The data can be represented
as relations. The term relations in Pig Latin is like variables in other common
programming language and it represents data on which operators can take place
during the processing period. Like a record in a database, every entry of the
data could consist of multiple fields. For example, a relation user may consist of
two fields: userName and userId.

BioPig provides sequence data loading and k-mer generating functions. The
former supports reading reads data in fastq format while the latter supports
generating k-mers from a read. For some other operations, like group, filter and
join, there’re corresponding native operations in Pig Latin.

In the reads graph generation phase, all the reads pairs need to be found
for edge candidates. As k-mer shared information is regarded as edges’ weight
and only the edges with large weight value will be kept, we only consider the
reads pairs with k-mer sharing. A UDF GenReadPair is designed. It consumes
a tuple of read ids and outputs a data bag consisting of tuples, each of which is
an ordered reads pair.

For graph partition, we use Google’s connected components Map-Reduce
algorithm [11] as the baseline. It is a very fast Map-Reduce algorithm that can
easily scale to graphs with hundreds of billions of edges.

4 Optimization

4.1 Performance Analysis

We use two factors to evaluate performance: execution time and disk space us-
age. For disk space usage, we focus on /tmp directory in HDFS. As Hadoop
writes intermediate results into disks, this also reflects memory consuming of
the application.

We use a 9-nodes cluster to deploy Hadoop with one master node and 8
slave nodes. The hardware and software settings of every node are showed in
Table 1. There’re two CPU sockets and 96GB memory on our nodes, every node
is connected by 1Gb/s Ethernet connection. The operating system and other
software are also listed in Table 1.

Table 1: Hardware and software setting

Item Description

CPU Intel Xeon E5-2660 @ 2.2GHz x2
Memory DDR3 1333MHz 96GB
Hard Disk SAS HDD 300GB
Network Connection Intel Ethernet Adapter I350 with 1Gb/s, Mellanox QDR Infini-

band 40Gb/s
Operating System CentOS 7.3.1611, Linux 3.10.0
Java Runtime JDK 1.8.0 20
Apache Hadoop Apache Hadoop 2.7.3
Apache Pig Apache Pig 0.15.0
MPI Intel MPI 2017.0.098
Apache Tez Apache Tez 0.7.0

The data sets we used vary in size from 1GB to 8GB in fastq format.
They are Cow Rumen metagenome data sets provided by Joint Genome Insti-
tute[12] . The parameters were as follows: k = 31, step = 2, min k appear = 2,
max k appear = 2, min edge weight = 2 and max edge weight = 512. We
monitored the execution time of every phase and temporary directory size of
graph generation phase. The results are displayed in Figure 2.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 4 8
 0

 50

 100

 150

 200

 250

 300

 350

 400

E
x
ec

u
ti

o
n
 T

im
e(

s.
)

H
D

F
S

 t
m

p
 S

iz
e(

G
B

)

Input Dataset(GB)

Graph Generation Time
Graph Partition Time

Reads Retrieving Time
HDFS tmp Size(Phase 1)

Fig. 2: Execution time of every phase and temporary folder size of phase 1

The results indicate that Graph Generation is the main hotspot of the al-
gorithm. This is not surprising, since its processing is most complicated among
all the three phases. This is why we only show its HDFS temporary folder size
here. It is evident that the algorithm produces a large number of intermedi-
ate results—30-50x comparing to the input data size during Graph Generation
phase. This makes it critical to control hard disk usage, for too much disk de-
mand may stop us from processing larger data sets. The Graph Partition phase,
as the figure shows, is also a hotspot. The good news is that even though it needs

many iterations, it doesn’t produce a lot of intermediate results. The Reads Re-
trieving seems not to be a bottleneck. This is because its logic is very simple
compared to the other two.

4.2 Program Optimization

As we see from the results in section 5.1, our initial implementation consumes a
large quantity of hard disk resources. It is essential to reduce memory footprint
and hard disk usage for processing large amount of biological data. We implement
two methods to achieve these goals: data type conversion and logic simplification.

Data Type Conversion The most common data type in sequence data pro-
cessing is chararray in Pig Latin, which is actually an alias of string. That is
really bloated compared to integer or long. K-mer is a sub-string of the initial
input read, in which every base is a char. However, a char for a base is redun-
dant, since every base could be one of only 5 different values (A, C, G, T or N
for uncertain), so 3 bits instead of 8 bits are enough for a single base, or a byte(8
bits) can store at most 3 bases(53 = 125 different cases). Therefore, compressing
k-mer representation is a good way to reduce the size of intermediate results.
This is already implemented in the k-mer generator in BioPig, but we use a more
complete way.

In BioPig, every byte represents at most 3 bases. That is, 53 + 52 + 5 = 155
different cases are stored in a byte. So only 155/256=60.55% of the data is
true information. After optimization, we store every 3 bases in 7 bits, in that
case, about 53/27 = 97.66% is true information. We tested these two methods
with data sets from 1GB to 8GB and compared their execution time of k-mer
generator and the size of generated k-mer file. The results are showed in Figure
3. On average, 8.28% storage space is saved with only 6.89% run time increase.
This is really cost-effective, since the extra time is negligible compared to the
entire execution time while space saving is beneficial to memory, calculation,
I/O and network communication. In the experiments, we use k=31. More space
would be saved with a bigger k value, and the ideal case will be 12.5% with an
infinite k.

In Figure 3, the execution time doesn’t increase linearly in respect to in-
put data size. This is because the Pig itself can arrange suitable number of
map/reduce tasks according to data size and the k-mer generating is totally
parallel without any communication. Bigger data sets result in more processing
threads. That’s why we achieve super-linear speedup here.

As mentioned above, chararray is the most common data type in reads pro-
cessing. However, it requires not only more time to process but also more space
to store. To overcome this obstacle, we use long integer to replace chararray
types as much as possible. In Pig Latin, the operator RANK could assign a long
value to every unique element in the specified data field with any type. Through
this way, the field with any type will be converted to long, which is easier to
compare, store or transmit. RANK is easy to implement, but also complicated

 0

 50

 100

 150

 200

 250

 300

 1 2 4 8
 0

 10

 20

 30

 40

 50

 60

E
x
ec

u
ti

o
n
 T

im
e(

s.
)

K
-m

er
 F

il
e

S
iz

e(
G

B
)

Input Dataset(GB)

Original Time
Compressed Time

Original Output Size
Compressed Output Size

Fig. 3: Performance of k-mer generator

and slow. Since we only need a unique long value for every unique chararray, a
good hash function is more suitable and surely faster.

We realized this data type conversion on almost all the chararray fields,
such as sampleid, readid and k-mer. The extra hash operation requires more
execution time during the data type conversion period, but this can acceler-
ate other operations and reduce the size of intermediate results dramatically,
which have much more positive effects on performance. Figure 4 shows the per-
formance improvements after the data types are optimized. Comparing to the
implementation without data type conversion(Default in the figure), data type
conversion(Hashed in the figure) has advantages on both execution time and
disk usage especially for large input data sets. For small input files, like 1GB
to 8GB, data type conversion results in more execution time, because it caused
more operations. But when the input data size grows further(16 GB in the fig-
ure), data conversion brings benefits to both execution time and hard disk usage.
All the tests of data conversion show better hard disk usage. The larger the data
set, the more significant the space saved. This makes it possible to process much
larger data sets.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 4 8 16
 0

 100

 200

 300

 400

 500

 600

 700

E
x
ec

u
ti

o
n
 T

im
e(

s.
)

H
D

F
S

 t
m

p
 S

iz
e(

G
B

)

Input Dataset(GB)

Default Time
Hashed Time

Default HDFS tmp Size
Hashed HDFS tmp Size

Fig. 4: Performance improvements of data type conversion

Logic simplification It is a common way to simplify the algorithm to obtain
an approximate solution for acceleration when the algorithm is too complex or
the input data set is too large to finish accurate calculation within tolerable
execution time upon a limited platform. We also use this method to speed up
our implementation.

According to running log, DISTINCT is one of the most time consuming
operators, which removes duplicate tuples in a relation. It appears twice in reads
graph generation phase, that is, one is to remove duplicate reads in the input
data set and the other is to remove duplicate k-mers generated from the same
read. We deleted both of them since we made sure every read id in input data
set is unique and modified the k-mer generator to avoid generating duplicate
k-mers from the same read.

Figure 5 shows an example of our k-mer generator modification. Let k = 4
and we focus on the k-mer AACT . It appears twice in read0 while once in read1.
A typical k-mer generator generates “AACT read0” twice so we have to remove
the duplicate entries with DISTINCT operation. After modification, the new k-
mer generator only produce one copy of “AACT read0” and the time-consuming
DISTINCT operation can be omitted.

...AACT...GAACT...read0

...AACT...read1

K-mer Generator

k = 4

AACT read0

AACT read0

AACT read1

DISTINCT

AACT read0

AACT read1

...AACT...GAACT...read0

...AACT...read1

New K-mer Generator

k = 4

AACT read0

AACT read1

Fig. 5: An example of k-mer generator

In addition, there’re two filters in the reads graph generation algorithm:
remove all the k-mers that rarely or frequently appear inside every and among
all samples. However, these filters are transformed into GROUP and COUNT
operations in Pig Latin. As data size grows, the GROUP operation becomes very
slow, since it requires sortation, comparison and communication among a lot of
mappers and reducers. In order to accelerate these steps, we combined these two
filters into one and introduced more stringent thresholds. The modification may
affect the accuracy of the implementation, but it can provide sufficient results
in a much faster way.

Figure 6 shows the performance improvements of logic simplification on dif-
ferent size of input data sets. The implementation with logic simplification is
labeled with “Simplified Logic” while the other labeled with “Default Logic”.
The previous optimizations have made it possible for larger data sets(32 GB in
the figure) to be processed. In all these tests, up to 33.84% execution time is
reduced through logic simplification.

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

 10,000

1GB 2GB 4GB 8GB 16GB 32GB

E
x

ec
u

ti
o

n
 T

im
e

(s
.)

Input Dataset(Fastq format)

Default Logic
Simplified Logic

Fig. 6: Performance of logic simplification

4.3 Graph Partition Redesign

Through performance analysis, we find that graph partition is one of the main
hotspots. Since graph processing is an HPC problem which map-reduce is not
really good at, finding another way to do this part of calculation is critical. HDFS
provides basic API for C, we extended it and implemented the graph partition
task in MPI. The implementation is based on the set union algorithm discussed
in [13]. The optimized software stack is as Figure 7(b) shows. Now we have java
runtime environment as well as MPI/C framework running on operating system.
The latter uses HDFS as storage infrastructure and couple itself with Hadoop.
Our new implementation of reads partition works on not only BioPig and Apache
Pig, but also MPI/C framework.

Figure 8(a) displays the MPI performance of graph partition and Figure 8(b)
shows the runtime with respect to number of processes. The values in Figure 8(a)
are presented in the logarithm of 2. In all the tests results presented, MPI version
is 77-193x faster than Map-Reduce version. As the input data size grows, the gap
between the two implementations is shrinking, but in the scale of our interest,
MPI implementation is still much faster. The results in Figure 8(b) imply good
scalability and larger graphs can take full advantage of more processes.

4.4 Software Stack and Hardware Optimization

As mentioned before, we use a complex software stack and program on a very
high abstraction level. As a consequence, there’re much more factors having

Reads Partition Algorithm

Operating System(Linux)

Java Runtime Environment

Apache Hadoop

Apache Pig

BioPig

HDFS YARNMapreduce

(a) The original software stack

MPI

Reads Partition Algorithm

Operating System(Linux)

Java Runtime Environment

Apache Hadoop

Apache Pig

BioPig

HDFS YARNMapreduce

(b) The optimized software stack

Fig. 7: The software stack

 1

 4

 16

 64

 256

 1,024

 4,096

 16,384

1GB 2GB 4GB 8GB 16GB 32GB

E
x
ec

u
ti

o
n
 T

im
e

(s
.)

Input Dataset(Fastq format)

Map−Reduce
MPI

(a) MPI and Map-Reduce Graph Par-
tition performance

 0

 50

 100

 150

 200

 250

 300

1 2 4 8 16 32

E
x
ec

u
ti

o
n
 T

im
e

(s
.)

Number of Processes

16GB Fastq Data
32GB Fastq Data

(b) Execution time of MPI Graph Par-
tition in respect to number of pro-
cesses

Fig. 8: MPI performance

effects on performance than that in traditional HPC applications. In other words,
we have to consider every level of our software stack to gain a good performance.
In this section we discuss some optimization attempts on Pig, Hadoop and even
hardware.

Parameter Tuning The PARALLEL parameter in Pig script can control the
number of reduce tasks for the MapReduce jobs generated by Pig at the opera-
tor level. In addition, through setting default parallel in Pig script, the default
number of reduce tasks of all generated MapReduce jobs at the script level can
be specified. Pig sets the number of reduce tasks using a heuristic based on the
input data size. Sometimes manually setting the parallelism according to the
available resources could get better performance.

There’re a series of configuration parameters that may affect a specific ap-
plication upon hadoop. We mainly discuss options about block storage and data
compression in this section. The block size parameter determines the size of
every block stored in HDFS. It can affect Pig’s performance since it directly
determines the map parallelism – one map task for each HDFS block. Interme-
diate data compression is critical too since compressing the intermediate data

during map and reduce phases can usually reduce the size of intermediate data
significantly. Through this, not only disk space but also execution time will be
saved.

Integrate Pig with Tez Apache Tez[14], which is an application framework
built atop Apache Hadoop YARN, has two design themes that can release the
performance of Map-Reduce applications: in-memory data processing and di-
rected acyclic graph(DAG) tasks organization. In-memory data processing means
that Tez can maximally remove unnecessary disk I/O and keep intermediate re-
sults inside memory as much as possible. DAG tasks organization means that
Tez can reorganize all the Map-Reduce tasks and combine multiple tasks into
one to reduce overheads.

Enhanced Network and Hard Disk Better hardware is also important to get
good performance, network and hard disk are two candidates. Replacing Ether-
net by faster Infiniband could reduce the data transferring time (usually in shuffle
period) and using Solid State Disk(SSD) instead of Hard Disk Drive(HDD) could
accelerate disk I/O. Even through the proportion of network data transferring
and disk I/O will be weakened after some optimizations, they are still worthy of
consideration.

Figure 9 shows the performance improvements achieved by software stack and
hardware optimization. We see 6.3x and 1.54x performance benefits for 1GB and
32GB input data sets respectively and 4x speedup on average.

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

1GB 2GB 4GB 8GB 16GB 32GB

E
x

ec
u

ti
o

n
 T

im
e

(s
.)

Input Dataset(Fastq format)

Default
Optimized

Fig. 9: The performance of software stack and hardware optimization

5 Results

Figure 10(a) compares the performance of optimized and original implementa-
tion. We witness 8.1x speedup at most and an average speedup of 6.6x. Figure

10(b) shows the performance improvement of every phase in respect to input
data size. The y axis value is the logarithm of the base 10. It’s clear that Graph
Partition phase gets the highest speedup, which shows the affinity of MPI to
the connected components calculation comparing to Map-Reduce. From Figure
10(b) we also see that the trend of speedups of the whole calculation is almost
identical to that of Graph Generation phase. This is not surprising since after
optimization, it turns out to be the most time-consuming phase and it dominates
the whole execution time.

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

 4,500

 5,000

1GB 2GB 4GB 8GB

E
x

ec
u

ti
o

n
 T

im
e

(s
.)

Input Dataset(Fastq format)

Initial
Optimized

(a) The performance of optimized imple-
mentation

 1

 10

 100

 1000

 1 2 4 8
 1

 10

 100

 1000

R
el

at
iv

e
P

er
fo

rm
an

ce

Input Dataset(GB)

Graph Generation
Graph Partition

Reads Retrieving
Total

(b) Performance improvement of ev-
ery calculation phase

Fig. 10: Performance improvements of optimizations

The optimization measures we take make it possible to process much bigger
data sets on the same hardware platform. Figure 11 shows some big data sets
we try on the specified platform. For 128GB data set, we use step=4 for k-mer
generator to avoid intermediate k-mer data size exceeding the total disk space.

 1

 10

 100

 1,000

 10,000

 100,000

16GB 32GB 64GB 128GB

E
x
ec

u
ti

o
n

 T
im

e
(s

.)

Input Dataset(Fastq format)

Graph Generation
Graph Partition
Reads Retrieving

Fig. 11: Execution time for big data sets

The y axis value is the logarithm of the base 10. The Graph Generation still
dominates the total execution time. Through all the optimization measures, the
maximum data sets that could be processed has been enlarged 16 times from
8GB to 128GB upon the same hardware platform.

6 Discussion and Conclusion

The conventional big-data platforms, such as Hadoop[2], Spark[15], Apache Pig[10],
can easily manage the large data sets with data-intensive operations, since
they can provide fault-tolerant, distributed file system with resilience and high-
throughput access. However, it’s really hard for these platforms to deal with
compute-intensive tasks, because their programming models are basically ori-
ented to streaming or batch processing. On the contrary, the HPC programming
models, like MPI[16], OpenMP[17] or CUDA [18] are primarily designed for
compute-intensive processing. They have lower level programming APIs with
much higher efficiency, but they don’t possess fault-tolerant storage for big data
sets. These features result in more programming work. Therefore, it is not ap-
propriate to use HPC systems directly for big-data applications.

In this paper, we implement and optimize an algorithm for metegenomic
reads partition. The problem is data-intensive(the reads graph generation phase)
as well as compute-intensive(the graph partition phase), which has become a
common feature of modern genomic problems[19]. We combine MPI with Hadoop
to deal with the compute-intensive phase in the algorithm. This can fuse the
advantages of the two platforms. Our fusion implementation is a preliminary
attempt, but it has showed the great potential of the integration method to
solve similar problems.

The optimization footprint uncovers a methodology for optimizing appli-
cations with high abstraction layers: first, tune the application; then optimize
the system/software stack; at last, adjust the hardware configurations. We adopt
some different optimization methods that are all very effective for our implemen-
tation. These measures, like data type conversion, data compression, specialized
software stack configurations, and fusion of MPI with Hadoop, are also very
effective in solving similar big-data problems.

There’re some work about Pig or Hadoop tuning, such as[20] [21] [22] [23]. [20]
presented a detailed step-by-step tuning process of K-mer counting on Hadoop.
[21] and [22] tuned Hadoop performance at different software stack levels as well
as hardware. [23] proposed an online performance tuning system which monitors
a job’s execution and tunes associated performance parameters. These works are
to some degree similar to what we present in section 5.4.

The characteristics of HPC and big data frameworks and the potential ben-
efits of integrating them were disscussed in prevoius works. [24] proposed a pre-
liminary implementation of the high-performance big data system (HPBDS)
called High-Performance Computing-Big Data Stack (HPC-ABDS). [25] anal-
ysed more applications and highlighted areas where HPC and Apache Big Data
Stack have good opportunities for integration on the base of [24]. DataMPI [26]

tried to extend MPI to support Hadoop-like Big Data Computing jobs. It showed
performance and flexibility benefits while maintaining high productivity, scala-
bility, and fault tolerance of Hadoop. [27] explored and compared two distributed
computing frameworks on Google Cloud Platform: MPI/OpenMP and Apache
Spark. The results showed that MPI/OpenMP outperforms Spark by more than
one order of magnitude in terms of processing speed while Spark has advantages
in some other aspects, such as data management infrastructure and fault tol-
erance. [28] implemented 3 matrix kernels on Spark and the comparisons with
C+MPI implementations showed a performance gap of 10x - 40x without I/O.
[29] proposed a system for integrating MPI with Spark and achieved 3.1-17.7x
speedups on four graph and machine learning applications.

Some of the software stack tuning strategies should be tried at the begin-
ning. By doing this, the execution time of single experiment could be reduced,
meanwhile the optimization progress is accelerated.

References

1. Metzker, M.L.: Sequencing technologies—the next generation. Nature reviews
genetics 11(1) (2010) 31–46

2. Website: Apache hadoop. https://hadoop.apache.org

3. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R.,
Graves, T., Lowe, J., Shah, H., Seth, S., et al.: Apache hadoop yarn: Yet an-
other resource negotiator. In: Proceedings of the 4th annual Symposium on Cloud
Computing, ACM (2013) 5

4. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1) (2008) 107–113

5. Nordberg, H., Bhatia, K., Wang, K., Wang, Z.: Biopig: a hadoop-based analytic
toolkit for large-scale sequence data. Bioinformatics (2013) btt528

6. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, ACM (2008) 1099–1110

7. Guo, X., Yu, N., Ding, X., Wang, J., Pan, Y.: Dime: A novel framework for de
novo metagenomic sequence assembly. Journal of Computational Biology 22(2)
(2015) 159–177

8. Rasheed, Z., Rangwala, H.: A map-reduce framework for clustering metagenomes.
In: Parallel and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2013 IEEE 27th International, IEEE (2013) 549–558

9. Schumacher, A., Pireddu, L., Niemenmaa, M., Kallio, A., Korpelainen, E., Zanetti,
G., Heljanko, K.: Seqpig: simple and scalable scripting for large sequencing data
sets in hadoop. Bioinformatics 30(1) (2014) 119–120

10. Website: Apache pig. http://pig.apache.org

11. Kiveris, R., Lattanzi, S., Mirrokni, V., Rastogi, V., Vassilvitskii, S.: Connected
components in mapreduce and beyond. In: Proceedings of the ACM Symposium
on Cloud Computing, ACM (2014) 1–13

12. Hess, M., Sczyrba, A., Egan, R., Kim, T.W., Chokhawala, H., Schroth, G., Luo,
S., Clark, D.S., Chen, F., Zhang, T., et al.: Metagenomic discovery of biomass-
degrading genes and genomes from cow rumen. Science 331(6016) (2011) 463–467

13. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of
the ACM (JACM) 22(2) (1975) 215–225

14. Website: Apache tez. https://tez.aprche.org
15. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster

computing with working sets. HotCloud 10(10-10) (2010) 95
16. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-

plementation of the mpi message passing interface standard. Parallel computing
22(6) (1996) 789–828

17. Dagum, L., Menon, R.: Openmp: an industry standard api for shared-memory
programming. IEEE computational science and engineering 5(1) (1998) 46–55

18. Nvidia, C.: Compute unified device architecture programming guide. (2007)
19. Schmidt, B., Hildebrandt, A.: Next-generation sequencing: big data meets high

performance computing. Drug Discovery Today (2017)
20. Shi, L., Wang, Z., Yu, W., Meng, X.: Performance evaluation and tuning of biopig

for genomic analysis. In: Proceedings of the 2015 International Workshop on Data-
Intensive Scalable Computing Systems, ACM (2015) 9

21. Heger, D.: Hadoop performance tuning-a pragmatic & iterative approach. CMG
Journal 4 (2013) 97–113

22. Joshi, S.B.: Apache hadoop performance-tuning methodologies and best practices.
In: Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering, ACM (2012) 241–242

23. Li, M., Zeng, L., Meng, S., Tan, J., Zhang, L., Butt, A.R., Fuller, N.: Mronline:
Mapreduce online performance tuning. In: Proceedings of the 23rd international
symposium on High-performance parallel and distributed computing, ACM (2014)
165–176

24. Qiu, J., Jha, S., Luckow, A., Fox, G.C.: Towards hpc-abds: an initial high-
performance big data stack. Building Robust Big Data Ecosystem ISO/IEC JTC
1 Study Group on Big Data (2014) 18–21

25. Fox, G.C., Qiu, J., Kamburugamuve, S., Jha, S., Luckow, A.: Hpc-abds high
performance computing enhanced apache big data stack. In: Cluster, Cloud and
Grid Computing (CCGrid), 2015 15th IEEE/ACM International Symposium on,
IEEE (2015) 1057–1066

26. Lu, X., Liang, F., Wang, B., Zha, L., Xu, Z.: Datampi: extending mpi to hadoop-
like big data computing. In: Parallel and Distributed Processing Symposium, 2014
IEEE 28th International, IEEE (2014) 829–838

27. Reyes-Ortiz, J.L., Oneto, L., Anguita, D.: Big data analytics in the cloud: Spark
on hadoop vs mpi/openmp on beowulf. Procedia Computer Science 53 (2015)
121–130

28. Gittens, A., Devarakonda, A., Racah, E., Ringenburg, M., Gerhardt, L., Kottalam,
J., Liu, J., Maschhoff, K., Canon, S., Chhugani, J., et al.: Matrix factorization at
scale: a comparison of scientific data analytics in spark and c+ mpi using three
case studies. arXiv preprint arXiv:1607.01335 (2016)

29. Anderson, M., Smith, S., Sundaram, N., Capotă, M., Zhao, Z., Dulloor, S., Satish,
N., Willke, T.L.: Bridging the gap between hpc and big data frameworks. Pro-
ceedings of the VLDB Endowment 10(8) (2017) 901–912

