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Abstract—Head pose and eye location for gaze estimation have
been separately studied in numerous works in the literature. Pre-
vious research shows that satisfactory accuracy in head pose and
eye location estimation can be achieved in constrained settings.
However, in the presence of nonfrontal faces, eye locators are not
adequate to accurately locate the center of the eyes. On the other
hand, head pose estimation techniques are able to deal with these
conditions; hence, they may be suited to enhance the accuracy of
eye localization. Therefore, in this paper, a hybrid scheme is pro-
posed to combine head pose and eye location information to obtain
enhanced gaze estimation. To this end, the transformation matrix
obtained from the head pose is used to normalize the eye regions,
and in turn, the transformation matrix generated by the found
eye location is used to correct the pose estimation procedure. The
scheme is designed to enhance the accuracy of eye location estima-
tions, particularly in low-resolution videos, to extend the operative
range of the eye locators, and to improve the accuracy of the head
pose tracker. These enhanced estimations are then combined to ob-
tain a novel visual gaze estimation system, which uses both eye lo-
cation and head information to refine the gaze estimates. From the
experimental results, it can be derived that the proposed unified
scheme improves the accuracy of eye estimations by 16% to 23%.
Furthermore, it considerably extends its operating range by more
than 15 by overcoming the problems introduced by extreme head
poses. Moreover, the accuracy of the head pose tracker is improved
by 12% to 24%. Finally, the experimentation on the proposed com-
bined gaze estimation system shows that it is accurate (with a mean
error between 2 and 5 ) and that it can be used in cases where
classic approaches would fail without imposing restraints on the
position of the head.

Index Terms—Eye center location, gaze estimation, head pose
estimation.

I. MOTIVATION AND RELATED WORK

I
MAGE-BASED gaze estimation is important in many

applications, spanning from human–computer interaction

(HCI) to human behavior analysis. In applications where

human activity is under observation from a static camera, the
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estimation of the visual gaze provides important information

about the interest of the subject, which is commonly used as

control devices for disabled people [1], i.e., to analyze the user

attention while driving [14], and other applications. It is known

that the gaze is a product of two contributing factors [26], i.e.,

the head pose and the eye locations. The estimation of these

two factors is often achieved using expensive, bulky, or limiting

hardware [10]. Therefore, the problem is often simplified by

either considering the head pose or the eye center locations as

the only feature to understand the interest of a subject [27],

[36].

There is an abundance of literature concerning these two

topics separately; recent surveys on eye center location and

head pose estimation can be found in [17] and [31]. The eye lo-

cation algorithms found in commercially available eye trackers

share the problem of sensitivity to head pose variations and

require the user to be either equipped with a head-mounted

device or to use a high-resolution camera combined with a chin

rest to limit the allowed head movement. Furthermore, daylight

applications are precluded due to the use of active infrared (IR)

illumination to obtain accurate eye location through corneal

reflection. The appearance-based methods that make use of

standard low-resolution cameras are considered to be less

invasive and, thus, more desirable in a large range of applica-

tions. Within the appearance-based methods for eye location

proposed in the literature [22], [24], [33], [44], reported results

support the evidence that accurate appearance-based eye center

localization is becoming feasible and that it could be used as an

enabling technology for a various set of applications.

Head pose estimation often requires multiple cameras, or

complex face models, which requires accurate initialization.

Ba and Odobez [4] improve the accuracy of pose estimates

and of the head tracking by considering these as two coupled

problems in a probabilistic setting within a mixed-state particle

filter framework. They refine this method by the fusion of four

camera views in [5]. Huang and Trivedi propose to integrate a

skin-tone edge-based detector into a Kalman-filter-based robust

head tracker and hidden-Markov-model-based pose estimator

in [19]. Hu et al. describe a coarse-to-fine pose estimation

method by combining facial appearance asymmetry and 3-D

head model [18]. A generic 3-D face model and an ellipsoidal

head model are utilized in [2] and [41], respectively. In [30],

an online tracking algorithm employing adaptive view-based

appearance models is proposed. The method provides drift-free

tracking by maintaining a dynamic set of keyframes with views

of the head under various poses and registering the current

frame to the previous frames and keyframes.

Although several head pose or eye location methods have

shown success in gaze estimation, the underlying assumption
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of being able to estimate the gaze starting from eye location or

head pose only is valid in a limited number of scenarios [38],

[48]. For instance, if we consider an environment composed of a

target scene (a specific scene under analysis, such as a computer

monitor, an advertising poster, a shelf, etc.) and a monitored area

(the place from which the user looks at the target scene), an eye

gaze tracker alone would fail when trying to understand which

product on the shelf is being observed, whereas an head pose

gaze estimator alone would fail in finely controlling the cursor

on a computer screen.

Hence, a number of studies focused on combining head and

eye information for gaze estimation are available in the litera-

ture. Newman and Matsumoto [28] and Matsumoto et al. [32]

consider a tracking scenario equipped with stereo cameras and

employ 2-D feature tracking and 3-D model fitting. The work

proposed by in [21] describe a real-time eye, gaze, and head

pose tracker for monitoring driver vigilance. The authors use

IR illumination to detect the pupils and derive the head pose by

building a feature space from them. Although their compound

tracking property promote them against separate methods, the

practical limitations and the need for improved accuracy make

them less attractive in comparison with monocular low-resolu-

tion implementations.

However, no study is performed on the feasibility of an ac-

curate appearance-only gaze estimator that considers both the

head pose and eye location factors. Therefore, our goal is to de-

velop a system capable of analyzing the visual gaze of a person

starting from monocular video images. This allows studying the

movement of the user’s head and eyes in a more natural manner

than traditional methods, as there are no additional requirements

needed to use the system.

To this end, we propose a unified framework for head pose

and eye location estimation for visual gaze estimation. The head

tracker is initialized using the location and the orientation of

the eyes, whereas the latter ones are obtained by pose-normal-

ized eye patches obtained from the head tracker. A feedback

mechanism is employed in the evaluation of the tracking quality.

When the two modules do not yield concurring results, both are

adjusted to get in line with each other, aiming to improve the

accuracy of both tracking schemes. The improved head pose

estimation is then used to define the field of view, while dis-

placement vectors between the pose-normalized eye locations

and their resting positions are used to adjust the gaze estimation

obtained by the head pose only. In this way, a novel multimodal

visual gaze estimator is obtained.

The contributions of this paper are the following:

1) Rather than just a sequential combination, we propose

a unified framework that provides a deep integration of

the used head pose tracker and eye location estimation

methods.

2) The normal working range of the used eye locator

is extended. The shortcomings of the reported eye locators

due to extreme head poses are compensated using the feed-

back from the head tracker.

3) Steered by the obtained eye location, the head tracker pro-

vides better pose accuracy and can better recover the cor-

rect pose when the head tracker is lost.

4) The eye location and head pose information are used

together in a multimodal visual gaze estimation system,

which uses the eyes to adjust the gaze location determined

by the head pose.

This paper is structured as follows: The reason behind the

choice and the theory of the used eye locator and head pose

estimator will be discussed in Section II. In Section III, the

discussed components will be combined in a synergetic way

so that the eye locator will be aided by the head pose and the

head pose estimator will be aided by the obtained eye locations.

Section IV will describe how the improved estimations could be

used to create a combined gaze estimation system. In Section V,

three independent experiments will analyze the improvements

obtained on the head pose, eye location, and combined gaze es-

timation. Finally, the discussions and the conclusions will be

given in Section VI.

II. EYE LOCATION AND HEAD POSE ESTIMATION

To describe how the used eye locator and head pose estimator

are combined in Section III, here, the used eye locator and head

pose estimator are discussed.

A. Eye Center Localization

As we are discussing appearance-based methods here, an

overview of the state of the art on the subject is given. The

method used in [3] assigns a vector to every pixel in the edge

map of the eye area, which points to the closest edge pixel.

The length and the slope information of these vectors is con-

sequently used to detect and localize the eyes by matching

them with a training set. Cristinacce et al. [12] use a multistage

approach to detect facial features (among them are the eye

centers) using a face detector, pairwise reinforcement of feature

responses, and a final refinement by using an active appearance

model (AAM) [11]. Türkan et al. [42] use edge projection

(GPF) [51] and support vector machines (SVMs) to classify

estimates of eye centers. Bai et al. [6] use an enhanced version

of Reisfeld’s generalized symmetry transform [35] for the task

of eye location. Hamouz et al. [16] search for ten features

using Gabor filters, use feature triplets to generate face hypoth-

esis, register them for affine transformations, and verify the

remaining configurations using two SVM classifiers. Finally,

Campadelli et al. [8] use an eye detector to validate the presence

of a face and to initialize an eye locator, which, in turn, refines

the position of the eye using the SVM on optimally selected

Haar wavelet coefficients. With respect to the aforementioned

methods, the method proposed in [44] achieves the best results

for accurate eye center localization, without heavy constraints

on illumination, rotation, and robust to slight pose changes, and

will be therefore used in this paper.

The method uses isophote (i.e., curves connecting points of

equal intensity) properties to obtain the center of (semi) circular

patterns. This idea is based on the observation that the eyes are

characterized by radially symmetric brightness patterns; hence,

it looks for the center of the curved isophotes in the image. In

Cartesian coordinates, the isophote curvature is expressed as
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Fig. 1. (a) Direction of the gradient under the image’s edges, (b) the displace-
ment vectors pointing to the isophote centers, and (c) the centermap.

where, for example, is the first-order derivative of the in-

tensity function on the -dimension. The distance to the center

of the iris is found as the reciprocal of the aforementioned term.

The orientation is calculated using the gradient, but its direction

always indicates the highest change in luminance [see Fig. 1(a)].

The gradient is then multiplied by the inverse of the isophote

curvature to disambiguate the direction of the center. Hence, the

displacement vectors from every pixel to the estimated position

of the centers, i.e., , are found to be

In this way, every pixel in the image gives a rough estimate

of its own center, as shown in Fig. 1(b). Since the sign of the

isophote curvature depends on the intensity of the outer side of

the curve, bright and dark centers can be discriminated by the

sign of the curvature. Since the sclera is assumed to be brighter

than the cornea and the iris, votes with a positive isophote curva-

ture are ignored as they are likely to come from noneye regions

or highlights. In order to collect this information and deduce the

location of a global eye center, values are mapped into

an accumulator [see Fig. 1(c)].

Instead of attributing the same importance to every center es-

timate, a relevance mechanism is used to yield more accurate

center estimation, in which only the parts of the isophote fol-

lowing the edges of the object are considered. This weighting is

performed by using the curvedness [23], i.e.,

curvedness

The accumulator is then convolved with a Gaussian kernel so

that each cluster of votes will form a single estimate. The max-

imum peak found in the accumulator is assumed to represent the

location of the estimated eye center. An example is illustrated in

Fig. 2. For this case, the eye center estimate can be clearly seen

on the 3-D plot.

In [44], it is shown that the described method yields low com-

putational cost allowing real-time processing. Furthermore, due

to the use of isophotes, the method is shown to be robust against

linear illumination changes and to moderate changes in the head

Fig. 2. (a) Source image, (b) the obtained centermap, and (c) the 3-D represen-
tation of the latter.

pose. However, the accuracy of the eye center location signif-

icantly drops in the presence of head poses that are far from

frontal. This is due to the fact that, in these cases, the analyzed

eye structure is not symmetric, and thus, the algorithm delivers

increasingly poor performance with respect to the distance from

the frontal pose. This observation shows that it is desirable to be

able to correct the distortion given by the pose so that the eye

structure under analysis keeps the symmetry properties. To ob-

tain the normalized image patches invariant to changes in the

head pose, a head pose estimation algorithm will be employed.

B. Head Pose Estimation

Throughout the years, different methods for head pose esti-

mation have been developed. The 3-D-model-based approaches

achieve robust performance and can deal with large rotations.

However, most of the method reasonably work in restricted do-

mains only, e.g., some systems only work when there is stereo

data available [29], [37], when there is no (self-) occlusion, or

when the head is rotating not more than a certain degree [9].

Systems that solve most of these problems do not usually work

in real time due to the complex face models that they use [50]

or require accurate initialization. However, if the face model

complexity is reduced to a simpler ellipsoidal or cylindrical

shape, this creates a prospect for a real-time system and can be

simply initialized starting from eye locations. The cylindrical

head model (CHM) approach has been used by a number of au-

thors [7], [9], [49]. Among them, the implementation of Xiao

et al. [49] works remarkably well. This cylindrical approach is

still capable of also tracking the head in situations where the

head turns more than 30 from the frontal position and will be

therefore used in this paper and outlined as follows.

To achieve good tracking accuracy, a number of assumptions

are considered for the simplification of the problem. First of

all, camera calibration is assumed to be provided beforehand,

and a single stationary camera configuration is considered. For

perspective projection, a pin hole camera model is studied.

The initial parameters of the CHM and its initial transforma-

tion matrix are computed as follows: Assuming that the face

of the subject is visible and frontal, its size is used to initialize

the cylinder parameters and pose ac-

cording to anthropometric values [13], [15], where , , and

are the rotation parameters, and , , and are the trans-

lation parameters. The eye locations are detected in the face re-

gion and are used to give a better estimate of and . Depth

is adjusted by using the distance between the detected eyes

. Finally, since the detected face is assumed to be frontal, the
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Fig. 3. Orientation of the cylinder and its visualization on the image plane.

initial pitch and yaw angles are assumed to be null,

whereas the roll angle is initialized by the relative position

of the eyes.

To analyze the effect of the motion of the CHM on the image

frame, the relation between the 3-D locations of the points on the

cylinder and their corresponding projections on the 2-D image

plane need to be established. Therefore, the 3-D locations of

the points with respect to the reference frame need to be deter-

mined first. This is obtained by sampling points on the cylinder.

After obtaining the coordinates of these points on the 3-D el-

liptic cylindrical model, perspective projection is applied to get

the corresponding coordinates on the 2-D image plane.

Since the CHM is assumed to be aligned along the -axis

of the reference frame and to be positioned such that the

center coincides with the origin (as shown in Fig. 3), any point

on the cylinder satisfies the following explicit

equation:

(1)

where and stand for the radii of the ellipse along the - and

-axes, respectively. To calculate the coordinates of the points

on the visible part of the cylinder, the front region is sampled

in an gridlike structure on the plane, and corre-

sponding depth values are obtained by using (1). These sampled

points are considered to summarize the motion of the cylinder,

and they are employed in the Lukas–Kanade optical-flow algo-

rithm. The perspective projection of the 3-D points on the el-

liptic cylindrical face model gives the 2-D pixel coordinates in

the image plane. Let point in Fig. 3 be a point

sampled on the cylinder and point be its projec-

tion on the image plane. Fig. 4 illustrates the side view of this

setting by making a pin hole camera assumption for the sake

simplification. Using the similarity of triangles in Fig. 4, the fol-

lowing equations apply for the relation between and :

fl

fl
(2)

where fl stands for the focal length of the camera. This relation

is summarized by a perspective projection function , which

Fig. 4. Perspective projection of point � onto image plane by a pin hole camera
assumption.

maps the 3-D points onto the 2-D image plane employing the

previously given identities, i.e.,

As shown in Fig. 3, the cylinder is observed at different loca-

tions and with different orientations at two consecutive frames

and . This is expressed as an update in the pose vector

by the rigid motion vector . To

compute this motion vector, it is required to establish the rela-

tion between and of and their corresponding locations

on . In the formulation of this relation, three transforma-

tion functions are employed, as illustrated in Fig. 3. The 3-D

transformation function maps to , whereas the 2-D

transformation function maps to , and the perspective

projection function maps to .

It can be derived that the explicit representation of the per-

spective projection function in terms of the rigid motion vector

parameters and the previous coordinates of the point is [49]

fl

In the next section, the estimated head pose will be used to

obtain the pose normalized eye patches.

III. SYNERGETIC EYE LOCATION AND CHM TRACKING

As mentioned in the previous section, the CHM pose tracker

and the isophote-based eye location estimation methods have

advantages over other reported methods. However, taken
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separately, they cannot adequately work under certain circum-

stances. In [44], the eye region is assumed to be frontal so

that the eye locator can use curved isophotes to detect circular

patterns. However, since the method is robust to slight changes

in the head pose, the system can be still applied with head poses

up to at the cost of accuracy. On the other hand, the

CHM pose tracker may erroneously converge to local minima

and, after that, may not able to recover the correct track. By

integrating the eye locator with the CHM, we aim to obviate

these drawbacks.

Instead of a sequential integration of the two systems, an early

integration is proposed. Relevant to this paper is the approach

proposed in [40]. The authors combine a CHM with an AAM

approach to overcome the sensitivity to large pose variations,

initial pose parameters, and problems of re-initialization. In the

same way, we make use of the competent attributes of the CHM,

together with the eye locator proposed in [44], to broaden the ca-

pabilities of both systems and to improve the accuracy of each

individual component. By comparing the transformation ma-

trices independently suggested by both systems, in our method,

the eye locations will be detected given the head pose, and the

head pose will be adjusted given the eye locations. To this end,

after the cylinder is initialized in 3-D space, the 2-D eye loca-

tions detected in the first frame are used as reference points (e.g.,

the “ ” markers in Fig. 7). These reference points are projected

onto the CHM so that the depth values of the eye locations are

known. The reference eye points are then used to estimate the

successive eye locations and are, in turn, updated by using the

average of the found eye locations.

A. Eye Location by Pose Cues

Around each reference point projected onto the 3-D model,

an area is sampled and transformed by using the transforma-

tion matrix obtained by the head pose tracker (see Fig. 5). The

pixels under these sampled points are then remapped into a nor-

malized canonical view (see Fig. 6). Note that extreme head

poses are also successfully corrected, although some perspec-

tive projection errors are retained. The eye locator described in

Section II-A is then applied to these pose-normalized eye re-

gions. The highest peak in the obtained accumulator, which is

closer to the center of the sampled region (therefore closer to

the reference eye location obtained by pose cues), is selected as

the estimated eye center (the white dots in Fig. 6 and the “x”

markers in Fig. 7). In this way, as long as the CHM tracker is

correctly estimating the head pose, the localized eyes can be

considered to be optimal. Fig. 7 shows two examples in which

the default eye locator would fail (“ ” marker), but the pose-nor-

malized eye estimation would be correct (“x” marker).

B. Pose Estimation by Eye Location Cues

Since there is uncertainty about the quality of the pose ob-

tained by the head tracker, the found pose-normalized eye loca-

tion can be used as a cue for quality control. Given that the 3-D

position of the eyes is known, it is possible to calculate its pose

vector and compare it with the one obtained by the head tracker.

When the distance between the two pose vectors is larger than a

certain threshold, the vectors are averaged, and the transforma-

tion matrix of the tracker is recomputed. In this way, the head

Fig. 5. Examples of eye regions sampled by the pose (yellow dot meshes).

Fig. 6. Examples of extreme head poses and the respective pose-normalized
eye locations. The results of the eye locator in the pose normalized eye region
is represented by a white dot.

Fig. 7. Erroneous eye locations detected by (�) the standard eye locator, cor-
rected by (x) the pose cues, according to ��� the reference points.

model is adjusted to a location that should ease the correct con-

vergence and therefore recover the correct track. As an addi-

tional quality control, the standard eye locator is constantly used

to verify that the eye location found by pose cues is consistent

with the one obtained without pose cues. Therefore, as in [30],

when reliable evidence (e.g., the eye location in a frontal face)

is collected and found to be in contrast with the tracking proce-

dure, the latter is adjusted to reflect this.

In this manner, the eye locations are used to both initialize the

cylinder pose and update it in case it becomes unstable, whereas

the pose-normalized eye locations are used to constantly vali-

date the tracking process. Therefore, the CHM tracker and the

eye locator interact and adjust their own estimations by using

each other’s information. This synergy between the two sys-

tems allows for an initialization-free and self-adjusting system.

A schematic overview of the full system is shown in Fig. 8, while

its pseudocode is presented in Algorithm 1.



VALENTI et al.: COMBINING HEAD POSE AND EYE LOCATION INFORMATION FOR GAZE ESTIMATION 807

Fig. 8. Schematic diagram of the components of the system.

Algorithm 1 Pseudocode of estimating eye locations by head

pose

Initialize parameters

— Detect face, and initialize cylinder parameters

— Get reference eye regions and .

— Use the distance between the eyes to get the depth

element .

— Initialize pose using eye locations.

Iterate through all the frames

for to last frame number do

— Assume that intensity is constant between consecutive

frames, i.e., .

— Compute gradient and the corresponding Gaussian

pyramid for the current frame.

— Initialize pose to the previous pose .

For all levels of Gaussian Pyramid

for to 2 do

— Calculate motion between two frames

.

— Load Gaussian pyramid image .

— Initialize .

while maximum iterations not reached or

threshold do

— Transform pixels of to with

transformation matrix and parameters to

compute .

— Update and scale face region boundaries .

— Do ray tracing to calculate for each .

— Apply perspective projection and

.

— Use inverse motion to get from to .

— With back projection, calculate pixels .

— Compute with .

— Compute , where

summarizes the projection model.

— Compute the Hessian matrix in

— Compute .

— Compute using

— Update the pose and the motion, i.e.,

—

—

end while

— Update transformation matrix .

— Transform reference eye regions and

using .

— Remap eye regions to the pose-normalized view.

— Compute displacements vectors on

pose-normalized eye regions accordingly to [44]

using

— Vote for centers weighted by

.

— Select isocenter closer to the center of the eye

region as the eye estimate.

— Remap the eye estimate to cylinder coordinates.

— Create the pose vector from the eye location and

compare it with the head tracker’s.

if distance between pose vector threshold then

average pose vectors and create new

end if

end for

end for

IV. VISUAL GAZE ESTIMATION

In the previous section, we described how the 2-D eye center

locations detected in the first frame are used as reference points

(see Fig. 12). These reference points are projected onto the
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Fig. 9. Representation of the visual field of view at distance �.

CHM and are then used to estimate the successive pose-nor-

malized eye center locations. Here, the displacement vectors

between the resting position of the eyes (reference points) and

the estimated eye location will be used to obtain joint visual

gaze estimation, constrained within the visual field of view

defined by the head pose.

A. Human Visual Field of View

Studies on the human visual field of view [34] show that,

while looking straight ahead, it has a vertical span of 130 (60

above and 70 below) and approximately 90 on each side,

which corresponds to a photographic objective angle of 180 .

The common field of view of the two eyes is called the

binocular field of view and spans 120 . It is surrounded by two

monocular fields of view of approximately 30 .

The field of view can be approximated by pyramid ,

where represents the point between the two eyes and rectangle

represents the visual field of view at distance . Further-

more, angles and denote the horizontal and vertical angles

of the visual field of view in binocular human vision, respec-

tively [25]. Since the pyramid is an approximation of the field

of view, we are able to center it on the gaze point so that it

is in the middle of the field of view. In this case, vector

denotes the visual gaze vector (see Fig. 9).

Width and height of the visual field at distance are

computed by

The projection of the visual field of view on the gazed scene

in front of a user is quadrilateral with the central

gaze point , and it is calculated by the intersection between

the plane of the target scene and

lines , , , , and . The head pose

parameters computed by the method described in Section II-B

are used to define the projection of the region of interest in the

target scene.

B. Pose-Retargeted Gaze Estimation

So far, we considered the visual field of view defined by the

head pose only, modeled so that the visual gaze of a person (the

vector defining the point of interest) corresponds to the middle

of the visual field of view. However, it is clear that the displace-

ments of the eyes from their resting positions will influence the

estimation of the visual field of view.

In general, most methods avoid this problem by assuming that

the head does not move at all and assume that the eyes do not ro-

tate in the ocular cavities but just shift on the horizontal and ver-

tical planes [45]. In this way, the problem of eye displacement

is simply solved by a 2-D mapping of the location of the pupil

(with respect to an arbitrary anchor point) and known locations

on the screen. The mapping is then used to interpolate between

the known target locations in order to estimate the point of in-

terest in the gazed scene. This approach is often used in com-

mercial eye trackers, using high-resolution images of the eyes

and IR anchor points. However, this approach forces the user to

use a chin rest to avoid head movements, which will results in

wrong mappings.

In this paper, instead of focusing on modeling the shape of

the eyes or the mapping between their displacement vectors, we

make the assumption that the visual field of view is only defined

by the head pose and that the point of interest (defined by the

eyes) does not fall outside the head-pose-defined field of view.

This assumption corresponds to the study in [39], where it is

shown that the head pose contributes to about 70% of the visual

gaze. Here, we make the observation that the calibration step is

not directly affected by the head position. For example, when

the calibration is performed while the head is slightly rotated

and/or translated in space, the mapping is still able to compute

the gazed location by interpolating between known locations

(as long as the head position does not vary). In this way, the

problem of 3-D gaze estimation is reduced to the subproblem of

estimating it in 2-D (e.g., using eyes only), removing the con-

straints on head movements.

Instead of learning all possible calibrations in 3-D space, we

propose to automatically retarget a set of known points on a

target plane (e.g., a computer screen) in order to simulate re-

calibration each time the user moves his/her head. In fact, if

the known points are accordingly translated to the parameters

obtained from the head pose, it is possible to use the previ-

ously obtained displacement vectors and recalibrate using the

new known points on the target plane. To this end, a calibration

plane is constructed, which is attached to the front of the head as

in Fig. 10(a), so that it can be moved using the same transforma-

tion matrix obtained from the head pose estimator (to ensure that

it accordingly moves). The calibration plane is then populated

during the calibration step, where the user is requested to look

at a known set of points on the target plane. The ray between

the center of the head and the known point on the target plane is

then traced until the calibration plane is intersected. In this way,

the relation between the calibration plane and the target plane

(e.g., a computer screen) is also computed.

Since the calibration points are linked to the head-pose-con-

structed visual field of view, their locations will change when

the head moves in the 3-D space in front of the target plane.

Hence, every time that the head moves, the intersection points

between the ray going from the anchor point to the calibration

point are computed in order to construct the new set of known

points on the target plane. Using this new set of known points

and the known pose-normalized displacement vectors as col-

lected during the calibration phase, it is possible to automat-

ically recalibrate and learn a new mapping. Fig. 10(b) shows

how the calibration points are projected on the calibration plane,
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Fig. 10. (a) The construction of the calibration plane, (b) the intersection of the calibration points on known target plane points, and (c) the effect on the known
points on the target plane while moving the head in the 3-D space.

Fig. 11. Screenshot of the final system.

and Fig. 10(c) illustrates how these points change during head

movements, obtaining new intersections on the target plane (the

pose-retargeted known points).

Fig. 11 shows a screenshot of the final system, working in

real time using a simple webcam. The quadrilateral indicates

the user’s region of interest (defined by head pose only), while

the red dot represent the point of interest within it, obtained by

the proposed system.

V. EXPERIMENTS

In this paper, the three components need an independent eval-

uation, i.e., the accuracy provided by the eye center location

given the head pose, the accuracy obtained by the head pose es-

timation given the eye center location, and the accuracy of the

combined final visual gaze estimation. In the following sections,

the data sets, the error measures, and the result for each of three

components are described and discussed.

A. Eye Location Estimation

The performance obtained by using head pose cues in eye lo-

cation are evaluated using the Boston University head pose data-

base [9]. The database consists of 45 video sequences, where

five subjects were asked to perform nine different head motions

under uniform illumination in a standard office setting. The head

is always visible, and there is no occlusion except for some

minor self-occlusions. Note that the videos are in low resolu-

tion (320 240 pixels); hence, the iris diameter roughly corre-

sponds to 4 pixels.

A Flock of Birds tracker records the pose information coming

from the magnetic sensor on the person’s head. This system

claims a nominal accuracy of 1.8 mm in translation and 0.5 in

rotation. However, La Cascia et al. [9] have experienced a lower

accuracy due to the interfering electromagnetic noise in the op-

erating environment. Nonetheless, the stored measurements are

still reliable enough to be used as the ground truth. As no anno-

tation of the eye location on this data set is available, we man-

ually annotated the eyes of the subjects on 9000 frames. These

annotations are publicly available in [43].

In quantifying the error, we used the 2-D normalized error.

This measure was introduced in [20] and is widely used in the

eye location literature [6], [8], [16], [42], [51]. The normalized

error represents the error obtained by the worse eye estimation

and is defined as

(3)

where and are the Euclidean distance between the

located eyes and the ones in the ground truth, and is the

Euclidean distance between the eyes in the ground truth. For

this measure, (a quarter of the interocular distance)

roughly corresponds to the distance between the eye center and

the eye corners, corresponds to the range of the iris,

and corresponds the range of the cornea. In order to

give upper and lower bounds to the accuracy, in Fig. 12 we also

show the minimum normalized error, obtained by considering

the best eye estimation only.

The accuracy achieved by the proposed unified approach

is presented in Fig. 12, together with the baseline accuracy

obtained by the standard eye locator [44]. In the latter, the ap-

proximate face position is estimated using the boosted cascade

face detector proposed in [47], where the rough positions of

the left and right eye regions are estimated by anthropometric
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Fig. 12. Comparison between the eye detection results with and without pose
cues.

TABLE I
EFFECT OF POSE CUES IN EYE LOCALIZATION

relations [15]. For the cases in which the face cannot be de-

tected, the maximum possible localization error is assigned,

considering the limits of the detected face and anthropometric

measures as follows. The maximum achievable error is as-

sumed to be half of the interocular distance, which corresponds

to 0.5. Therefore, a default error value of 0.5 is assigned to

both eyes for the frames in which a face is not detected. In our

experiments, the faces of the subjects were not detected in 641

frames, which corresponds to 7.12% of the full data set. The

working range of the face detector is around 30 around each

axis, while certain head poses in the data set are larger than 45 .

The accuracy is represented in percentages for a normalized

error of range [0, 0.3]. A performance comparison is provided

for the best and worse eye location estimations, where certain

precise values are also given in Table I for several normalized

error values.

From Fig. 12, it is shown that the pose cues improve the

overall accuracy of the eye detector. In fact, for an allowed error

larger than 0.1, the unified scheme provides an improvement

in accuracy from 16% to 23%. For smaller error values, the

system performs slightly worse than the standard eye locator.

The eye detection results obtained by using pose cues depict a

significant overall improvement over the baseline results. How-

ever, we note a small drop in accuracy for precise eye location

. This is due to interpolation errors occurring while

sampling and remapping the image pixels to pose-normalized

eye regions. In fact, as shown in Fig. 6, in specific extreme head

poses, the sampled eye may not appear as completely circular

shapes due to perspective projections. Therefore, the detection

is shifted by one or two pixels. Given the low resolution of the

videos, this shift can easily bring the detection accuracy beyond

the range. However, given the low resolution, this error

is barely noticeable.

B. Head Pose Estimation

Since the ground truth is provided by the Boston University

head pose database [9], it is also used to evaluate the effect of

using eye location cues in head pose estimation. To measure the

pose estimation error, the root-mean-square error (RMSE) and

standard deviation (STD) values are used for the three planar

rotations, i.e., , , and .

To measure the accuracy of the pose, two scenarios are con-

sidered. In the first scenario, the template is created from the first

frame of the video sequence and is kept constant for the rest of

the video; in the second scenario, the template is updated at each

frame so that the tracking is always performed between two suc-

cessive frames. Table II shows the improvement in the RMSE

and the STD given by using eye location cues in both scenarios.

Note that, without using the eye cues, the updated template gives

the best results. On the other hand, if the eye cues are consid-

ered, the accuracy of the fixed template becomes better than the

updated one. This due to the fact that using the eye cues while

updating the template might introduce some errors at each up-

date, which cannot be recovered at later stages. However, for

both scenarios, the use of eye cues presents an improvement in

the estimation of the pose angles. Some challenging examples

of the results obtained by our implementation of the CHM head

pose tracker are represented in Fig. 13 for challenging roll, yaw,

and pitch rotations. The graphs with values for the ground truth

and for the accuracy of the tracker for the respective videos are

shown in Fig. 14. It can be derived that the system is able to

cope with these extreme head poses.

In the last two columns of Table II, we compare our results

with two other methods in the literature, which use the same

database. Similar to our method, Sung et al. [40] propose a hy-

brid approach combining AAMs and cylinder head models to

extend the operating range of the AAM. An and Chung [2] pro-

pose to replace the traditional CHM with a simple 3-D ellip-

soidal model. They provide comparison of accuracy with planar

and cylindrical models. Here, we consider the accuracy reported

by Sung et al. and by An and Chung on the CHM [2]. From

Table II, it is shown that our method provides comparable or

better results with respect to the compared methods.

Hence, our experiments show that using eye cues has an

overall positive effect on the average RMSE. However, it is

important to note that enhancing the head tracker using the eye

cues to fix the transformation matrix does not have a direct

effect on the accuracy. The main effect is obtained by the

re-initialization of the cylinder in a position that allows for a

correct convergence once the pose tracker converges to a local

minimum. In fact, by closely analyzing the results, it can be

derived that, by using the eye cues, the accuracy of the pose is

decreased for particular subjects showing extreme head poses.

This issue is related to the approach used to fix the trans-

formation matrix. In our approach, we assume that the eye lo-

cated given the correct pose are the correct ones, but this will

not be true in the presence of highlights, closed eye, or very

extreme head poses (e.g., when the head is turned by 90 and

only one eye is visible). In these specific cases, averaging by the
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TABLE II
COMPARISON OF THE RMSE AND THE STD

Fig. 13. Qualitative examples of result on roll, yaw, and pitch angles on videos showing extreme head poses.

Fig. 14. Examples of quantitative result on roll, yaw, and pitch angles on videos
showing extreme head poses. (Green) Ground truth. (Red) Tracking results.

transformation matrix suggested by the eye location might neg-

atively affect an otherwise correct transformation matrix given

by the head tracker. Fortunately, the eye locator can be consid-

ered quite accurate, and therefore, these cases do not occur very

often, and the track is recovered as soon as the difficult condi-

tion is resolved or a semifrontal face is detected again.

C. Visual Gaze Estimation

This section describes the experiments performed to evaluate

the proposed gaze estimation system. To this end, a heteroge-

neous data set was collected, which includes 11 male and fe-

Fig. 15. Some of the subjects.

male subjects with different ethnicity, with and without glasses,

and with different illumination conditions. Fig. 15 shows some

examples of the subjects in the data set. The data were col-

lected using a single webcam and without the use of a chin rest.

The subject sits at a distance of 750 mm from the computer

screen and the camera. The subject’s head is approximately in

the center of the camera image. The resolution of the captured

images is 720 576 pixels, and the resolution of the computer

screen is 1280 1024 pixels. To test the system under natural

and extreme head movements, the subjects were requested to

perform two set of experiments.

The first task, named static dot gazing, is targeted at evalu-

ating how much the head pose can be compensated by the eye

location. The subjects are requested to gaze with their eyes at

a static point on the computer screen [see Fig. 16(a)] and move
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Fig. 16. Two tasks performed during the data collection. (a) Static dot gazing. (b) Dot following.

TABLE III
MEAN PIXEL ERROR AND STD COMPARISON ON THE STATIC DOT GAZING TASK

their head around while still looking at the specific point. The

point is displayed at certain locations on the screen for about

4 s each time. When the point is displayed on the screen, the

subject is asked to look at it and then to rotate his/her head to-

ward the point’s location. When the desired head position is

reached the subjects are asked to move their head while their

eyes are still gazing at the displayed point. The location and the

order in which the points are displayed are shown in Fig. 16(a).

The second task, named dot following, is targeted at evaluating

the gaze estimation performance while following a dot on the

screen. The test subjects are requested to look and follow a

moving point on the screen in a natural way, using their eyes

and head if required. The path followed by the dot is shown in

Fig. 16(b).

The ground truth is collected by recording the face of the

subject and the corresponding on-screen coordinates where the

subjects are looking.

In order to test the performance of the proposed approach,

three different methods are tested.

1) Eyes-only gaze estimator: This estimator uses the an-

chor–pupil vectors directly into the mapping as in the

system proposed in [45]. Hence, when the user moves

his head from the calibration position, the mapping is

bound to fail. This experiment is performed to evaluate

the limitations of the classic mapping approaches in the

presence of head movements.

2) Pose-normalized gaze estimator: This estimator uses the

information about the position of the user’s head to pose

normalize the anchor–pupil vectors. During the calibration

step, the displacement vectors between the anchor point

and the location of the eyes are calculated from the pose-

normalized CHM. These vectors are used together with

the coordinates of the corresponding points on the com-

puter screen for training. Then, the estimator approximates

the coefficients of the underlying model by minimizing

the error measure of the misfit of the generated estimates

by a candidate model and the train data. When a certain

threshold is reached, the model is accepted and used for

the estimation of the point of interest when a future dis-

placement vector is constructed;

3) Pose-retargeted gaze estimator: This is the approach pro-

posed in Section IV-B, which treats the 3-D gaze estima-

tion problem as a superset of 2-D problems. Moreover,

this estimator uses pose-normalized displacement vectors.

The main difference between the pose-retargeted estimator

and the pose-normalized one is that, when the user moves

his/her head, the set of known points is retargeted using the

head pose information. The new coefficients of the under-

lying model are then approximated and used for the esti-

mate of the new point of interest.

Table III shows the mean errors of the three gaze estima-

tors in the first task (static dot gazing) for each of the tested

subjects. Due to the big changes in head pose while keeping

the eyes fixed, the eyes-only estimator has a significantly

larger error and STD with respect to the other methods, which

include pose-normalized displacement vectors. The pose-nor-

malized estimator, in fact, has a mean error of (393.58, 313.96)

pixels, corresponding to an angle of (8.5 , 6.8 ), whereas the

pose-retargeted estimator has a mean error of (210.33, 214.99)

pixels, corresponding to an angle of (4.6 , 4.7 ) in the -

and -direction, respectively. The proposed pose-retargeted

estimator improves the method with a factor of approximately

1.87 in -direction and a factor of about 1.46 in -direction, as

compared with the pose-normalized system.

Table IV shows the results of the second task (dot following).

In this task, due to the fact that the head significantly shifts
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TABLE IV
MEAN PIXEL ERROR AND STD COMPARISON ON THE DOT FOLLOWING TASK

Fig. 17. Errors for the three tested estimators compared with the computer screen for (a) the static dot gazing task and (b) the dot following task.

from the calibration position to allow the eyes to comfortably

follow the dot on the screen, the mapping in the eyes-only esti-

mator completely fails. However, the pose-normalized estimator

achieves a mean error of (266.71, 135.94) pixels, which corre-

sponds to an angle of (5.8 , 3.0 ), while the pose-retargeted esti-

mator has a mean error of (87.18, 103.86) pixels, corresponding

to an angle of (1.9 , 2.2 ) in the - and -direction, respectively.

Note that this error is significantly smaller than the previous

task due to the fact that, here, the head naturally moves with

respect to the eyes. When compared with the pose-normalized

estimator, the pose-retargeted estimator improves the accuracy

with a factor of approximately 3.05 in -direction and with a

factor of about 1.31 in -direction. The differences between the

accuracy obtained by the different systems in both tasks is visu-

ally represented in Fig. 17.

Although the average error obtained by the proposed system

seems high at first, one should consider that the human fovea

covers of the visual field, in which everything can be seen

without requiring a saccade. Therefore, when asking a subject

to gaze at a specific location, there is always an inherent error

on the gaze ground truth. In fact, assuming that the test subjects

are sitting at a distance of 750 mm from the computer screen,

the projection of the foveal error on the target plane

corresponds to a window of about 92 92 pixels, which is in

the same magnitude as that of the results obtained by the pro-

posed system. By analyzing the causes for the errors (and the big

STD), we note that, in most cases, the results in the -direction

are worse than the results in -direction. There are two main rea-

sons for this: 1) The camera is situated on top of the computer

screen; thus, when the test subject is gazing at the bottom part of

the screen, the eyelids obscure the eye location, and significant

errors are introduced by the eye locator. 2) The eyes move less

in -direction than in the -direction. Furthermore, errors in the

eye center locator seriously affect the system, as an error of just

a few pixels on the eye estimation result in significant displace-

ments at a distance of 750 mm.

However, it is clear that the proposed pose-retargeted es-

timator outperforms the other tested approaches in all the

experiments, whereas the pose-normalized estimator clearly

outperforms the method based on the eyes only. This clearly

indicates that it is beneficial to combine head pose and eye in-

formation in order to achieve better, more natural, and accurate

gaze estimation systems.

VI. CONCLUSION

In this paper, we have proposed a deep integration of a CHM-

based head pose tracker and an isophote-based eye locator in a

complementary manner, so that both systems can benefit from

each other’s evidence. Experimental results have shown that

the accuracy of both independent systems is improved by their

combination. The eye location estimation of the unified scheme

achieved an improvement in accuracy from 16% to 23%, while
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the pose error has been improved from 12% to 24%. Aside from

the improvements in accuracy, the operating range of the eye lo-

cator has been extended (by more than 15 ) by the head tracker,

and the ineffectiveness of the previously reported eye location

methods against extreme head poses has been compensated.

Furthermore, automatic quality control and re-initialization of

the head tracker have been provided by the integration of the

eye locator, which helps the system in recovering to the correct

head pose. Consequently, the proposed unified approach allows

for an autonomous and self-correcting system for head pose es-

timation and eye localization. Finally, the information obtained

by the proposed system has been combined in order to project

the visual gaze of a person on the target scene by retargeting a

set of known points using the head pose information. The eval-

uation using the collected data set has proven that the joint eye

and head information results in a better visual gaze estimation,

achieving a mean error between 2 and 5 on different tasks

without imposing any restraints on the position of the head.
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