
Combining Head Tracking and Mouse Input for a GUI on
Multiple Monitors

Mark Ashdown, Kenji Oka, Yoichi Sato
Institute of Industrial Science, The University of Tokyo

4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
mark@ashdown.name, oka@iis.u-tokyo.ac.jp, ysato@iis.u-tokyo.ac.jp

ABSTRACT
The use of multiple LCD monitors is becoming popular as
prices are reduced, but this creates problems for window
management and switching between applications. For a sin-
gle monitor, eye tracking can be combined with the mouse
to reduce the amount of mouse movement, but with several
monitors the head is moved through a large range of po-
sitions and angles which makes eye tracking difficult. We
thus use head tracking to switch the mouse pointer between
monitors and use the mouse to move within each monitor.
In our experiment users required significantly less mouse
movement with the tracking system, and preferred using it,
although task time actually increased. A graphical prompt
(flashing star) prevented the user losing the pointer when
switching monitors. We present discussions on our results
and ideas for further developments.

Author Keywords
Gaze-contingent display, attentive user interface, head track-
ing, multiple monitors.

ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: User Inter-
faces - Input devices and strategies.

INTRODUCTION
The falling price of flat-panel monitors is encouraging the
trend of multi-monitor use for PCs. Multiple-monitor sys-
tems allow people to be more productive [3], but also cause
changes in the way they use graphical user interfaces, for in-
stance people will arrange windows within monitors rather
than across the boundaries between monitors.

Use of multiple monitors increases multitasking and puts
strains on window management. Czerwinskiet al. [1] found
that users of a large display were surprised when the com-
pletely unobscured window they were looking at did not re-
ceive keyboard events—actually a different window was ac-
tive but was positioned outside the user’s field of view. Users
of such systems employ strategies to alleviate the problem of
transferring the mouse pointer and keyboard focus between
monitors, such as dedicating one monitor to a display-only

Copyright is held by the author/owner(s).
CHI 2005, April 2–7, 2005, Portland, Oregon, USA.
ACM 1-59593-002-7/05/0004.

Figure 1. Experimental participants arranged a series
of windows across three monitors. Two cameras are
mounted above the centre monitor, and there is a spare
one below.

Figure 2. Feature points on the user’s face are tracked
by two cameras, and the head pose, consisting of position
and orientation, is estimated.

task like monitoring email [3]. We would like to allow the
interactive potential of all monitors to be fulfilled.

A person’s explicit actions can be combined with implicit
information like eye gaze. Also, a user usually looks at a
target before selecting it [4] so the direction they are look-
ing in could be used together with the conventional mouse
and keyboard devices for a display that is large enough that
moving around it is cumbersome.

The inherent accuracy limitations of any attentive interface
will probably also require explicit inputs if it is to be used for
precise tasks of the type performed on conventional GUIs.
Also, one must consider the ‘Midas Touch’ problem: what
seems like a fast and accurate response in a constrained test
may become an annoyance and source of error in a general
user interface where many tasks are interleaved. MAGIC



Pointing [10] combines eye tracking and fixation detection
with mouse input to move the mouse pointer close to the
position at which the user is looking on a single monitor.
Users were able to make use of the prototype system, and
showed some improvement in task times.

Eye tracking does not work well in the presence of large
changes in head position and orientation. Movements of this
type occur in a standard multi-monitor setup: the head must
be rotated through a considerable angle to view three moni-
tors (Figure 1). Rather than using eye tracking, we have used
a vision-based head tracking system developed in our lab [6].
Other technologies such as electromagnetic and ultrasonic
trackers exist but if the system is to be used in an everyday
setting it must be non-intrusive and automatically initializ-
ing. That is, it must not require the user to wear any device
and it must allow her to freely move away from the computer
then return and continue working immediately. Our system
uses the head tracking data to move the mouse pointer be-
tween monitors and switch the active application.

Head motion is different to eye motion. The eye is constantly
moving, its motion characterized by fixations interspersed
with rapid saccades. Head motion is more stable, but less
accurately indicates the user’s focus of attention because the
eyes can move independently of the head. The head move-
ment has been shown to closely follow the eye movement in
response to stimuli [2], and the head generally moves so as
to keep the eye near the centre of its orbit and away from
the extremes. Head motion has previously been shown to be
useful for switching between windows on a single-monitor
system, and for zooming and scrolling a map [5].

HEAD TRACKER
Robust real-time tracking of users suitable for human inter-
action is an active research area. Vacchettiet al. [8] provide
a good example of object tracking, in which a mesh model of
the object is provided, then then the object is tracked using a
single camera. Our head tracking system [6] differs in vari-
ous ways: it uses multiple cameras, it automatically acquires
the model of the user’s face rather than requiring a mesh, and
it uses stochastic filtering which generally leads to more ro-
bust algorithms. Our algorithm has two stages: automatic
initialization of a 3D model of the user’s head with multi-
ple feature points, and tracking the head pose in consecutive
image frames using a particle filter. For the experiment de-
scribed here we used two cameras, although the software
supports more.

The initialization process starts automatically when a user
appears: their face is found by a face detector from the
OKAO vision library by Omron Corporation. A set of fea-
ture points on the face is identified (see Figure 2—currently
we use ten points) and for each one the algorithm obtains the
3D location, via stereo triangulation, and an image template
from each camera. During tracking the six-dimensional head
pose, consisting of position and orientation, is continually
estimated. A particle filter follows multiple hypotheses in
the 6D state space, these are compared with the actual image
frames, and finally an estimation of the pose is obtained. A

key component of the method is adaptive control of diffusion
factors in the particle filter, which makes it robust against
abrupt motion while also providing high accuracy.

The head tracker works at the full video rate of 30 frames
per second. Accuracy depends on the camera configuration
which is set to encompass the space in which the head will
move, but when the head is stable the accuracy is around
1 mm for position and 1 degree for orientation. Latency is
minimal—around one frame, or one thirtieth of a second—
and in choosing a monitor we do not perform any filtering,
such as averaging measurements from several frames, so no
lag is introduced. During testing we found that when typing
the user will often look down at the keyboard, so we have
mounted a third camera below the monitor to ensure that the
feature points remain visible when the head is tilted down-
wards.

APPLICATION TO MULTIPLE MONITORS
We use our head tracker to make the mouse pointer jump
between monitors. Our system runs on Microsoft Windows
XP which is otherwise unaltered. In a simple calibration
procedure the user looks at a point on each of the monitors
in turn. During tracking the scalar product of the current
head direction with the stored direction for each monitor is
computed to determine how closely the user is looking at
each monitor. These values are used to select one monitor,
after application of a hysteresis threshold.

Allowing the pointer to be moved from one monitor to an
adjacent one with the mouse, in addition to having it jump
in response to a head movement, would cause conflicts be-
tween the two methods. We therefore restrict it to a single
monitor: the pointer is moved within each monitor by the
mouse, and between monitors by the head. Because head di-
rection is not as accurate as eye direction at indicating focus
of attention, we only use the head direction to pick a mon-
itor, thus the pointer appears on a new monitor in the same
position that it was in on the old monitor. If we wanted the
new pointer position to be determined by the head direction
we would need to wait until the head had settled on a par-
ticular direction before choosing the new point. That is, we
would need an algorithm to detect fixations in head move-
ments, like the fixations and saccades that are detected by
eye tracking systems. This possibility is discussed below.

Figure 3. When the mouse pointer jumps between moni-
tors a flashing star helps the user to find its new position.

Jacob [4] states that for eye tracking there is a dilemma as to
whether to display a cursor. If the tracking has zero error it
will not be necessary, and will probably be distracting, but
the system will probably exhibit some error so feedback on
the estimated position will be useful. For our head tracking
system, because the pointer may not be at the current point of



regard when the user looks at a new monitor, a star appears
around new position of the pointer to make it more promi-
nent (Figure 3). The star flashes five times over one second,
and a short beep indicates that the pointer has moved.

A user can move windows around within a single monitor as
usual. To move them between monitors she grabs the title
bar as usual then looks at a different monitor. The mouse
pointer jumps to the new monitor and the window goes with
it. When the user switches monitors without dragging a win-
dow the top window on the new monitor is activated, so she
can immediately start interacting with it, by typing for ex-
ample. This is to avoid the problem mentioned above of
the user failing to realize that the active window is on an-
other monitor [1], and to make it faster to switch between
applications—no explicit action is necessary to do so.

The automatic jumping of the mouse pointer means that less
work is required from the hand when moving between win-
dows, particularly those far apart on a multi-monitor sys-
tem. As more monitors are used multitasking increases, so
switching between windows will become more frequent, and
as monitors become larger and more numerous the distance
traversed to do that switching will increase.

EXPERIMENT
To test if people could use our system and to get some
feedback we devised a window management task to be per-
formed on multiple monitors. We used a within-subjects de-
sign with eight members of our research group, of whom
all used Windows regularly but none used multiple moni-
tors. We used three 17-inch 1280×1024-pixel LCD mon-
itors arranged on a desk about 50cm from the user’s eyes.
We used Windows XP with default settings and compared
two conditions: with our head tracking system, and with-
out. We used a Microsoft IntelliMouse, and the default Win-
dows mouse setting which includes acceleration so it takes a
mouse movement of about 12cm traverse a monitor moving
slowly, or 3cm moving very quickly.

The task was to arrange a set of 26 windows containing the
letters of the alphabet from left to right across three monitors
(Figure 1). Initially the windows were scattered randomly
over the three displays. After receiving an explanation of the
system and practising with the two conditions, participants
performed the task four times, twice with and twice without
the tracker, with the ordering being balanced. The time in
seconds and total mouse movement in pixels were measured
for each instance of the task. We discarded the data from the
first two tasks for each user, treating them as extra practice.
At the end of the tasks we asked the participants which con-
dition they preferred, and asked them for further comments.

We used a pairedt test to analyse the distance and time data.
With the head tracker mean distance moved by the mouse
in pixels reduced by 32% (Figure 4) from 82,844 to 56,142
(t(7) = −5.71, p < 0.001), indicating that less effort was
expended in moving the mouse when the head tracker was
used. Seven out of the eight participants preferred the head
tracker condition. In the comments participants said that the

flashing star was very helpful for finding the pointer after a
change of monitor.

 0

 20

 40

 60

 80

 100

withwithout

th
ou

sa
nd

s 
of

 p
ix

el
s

Figure 4. Total distance moved by the mouse during the
task without the head tracker, and with it. Error bars
show standard deviations.

 0

 20

 40

 60

 80

 100

 120

 140

withwithout

se
co

nd
s

Figure 5. Time to complete the task without the head
tracker, and with it. Error bars show standard devia-
tions.

Unfortunately, mean time to complete the task increased by
24% (Figure 5) from 89 to 110 seconds (t(7) = 5.78, p <
0.001). The main complaint was the awkwardness of mov-
ing the pointer between points that are quite close together
but on different monitors. Moving within one monitor was
easy, and moving from, for instance, monitor 1 to monitor 3
was aided by the head tracker, but moving from the edge of
one monitor to the nearest edge of an adjacent monitor was
easier in the condition without the tracker (Figure 6).

The problem of moving the pointer between close points on
adjacent monitors would be alleviated if the pointer jumped
to the user’s point of regard on the new monitor rather than to
the position from the old monitor. We did not implement this
because of the requirement for a model of head movements
and an algorithm to detect fixations. Implementing such an
algorithm is an option because head motion, being slower
and less erratic, is much simpler than eye motion. Speci-
fying the link between eye and head movement is an active
area of research in neurophysiology. Similar to eye tracking,
head fixation detection could use velocity or dispersion sta-
tistics, and a time threshold [7]. The simplest method is a
velocity threshold: whenever the velocity of the head is low
throughout a certain window of measurement points, gener-
ate a fixation event beginning at the start of the window.

Several participants commented that performance with the
head tracking system would improve with practice. The par-
ticipants had obviously had extensive practice with the con-
ventional mouse interface, but needed to get used to the head
tracker, thus we omitted the first two results from each per-



Figure 6. Moving large distances with the head tracker
is easy, but moving a small distance across a monitor
boundary can be awkward.

son to reduce the learning effect. Another result was that
users looked at a target before selecting it allowing the sys-
tem to select the correct monitor, but some users occasion-
ally did not look at the destination. This was when they were
casually placing a window in a rough temporary position.

CONCLUSIONS & FUTURE WORK
We have presented a system that combines head tracking and
mouse input to allow a user to control a conventional GUI
that spans multiple monitors by moving the head to select a
monitor. In our experiment participants were able to use the
system for a window management task across three moni-
tors, they required significantly less mouse movement with
the tracking system, and they preferred using it, although
task time actually increased. The main problem was moving
between nearby points on adjacent monitors. A graphical
prompt (flashing star) prevented the user losing the pointer
when switching monitors.

Various techniques have recently been developed to address
the difficulties of GUIs spread over large screens and mul-
tiple monitors. ‘Drag-n-pop’ reduces mouse movement by
moving targets towards the cursor, conversely to our method
which makes it faster to move the cursor to targets. ‘Mouse
ether’ and the ‘high-density cursor’ avoid the mouse get-
ting lost when moving quickly or between monitors—our
flashing star performs this role, but should be unnecessary
if jumping to the point of regard is implemented. ’Bump-
ing windows’ moves a window between monitors using a
key press, whereas in our system the user grabs the window
then moves the head. New window management techniques
are also being developed—they could be supported by giv-
ing a window that jumps to a new monitor an automatically
selected location and size.

Three important criteria for interfaces based on sensing tech-
niques such as eye or head tracking are:

• the distinction between implicit and explicit inputs
• whether tracking data are treated as continuous or discrete
• the cost of mistakes

Implicit inputs are generated automatically in response to
sensing of the user’s inadvertent movements; explicit ones
are consciously performed. The continuous stream of data
generated by a tracking algorithm can either be used to con-
tinuously adjust parameters of the application, or it can be
converted to a series of discrete events by, for example, ap-
plying a threshold, or using a hidden Markov model. The
cost of mistakes should be kept low so that the user can eas-

ily recover from their own errors or errors of the tracking
system.

To remove the problem of moving between close points on
separate monitors we could combine tracking (implicit in-
put) and button presses (explicit action.) The user could
hold down a specially assigned mouse button to have the
pointer follow his head movements, then release it to re-
sume normal control. This would not require fixation de-
tection, would avoid the problem with moving between ad-
jacent monitors, and would avoid the Midas Touch problem,
although it would require an explicit trigger.

Head or eye tracking could be used to create a system like
GAZE-2 [9], a video-conferencing application in which a
higher data rate is assigned to the video stream at which the
user is currently looking. Input is implicit, and the cost of
a tracking error is low because a lower rate video stream is
still useful. We could implement something like the ‘cock-
tail party’ effect for standard application programs that are
sharing a sound output channel, or some other resource. The
volume of each sound stream would be weighted by a the
distance between its application window and the user’s point
of regard. Again this would have the advantages of requiring
only implicit input and having low cost of error.

ACKNOWLEDGEMENTS
We thank the Japan Society for the Promotion of Science for
funding this work via a postdoctoral fellowship, and Omron
Corporation for providing the OKAO vision library used in
the initialization step of our head tracker.

REFERENCES
1. M. Czerwinski, G. Smith, T. Regan, B. Meyers, G. Robertson, and G.

Starkweather. Toward Characterizing the Productivity Benefits of Very
Large Displays. InProc. Interact 2003, pages 9–16, 2003.

2. H. Goosssens and A. V. Opstal. Human Eye-Head Coordination in
Two Dimensions Under Different Sensorimotor Conditions.Exp.
Brain Research, 114:542–560, 1997.

3. J. Grudin. Partitioning Digital Worlds: Focal and Peripheral
Awareness in Multiple Monitor Use. InProc. CHI 2001, pages
458–465, 2001.

4. R. J. Jacob.Advances in Human-Computer Interaction, Vol. 4, ed. by
H.R. Hartson and D. Hix, chapter Eye Movement-Based
Human-Computer Interaction Techniques: Toward Non-Command
Interfaces, pages 151–190. Ablex Publishing Co., 1993.

5. K. Kitajima, Y. Sato, and H. Koike. Vision-Based Face Tracking
System for Window Interface: Prototype Application and Emperical
Studies. InProc. CHI 2001, pages 359–360, 2001.

6. K. Oka, Y. Sato, Y. Nakanishi, and H. Koike. Head Pose Estimation
System Based on Particle Filtering with Adaptive Diffusion Control.
In Proc. MVA 2005, 2005.

7. D. D. Salvucci and J. H. Goldberg. Indentifying Fixations and
Saccades in Eye-Tracking Protocols. InProc. Symp. Eye Tracking
Research & Applications, pages 71–78, 2000.

8. L. Vacchetti, V. Lepetit, and P. Fua. Stable Real-Time 3D Tracking
Using Online and Offline Information.IEEE Trans. PAMI,
26(10):1385–1391, 2004.

9. R. Vertegaal, I. Weevers, C. Sohn, and C. Cheung. GAZE-2:
Conveying Eye Contact in Group Video Conferencing Using
Eye-Controlled Camera Direction. InProc. CHI 2003, pages
521–528, 2003.

10. S. Zhai, C. Morimoto, and S. Ihde. Manual And Gaze Input Cascaded
(MAGIC) Pointing. InProc. CHI 99, pages 246–253, 1999.


