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Abstract
The present research aims to build a unique ensemble model based on a high-resolution groundwater potentiality model 
(GPM) by merging the random forest (RF) meta classifier-based stacking ensemble machine learning method with high-
resolution groundwater conditioning factors in the Bisha watershed, Saudi Arabia. Using high-resolution satellite images 
and other secondary sources, twenty-one parameters were derived in this study. SVM, ANN, and LR meta-classifiers were 
used to create the new stacking ensemble machine learning method. RF meta classifiers were used to create the new stack-
ing ensemble machine learning algorithm. Each of these three models was compared to the ensemble model separately. The 
GPMs were then confirmed using ROC curves, such as the empirical ROC and the binormal ROC, both parametric and non-
parametric. Sensitivity analyses of GPM parameters were carried out using an RF-based approach. Predictions were made 
using six hybrid algorithms and a new hybrid model for the very high (1835–2149 km2) and high groundwater potential 
(3335–4585 km2) regions. The stacking model (ROCe-AUC: 0.856; ROCb-AUC: 0.921) beat other models based on ROC's 
area under the curve (AUC). GPM sensitivity study indicated that NDMI, NDVI, slope, distance to water bodies, and flow 
accumulation were the most sensitive parameters. This work will aid in improving the effectiveness of GPMs in developing 
sustainable groundwater management plans by utilizing DEM-derived parameters.

Keywords  Data mining · Hybrid ensemble machine learning · Logistic regression · Sensitivity analysis · Remote sensing

Introduction

Groundwater is a valuable resource in all parts of the world. 
In dry and semi-arid locations where there are no rivers 
or other sources of surface water, groundwater is the pri-
mary supply of water for agricultural and human activities. 
The quest for additional groundwater resources is a major 

concern in these places, particularly in locations where water 
demand is gradually increasing over time (Falkenmark et al. 
2019). Therefore, suitable water resource management is 
highly necessary. Due to limited water supplies and rising 
uncertainties induced by climate change, water management 
in the Kingdom of Saudi Arabia (KSA) is experiencing sig-
nificant problems. Exploiting deep aquifers for subterranean 
water depletes supplies that took decades or centuries to 
develop and on which the current annual rainfall has little 
direct influence (Mahmoud et al. 2014). An estimated 158.47 
billion m3 of rainfall occurs on the nation each year (Al-
Rashed and Sherif 2000). In KSA's biggest single alluvial 
reservoir, the total capacity in alluvial deposits is estimated 
to be 84 billion m3 (Abdulrazzak 1995). While the entire 
amount of groundwater removed from Saudi Arabia's deep 
aquifers during the previous two decades is estimated to be 
about 254.5 billion m3, it was pumped from Saudi Arabia 
to meet the demands of the agriculture sector's develop-
ment (Al-Rashed and Sherif 2000). While the recharging of 
deep aquifers has been restricted to 41.04 billion m3 during 
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the previous two decades (Al-Rashed and Sherif 2000). By 
the year 2000, the agriculture sector in Saudi Arabia con-
sumed around 20 billion m3/year of water (Al-Rashed and 
Sherif 2000). Demands of water in Agricultural accounted 
for 83–90% of overall water demands from 1990 to 2009 
(Chowdhury and Al-Zahrani 2015). To meet the water 
conservation policy, KSA implemented a plan to minimise 
agricultural water needs by adopting advanced irrigation 
techniques, which resulted in a 2.5 percent yearly decrease 
in water use for agricultural reasons between 2004 and 
2009 (MoEP 2014). Because of the scarcity of water and 
the possibility for an expansion in the area under agriculture, 
Demarcating groundwater potential zones for agricultural 
growth is critical (Zhang et al. 2018a; Mahato and Pal 2019; 
Zhu and Abdelkareem 2021).

The first step in protecting ecosystems from groundwa-
ter discharge is identifying the groundwater discharge, the 
locations where groundwater discharge occurs, and the sup-
port that groundwater discharge provides for down-gradient 
ecosystems (e.g., fluvial ecosystems) (Zhang et al. 2018a; 
Mahato and Pal 2019; Zhu and Abdelkareem 2021). Such 
determinations are typically only possible by field investi-
gation because different types (and an unknown number) of 
groundwater discharge sources are commonly intermingled 
in the subsurface near their point of connection with sur-
face water (e.g., seeps and springs) (Yu and Michael 2019; 
Bierkens and Wada 2019). Field mapping of these forms of 
groundwater outflow is doable in some instances (Arabameri 
et al. 2019b; Díaz-Alcaide and Martínez-Santos 2019). Such 
approaches are often expensive to apply and require substan-
tial ground truth knowledge prior to deployment. Therefore, 
it is impracticable across broad geographical scales and in 
difficult-to-reach areas. Remote sensing, geospatial mode-
ling, and machine learning have all been employed in these 
cases to map remote sites where groundwater discharge 
occurs, with varying degrees of effectiveness (Mahato 
and Pal 2019; Das et al. 2019; Mallick and Rudra 2021; 
Vellaikannu et al. 2021; Zhu and Abdelkareem 2021). As 
computer processing capacity develops and remote sensing 
data becomes more readily accessible, these methods garner 
greater attention for broad applications in hydrology.

The aim of geospatial modeling, in particular, is to use a 
procedure for setting out the models and a suitable choice 
of geospatial algorithms to help decision-makers and other 
stakeholders decide the most optimal and beneficial option 
(Nagpal et al. 2019; van Eeuwijk et al. 2019; Pal et al. 
2020a; Malik and Bhagwat 2021; Forootan and Seyedi 
2021; Phong et al. 2021). Over the years, various meth-
ods such as multi-criteria decision analysis (MCDA), the 
statistical index (SI) (Mandal and Mandal 2018), logis-
tic regression (LR) (Mandal and Mandal 2018; Zhang 
et al. 2018a),evidential belief function (EBF)(Chen et al. 
2018b), probability-frequency ratio (FR) (Lee and Dan 

2005; Chen et al. 2017b), certainty factors (CF) (Dou 
et al. 2014; Chen et al. 2016; Hong et al. 2016a), weight 
of evidence (WoE) (Xu et al. 2012; Xie et al. 2017), index 
of entropy (IoE) (Jaafari et al. 2014; Tien Bui et al. 2018) 
have been used to generate GPM in various regions. A 
review of past research demonstrates that, although the 
models used to provide decent results, utilizing them as 
standalone has drawbacks (Boori et al. 2019; Mahato and 
Pal 2019; Das et al. 2019; Pradhan et al. 2019; Mallick 
and Rudra 2021; Mosavi et al. 2021; Chen et al. 2021a). 
Furthermore, approaches like the multi-criteria index may 
give helpful information for selecting appropriate loca-
tions for managed aquifer recharge (MAR) (He et al. 2012; 
Kazakis et al. 2020).

ANN (Tien Bui et al. 2016; Chen et al. 2017a), neuro-
fuzzy (Tien Bui et al. 2012), decision trees (Tien Bui et al. 
2014; Hong et al. 2015), and support vector machines (Trig-
ila et al. 2015; Hong et al. 2016a, b; Chen et al. 2018a, b) 
are examples of machine learning models that have been 
developed to address complex issues and have been applied 
to a variety of groundwater research (Ghimire et al. 2019; 
Qadir et al. 2019; Hamdani and Baali 2019; Hoque et al. 
2020; Malik and Bhagwat 2021). They have shown promis-
ing predictive capabilities for groundwater potentiality pre-
diction and are often used as benchmarks to evaluate new 
approaches (Pal and Sarda 2021a). Lee et al. (2018) show 
that the ANN technique is beneficial for producing GPM 
investigations. Emamgholizadeh et al. (2014) employed two 
machine learning approaches to estimate groundwater levels: 
ANN and ANFIS. According to their findings, the ANFIS 
model performs well in prediction and may be applied in 
similar investigations. There is still no broad consensus on 
which strategy is superior since learning algorithms with a 
single or straightforward hypothesis space have difficulty 
satisfying all case scenarios as the data they use changes 
(Tien Bui et al. 2018; Truong et al. 2018).

However, these efficient instances contain significant 
flaws that restrict the efficacy of individual algorithms in 
terms of prediction (Luo et al. 2017). Individual learning 
methods may overlook the best-fit function or actual dis-
tribution of the sample set from the hypothesis space, for 
example, since training data for GPM is generally insuffi-
cient (Stamatopoulos et al. 2015; Crosta et al. 2003). As a 
result, researchers created ensemble-learning algorithms for 
GPM, including Adaboost (Nguyen et al. 2020), Bagging 
(Iqbal et al. 2021), random subspace (Elbeltagi et al. 2021), 
and rotating forest (Mallick et al. 2021), to increase the pre-
diction accuracy of a single classifier (Singha et al. 2020). 
These ensemble-learning strategies are homogenous because 
they often mix the same classifier to create an aggregated 
model. Consequently, the flaws of a single classifier may 
compound, which is undesirable for the outcome (Regmi 
et al. 2010).
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Meanwhile, the studied locations differ geographically 
in terms of GW potentiality forecast. Diverse places have 
different geo-environmental characteristics, and homog-
enous ensemble-learning approaches for GPM ignore such 
differences (Hong et al. 2016b; Pham et al. 2017). In several 
sectors, heterogeneous ensemble-learning approaches that 
combine several single classifiers have exhibited significant 
nonlinear representation (Mirchooli et al. 2019; Rizeei et al. 
2019; Roy and Saha 2019; Nhu et al. 2020; Pal and Sarda 
2021b). Heterogeneous ensemble learning is more resilient 
and generalizable than homogeneous ensemble learning 
because it can harness the benefits of diverse groundwater 
potentiality models. Furthermore, the challenge of model 
selection for GPM may be mitigated to some degree using 
heterogeneous ensemble-learning approaches, which can 
preserve heterogeneity using any base classifier. Despite 
this, there is little research on using heterogeneous ensem-
ble-learning approaches in GPM. It is essential to look into 
new ensemble modeling methodologies for groundwater 
potentiality assessment. Ensemble modeling is the simul-
taneous analysis of multiple (not necessarily optimized) 
models to look for regularities and patterns in the output 
from these different models that might give insights into how 
well they might predict possible future events (Forkuor et al. 
2017; Chen et al. 2018a; Zhang et al. 2018b; Abdulkadir 
et al. 2019; Arabameri et al. 2019a).

In this study, we carried out GWP mapping in the Bisha 
watershed in Saudi Arabia for the first time using a stack-
ing ensemble technique based on multiple machine learning 
algorithms. The approach is divided into two levels: the het-
erogeneous base learners at the bottom and the meta-learner 
at the top. It is worth noting that the benefits of stacking 
have been studied in various fields. According to Wang 
et al. (2011), the stacking-based credit scoring model had 
better predictive performance than base learners in average 
accuracy and error. Another study found that the ANN with 
stacking outperformed both the single ANN and the combi-
nation of ANNs employing the averaging technique in flood 
frequency analysis (Shu and Burn 2004). Three machine 
learning algorithms, namely SVM, ANN, and LR, were cho-
sen as candidate base learners and RF as meta-classifiers 
of the stacking ensemble technique to estimate the spatial 
groundwater potential. The following three advancements 
for GWP modeling are presented in our study:

(1) For GWP, we used three heterogeneous ensemble-
learning approaches. We adopted the RF approach over other 
machine learning and ensemble machine learning methods 
because of its superior performance (Talukdar et al. 2020). 
(2) We used both parametric and non-parametric ROC 
curves for the first time to validate the models. (3) The spe-
cifics of heterogeneous ensemble-learning techniques and 
result evaluation are presented in this paper. According to 
our literature analysis, heterogeneous ensemble-learning is 

still seldom applied in GPM, and many studies only used 
basic heterogeneous ensemble-learning algorithms. We used 
the aforesaid basic heterogeneous approaches as well as one 
meta heterogeneous way of stacking and blending for GPM 
in this investigation.

Materials and methodology

Study area

The Bisha watershed covers an area of 21,260 km2 and is 
bordered by Yemen. The Bisha watershed is located north 
of the equator between 17°59′27.588ʺ and 20°49′13.958ʺ 
north, and east of the Greenwich meridian between 
41°49′50.825ʺ and 43°11′20.254ʺ east (Fig. 1). It features 
a varied scenery, including highlands, high mountains 
(between 2000 and 3000 m above sea level), plateaus, and 
Wadiyan. Additionally, it encompasses a sizable portion of 
the desert to the north and east, all the way to Bisha. The 
elevation ranges from 950 to 2980 m above sea level, with a 
mean of 1655 m. The climate of the region varies substan-
tially by terrain and season. The climate varies considerably 
between semi-arid regions in the south and desert regions in 
the north. The average temperature over the last 30 years has 
fluctuated between 12 and 44 °C. Annual rainfall averages 
245 mm. Rainfall in excess of 200 mm per year is restricted 
to a 20–30 km broad crest zone. As a result, eastward and 
northward Wadi flow rapidly reduces downstream, and depo-
sition exceeds erosion at the plateau's eastern margin. The 
highland of the watershed is bordered by forests and Junipe-
rus procera, which are home to a variety of indigenous and 
rare flora and wildlife.

Materials

We prepared 21 parameters at the spatial scale for GWP 
modeling. We derived 14 parameters (among 21) from a 
high-resolution digital elevation model (DEM). In the pre-
sent study, we used ALOS PALSAR DEM, having a spatial 
resolution of 12.5 m. We obtained it from the EarthData 
website, NASA (“https://​asf.​alaska.​edu/​data-​sets/​deriv​ed-​
data-​sets/​alos-​palsar-​rtc/​alos-​palsar-​radio​metric-​terra​in-​
corre​ction/”). The sentinel-2 MSI satellite image has been 
obtained from the website of the United States Geological 
Survey- Earth Explorer (“https://​earth​explo​rer.​usgs.​gov/”). 
On the other hand, rainfall data was collected from 16 mete-
orological stations of Saudi Arabia (the “Ministry of Envi-
ronment, Water, and Agriculture (MEWA), Saudi Arabia”). 
A geological map has been obtained from the Survey of 
Saudi Arabia. Distance to water bodies and the urban center 
has been generated by integrating the maps provided by 
DIVA-GIS and field survey.

https://asf.alaska.edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-radiometric-terrain-correction/
https://asf.alaska.edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-radiometric-terrain-correction/
https://asf.alaska.edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-radiometric-terrain-correction/
https://earthexplorer.usgs.gov/
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Groundwater potentiality inventory

The initial part was identifying the spring and non-spring 
locations and creating the appropriate inventory map. A 
random selection of non-spring locations was made using 
the Create Random Points feature in the Data Manage-
ment Tools on the ArcGIS platform. Spring locations were 
obtained from land records, field surveys, and the Hydro-
logical Data Management System. There were 50 springs 
and 50 non-spring places found. In addition, based on prior 
relevant research, twenty-four groundwater spring-associ-
ated variables were initially chosen in this phase (Mahato 
and Pal 2019; Das et al. 2019; Mallick and Rudra 2021; 
Vellaikannu et al. 2021; Zhu and Abdelkareem 2021). All 
groundwater and non-groundwater data have been separated 
into 80 (80):20 (20 points) training and testing datasets by 
arbitrary separation (Mallick and Rudra 2021).

Rationale and preparation of groundwater 
potentiality conditioning factors

When groundwater springs are present, it is believed that the 
slope, elevation, and aspect all have a role. Elevation has a 
significant impact on the local circumstances of the terrain 
that influence groundwater distribution (Arabameri et al. 
2019b). Groundwater reservoirs often follow the gradient 
of height and tend to gather beneath the low-elevated ter-
rain areas, which is why they are called "altitude reservoirs” 
(Chen et al. 2021b) (Fig. 2a). The landscape slope was cho-
sen as an additional explanatory variable because of its link 
with the hydrologic processes that govern the direction of 
runoff and the infiltration capacity of the landscape (Sarkar 
et al. 2001; Arabameri et al. 2019b) (Fig. 2b). The slope 
length (LS) is a combination of the slope gradient (S) and 
the slope length (L) (Moore and Burch 1986). In general, a 
low value of LS indicates a greater likelihood of a productive 

Fig. 1   The study area, Bisha Watershed
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groundwater aquifer. The length of the slope is a measure of 
the extent of ground cover (Fig. 2c). TRI is another morpho-
logical parameter that is extensively employed in groundwa-
ter assessments to quantify the relative elevation of a target 
cell concerning its neighboring cell. The TRI index ranges 
from 0 to 1, where high values indicate a well-drained sur-
face and low values indicate a poorly drained surface (2d). 
Flow across a surface is affected by the profile curvature, 
which runs parallel to its maximum slope and is proportional 
to the acceleration or deceleration of the flow (Ginesta Tor-
civia et al. 2020). In contrast, planform curvature is perpen-
dicular to the direction of the maximum slope and influences 
the convergence and divergence of flow across a surface, 
respectively (Costache and Tien Bui, 2020) (Fig. 2e, f). To 
generate potential groundwater maps, it was necessary to 

include the variable aspect as an essential explanatory vari-
able. This variable is related to evapotranspiration because 
it indicates the direction of water flow, which has an effect 
on groundwater recharge and storage (Fig. 2g).

Once the TPI is calculated as the ratio of the target pixel 
elevation to the average elevation of the surrounding area, a 
positive value (Ridge) indicates a cell above the surrounding 
pixels concerning the target pixel. The negative value (Val-
ley) reflects the sites at a lower elevation than the neighbor-
ing cells in the neighbourhood (Fig. 3a). Besides illustrating 
the curvature of a slope, CI also depicts the convergence 
or divergence of a cell, with positive values indicating 
diverging pixels and negative values indicating converging 
pixels. The minimal convergence suggests that there is a 
significant amount of groundwater available. The CI index 

Fig. 2   DEM derived topographic parameters, such as a elevation, b slope, c LS Factor, d TRI, e plan curvature, f profile curvature, g aspect
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oscillates between the extremes of maximum divergence 
(100) and maximum convergence (− 100) (Fig. 3b). When 
applied to hydrologic processes, TWI quantifies the influ-
ence of topography and, hence, on infiltration and recharge 
(Meles et al. 2020a). By examining the connection between 
the topographic index surface and reference data, it is pos-
sible to determine the correctness of a topographic index 
concerning grid spacing and terrain roughness (Meles et al. 
2020a; Shit et al. 2020) (Fig. 3c). Stream power is the rate at 
which flowing water expends energy over a certain period. 
The Stream Power Index (SPI), sometimes known as the 
compound index (SPI), assesses stream power in geographic 
information systems (Chen et al. 2021b). SPI values below 
certain thresholds are related to a low erosion rate by runoff, 

allowing sufficient time for precipitation to percolate under-
ground (Fig. 3d). Although there are other approaches for 
determining flow direction in grids, the most straightforward 
way to explain the flow direction is to consider the direction 
in which water and silt would flow out of that cell (Burrough 
and Mcdonnell 1998) (Fig. 3e). When water and slope mate-
rials gather, it impacts how they are distributed and where 
they prefer to collect (Pack et al. 1999) (Fig. 3f, g).

The NDVI has a significant impact on the incidence 
of groundwater springs. They are primarily used to char-
acterize the state of the surface vegetation, which impacts 
recharge rates and the availability of groundwater, both of 
which are necessary for the formation of vegetation com-
munities (Fig. 4a). Dykes, shears, fractures, and other linear 

Fig. 3   DEM derived topographic and hydrologic parameters, such as a TPI, b convergence index, c TWI, d SPI, e flow direction, f flow accumu-
lation, g topographic features
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or curved structures on the surface topography are exam-
ples of lineaments. Lineaments play an essential part in the 
penetration process via rock weaknesses in hard rock ter-
rain (Fig. 4b). The NDMI can detect wet or moist places 
in the landscape. However, soil moisture and groundwater 

cannot be separated. The wet/moisture pixels indicate those 
areas where water may resist for an extended period, com-
monly towards the end of a rainy event. Because water can-
not resist uplands, the study also revealed moisture pixels 
in flat and valley regions, enabling more significant time 

Fig. 4   The conditional parameters for GPM, such as a NDVI, b lineament density, c NDMI, d Rainfall, e distance to waterbody, f distance to 
urban, g geological structure
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for precipitation to sink into the subsurface; moreover, it 
highlights waterlogged places (Fig. 4c). Rainfall is a criti-
cal element in determining the variability of groundwater 
recharge and storage and calculating the groundwater poten-
tial. Annual continuous rainfall data was gathered from a 
network of 16 meteorological stations in and around the 
research area from 1976 to 2017. The kriging technique 
was used to plot the annual rainfall. Annual rainfall varies 
from 342 mm in the south and south-west to approximately 
8.5 mm in the east (Fig. 4d). Because it influences the mois-
ture content of soil and rock on the slope and the infiltration 
rate, distance from rivers has a significant impact on ground-
water springs (Fig. 4e). Because the presence of urban area 
might create local hydrological and erosion difficulties while 
indirectly affecting the groundwater table, its distance from 
urban areas is thought to impact groundwater springs. As a 
consequence of the removal of geological formations and the 
disruption of the surface during the building phase, an urban 
area may affect the quantity of soil moisture and the infiltra-
tion rate (Fig. 4f). The infiltration capacity and porosity are 
governed by GG, which changes the particular groundwa-
ter storage. There are forty GG kinds in the research field. 
Some notable characteristics include sandstone and siltstone, 
intrusive plutonic rock, orthoamphibolite, andesite and dac-
ite, andesitic volcaniclastic rocks, granodiorite, and granite 
suite (Fig. 4g).

Multicollinearity test for groundwater potentiality 
variables

In this work, multicollinearity analysis assessed the relation-
ship between the groundwater affecting elements and the 
groundwater itself. When there is a strong link between two 
or more predictor variables in a multiple regression model, 
this is called multicollinearity in statistics (Islam et al. 
2021). To find multicollinearity among influencing variables 
in this research, the tolerance (TOL) and variance inflation 
factor (VIF) was utilized with each other. “Let 
X = {X1,X2, ....,XN) signify a particular independent vari-
able set, and R2

j
 denote the coefficient of determination when 

the jth independent variable Xj is regressed on all the other 
predictor variables in the model, as shown in the following 
example”. The following is the formula for calculating the 
VIF value:

When the VIF value is divided by the TOL value, the 
degree of linear correlation between the two independent 
variables, it is recommended that if the VIF value is over 
ten or the TOL value is less than 0.1, the related factors be 
eliminated from the landslide prediction models because of 
multicollinearity (Talukdar et al. 2021).

Developing stacking ensemble machine learning 
algorithm

Wolpert (1992) was the first to introduce the stacking ensem-
ble approach. Stacking, unlike other existing ensemble learn-
ing approaches, use meta-learning to integrate many types of 
algorithms. The outputs of numerous base learners (level-0) 
are merged by the meta-learner in the stacking structure, 
which has two levels: level-0 and level-1 (level-1). Figure 5 
depicts a basic drawing of the stacking structure used in this 
work. SVM, ANN, and LR were in charge of the basic learn-
ers. GPM frequently use these machine learning techniques. 
In the case of the meta-learner, RF was used in accordance 
with prior study recommendations.

Level‑0: Application of base classifiers

ANN  Behavioral trends are used in the artificial neural net-
work to provide a basis for modelling processes. It has three 
layers: input, covered, and output, as well as processing 
units such as neurons that are organised in several layers 
(Moghaddam et al. 2019). The attachment weights bind the 
neurons of previous layers to those of subsequent layers. The 
output of the middle layer (hidden layer) is fed into the next 
layer as data. The input layer receives the data, while the 
final layer produces the ANN model's final output. The input 
data is received and sent by the middle layers to the related 

(1)VIF = 1 − (1 − R2

j
).

Fig. 5   Stacking-based ensemble 
frameworks for groundwater 
potentiality modeling. SVM 
support vector machine, ANN 
artificial neural network, LR 
logistic regression, RF random 
forest”
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nodes in the subsequent layers. The secret neurons use the 
weighted number of inputs to generate the intermediate out-
put. The activation functions are used in the ANN model to 
compute the hidden and output neurons' outputs. It uses the 
bias values, as well as the weighted number of the neuron's 
inputs, to set the output. The preparation of the network 
structure and the modification of the weights of links are the 
two main stages of the ANN modelling process. According 
to the literature review, the backpropagation training algo-
rithm is widely used in a variety of areas, including water 
engineering (Fan et al. 2017). The performance of the ANN 
model is first obtained as the ANN model's response. The 
error between measured and predicted values is reduced 
at the next step to determine the model's weights. Where 
the output differs from the observed value, the weights and 
biases are adjusted to reduce the error values. However, 
since the backpropagation algorithm has a poor convergence 
rate, meta-heuristic optimization algorithms were used in 
this analysis to solve this flaw.

SVM  Vapnik (2013)presents the SVM, a widely used 
machine learning tool, as well as a collection of linear pre-
dictor functions that have been used to solve problems of 
function determination. In the SVM model, the kernel math-
ematical machine function was used for data transformation. 
A hyper-plane was generated using the training datasets 
after the individual SVM datasets were translated to high 
dimensional feature space (Choi et al. 2020).The best linear 
hyper-plane was used to differentiate the real output space. 
It is often used to divide data into two categories, such as 
low groundwater potential (0) and high groundwater poten-
tial (1). Several experiments have shown that, for ground-
water potential models chosen as benchmarks kernel func-
tion, the RBF is overweight among various kernel functions 
(Tehrany et  al. 2014). Due to the versatility of the radial 
base kernel to address different dimensions of the data set 
and its better capacity for generalisation, flood susceptibil-
ity was primarily modelled (Chen et al. 2021b). Modeling 
with SVM is generally limited because of its difficulties in 
recording essential parameters (Choubin et al. 2019).

LR  Logistic regression is a multivariate analytic model 
that predicts the presence or absence of an attribute or 
result based on the values of a collection of predictor 
variables. The term "logistic regression" refers to a kind 
of multivariate regression in which a dependent vari-
able is linked to many independent variables (Tu 1996). 
Groundwater occurrences rely on several geo-hydrologi-
cal independent variables, and the dependent variable is 
a binary variable representing the presence or absence of 
groundwater. The logistic regression technique is used for 
maximum likelihood estimate after turning the dependent 
variable (groundwater) into a logit variable (Ayalew and 

Yamagishi 2005). The advantages of logistic regression 
include that the variables do not have to have a normal 
distribution; they may be continuous, discrete, or a mix 
of both (Tu 1996). The ratios for each independent vari-
able in the multivariate analysis model may be predicted 
using logistic regression coefficients. In multi-regression 
analysis, the factors must be numerical, and the variables 
must have a normal distribution. The dependent variable, 
which denotes the presence or absence of a groundwater, 
should be entered as 1 or 0, and the model applies sound 
to groundwater potentiality analysis in this research (Prad-
han and Lee 2010).

Level‑1: Application of meta classifier

RF  Breiman et al. (2017) established the random forest as an 
ensemble learning approach for generating numerous deci-
sion trees from distinct data subsets and voting on the find-
ings of multiple decision trees to produce the random forest 
output. The random forest has a substantial body of research 
that shows it is tolerant to outliers and noise, unlikely to 
over-fit, and has good prediction accuracy and stability.

The basic idea behind random forest is to train many 
unconnected decision tree models. Each decision tree 
produces a different prediction regarding the sample's 
categorization (for classification algorithm). The sample 
classification mode is the outcome. To reduce model vari-
ance, the random forest's performance may be enhanced by 
creating unrelated training sets. Sample training is used to 
create different training sets of classifications, which are 
then merged to create the random forest model.

Ensemble procedure

After all of the base learning algorithms have been devel-
oped, the stacking approach is used to combine them into a 
larger framework. Assume that the initial dataset D contains 
examples di = (xi − yi) , where xi denotes groundwater condi-
tioning variables and yi denotes classifications (groundwater 
or non-groundwater). i ∈ [1,N] , where N is the total number 
of data points in the modelling dataset. Lt(t = 1, 2, 3) is the 
abbreviation for base learning algorithms including SVM, 
ANN, and LR. To begin, the dataset D is periodically split 
into two distinct subsets: one is used to train base learning 
algorithms to produce level-0 classifiers, denoted by ht , and 
the other is used to construct level-0 classifiers.

The remaining examples are being utilized to train clas-
sifiers to generate predictions Zit:

(2)hi
t
= Lt(D − di)∀i = 1, 2,… ,N;∀t = 1, 2, 3.
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These level-0 classifier outputs, along with their actual 
classifications, form a new dataset D� = ((Zit,Zit, ...., Zit), yi) , 
which is subsequently given to level-1 to train the meta-
learner (RF). As a consequence, RF can put together the 
classification results of basic learners to come up with a final 
prediction for new cases:

The init ial  ensemble model,  known as the 
SVM–ANN–LR, was built using three single candidate algo-
rithms and the stacking approach. The optimum parameters 
for whole stacking model have been presented in Table 1.

Validation of the models

All model-based predictions, including GPM, require meas-
uring the performance of a modeling method. In the litera-
ture, several performance metrics have been effectively uti-
lized. The most widely-used measurements for GPM AUC of 
ROC curves were employed to evaluate the algorithms' per-
formances in this research. The ROC graphs the plot of sen-
sitivity (true positive rate) versus 1-specificity (false positive 
rate) with varying thresholds (Nahayo et al. 2019). The AUC 
value, or area under this curve, is a regularly used metric for 
evaluating model performance. The AUC value for random 
is 0.5, whereas the value for perfect conformance is 1. When 
the AUC is less than 0.5, the model is non-informative or fits 
the data worse than a random model. In the present study, we 
employed two types of ROC curve, such as parametric and 
non-parameteric ROC curves for the validation.

Sensitivity analysis

The mean decreases in the Gini and the mean decreases in 
accuracy were measured. These two measures are widely 
utilized because they may choose criteria and rank things. 
Calculating essential variables of landslide conditioning 

(3)Zit = hi
t
(xi).

(4)Yx = RF(h1(x), h2(x), h3(x)).

factors for the current research region was accomplished 
using the mean decrease accuracy (MDA) and mean 
decrease gini (MDG) techniques of the RF algorithm, 
respectively. The two approaches described above are 
pretty popular, and they have been extensively employed 
in a variety of research to determine the significance of 
various factors. MDA and MDG techniques were used in 
the RF algorithm to compute error since they were discov-
ered during the OOB calculation error and participation of 
the relevant variable inside the homogeneity of the trees.

Results and analysis

Computation of multicolinearity analysis

In this work, VIF and Tolerances (TOL) were used to 
assess multicollinearity amongst independent variables. 
Multicollinearity problems can arise if there are high cor-
relations between the independent variables. A VIF score 
of over ten and a tolerance value of 0.2 suggest a multi-
collinearity concern. In the present study, 21 parameters 
have been generated for GPM. After applying colinartity 
technique, it has been found that all parameters have VIF 
score < 5, except elevation (VIF: 68.94) and TRI (VIF: 
60.544) (Table 2). Therefore, these two parameters could 
not be used for modelling; otherwise it would generate 
lower accurate results. Then, we decided to exclude TRI 
from the parameters list; again colinearity technique has 
been applied. The VIF and tolerance values of all factors 
were determined to be less than 5 and higher than 0.8, 
respectively (Table 3). As a result, the factors were incor-
porated into the model. The following are the outcomes of 
the current study's multicolinearity analysis:

Table 1   Optimum parameters for stacking model for generating GPM

Models Parameters

SVM Batch size: 100, kernel: Radius basis function
Multilayer Perceptron Batch size: 100, learning rate to decrease: TRUE, hidden layer: 15, learning rate: 0.3, momentum: 0.2, normalize attrib-

ute: TRUE, seed: 10, training time: 500, validation threshold: 20
Logistic regression Batch size: 100, debug: TRUE, standardize attribute: TRUE, maximum number of iterations to perform: 100, Ridge 

value in the likelihood: 1.0E-8, conjugate gradient descent: TRUE
Stacking ensemble Batch size: 100, base classifiers*: 3 classifiers (LMT, MLP, LR), 2 classifiers (MLP, LR), 1 classifier (MLP), 1 classifier 

(LR), 1 classifier (LMT), debug: TRUE, meta classifiers: Random forest (bag size percent: 100, batch size: 100, com-
pute attribute importance: TRUE, maximum depth of the tree: 10, number of iteration: 100, seed: 5), number of fold 
used for cross-validation: 10, seed: 8, number of execution slots: defaut
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Developing stacking based robust GW potentiality 
models

In this work, a stacking-based ensemble model for GPM was 
established. However, before employing the stacking-based 
ensemble model, we used ANN, SVM, and LR to investi-
gate their performance and compare it to the stacking model. 
GPMs in stretch form were created after adopting all four 
models. The GPMs were then categorised into five catego-
ries: very high, high, moderate, low, and very low GPMs.

An advanced hybrid method like SVM, ANN, LR, or 
stacking was used to create the groundwater potential-
ity models shown in Fig. 6. According to the classifica-
tions illustrated in Fig. 6, there are five levels of ground-
water potential: very high, high, moderate, low, and very 
low. Figure 6 also illustrates that most of these zones are 

extensive and coincide with the expected pattern of ground-
water potentiality based on previous studies. Parallel to the 
drainage path of the watershed, the very high and very high 
potential groundwater zone flows northwest-northward. Low 
groundwater potential zones predominate in the south and 
southeast.

It was discovered that around 1850km2-2149km2 and 
3644km2-4585km2 of the basin's total area had "very low" 
and "low" potential for groundwater, respectively, with this 
model (Table 3). Overall, the most significant proportion of 
the area was assessed to have a high groundwater potential. 
According to all models, there are many potential areas for 
water harvesting in the catchment region. However, the most 
representative model must be explained since the region's 
size varies. There is much variability in the studies, which 
may be because the models are based on different data sets, 
including application, resolution, and assumptions of raster 
layer attributes.

Validation of the models

The GPMs based on GPS data were validated using the 
empirical and binormal ROC AUC. SVM has an AUC of 
0.831 and 0.906; ANN has an AUC of 0.841 and 0.911; LR 
has an AUC of 0.819 and 0.903, while stacking has an AUC 
of 0.858 and 0.921 (see Fig. 7a–d). According to both ROC 
curves, stacking was the outperformed model, accompanied 

Table 2   The evaluation of the 
flood conditioning factors using 
a multi-collinearity test (VIF) 
before and after removal of 
redundant parameters

Parameters Sig Tolerance VIF

Before After Before After Before After

TPI 0.946 0.890 0.475 0.477 2.106 2.097
Convergence Index 0.340 0.422 0.616 0.631 1.624 1.586
TWI 0.201 0.396 0.261 0.365 3.834 2.742
Flow Direction 0.139 0.157 0.763 0.766 1.311 1.306
Flow Accumulation 0.456 0.457 0.595 0.595 1.680 1.680
SPI 0.992 0.620 0.176 0.216 5.696 4.631
Elevation 0.342 0.311 0.252 0.253 3.963 3.950
LS Factor 0.209 0.389 0.015 0.178 68.941 5.615
Profile curvature 0.185 0.179 0.419 0.419 2.387 2.387
TRI 0.290 Removed 0.017 Removed 60.544 Removed
Geological Structure 0.194 0.224 0.858 0.864 1.166 1.158
Distance to urban centre 0.134 0.123 0.474 0.475 2.111 2.107
Distance to water body 0.150 0.125 0.249 0.250 4.022 3.993
Rainfall 0.240 0.210 0.217 0.219 4.598 4.574
NDMI 0.000 0.000 0.299 0.299 3.340 3.339
Lineament density 0.529 0.483 0.847 0.851 1.180 1.175
NDVI 0.791 0.729 0.273 0.274 3.665 3.644
Aspect 0.054 0.055 0.666 0.666 1.501 1.501
Slope 0.657 0.781 0.597 0.613 1.674 1.631
Topographic feature 0.831 0.838 0.498 0.498 2.008 2.008
Plan Curvature 0.761 0.745 0.330 0.330 3.029 3.028

Table 3   Area coverage of hybrid models under different GWP zones

GWP zones Area (km2)

SVM ANN LR Stacking

Very low 2112.52 1850.81 1942.18 2097.03
Low 4523.22 3644.02 4269.04 4279.91
Moderate 4629.72 5071.99 5255.52 4714.25
High 4853.90 5493.59 5335.84 5181.40
Very high 5164.21 5223.11 4480.96 5010.96
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by ANN, SVM, and LR. However, the ROC curves show 
that the stacking outperforms all other models under inves-
tigation. All models with AUCs greater than or equal to 0.8 
could be regarded as successful. Results showed that sin-
gle models have performed well, but the accuracy level is 
relatively lower than stacking ensemble model. Therefore, it 
can be stated that stacking model outperformed other single 
models.

Sensitivity analysis

Because of the complicated mathematical relationship 
between historical trends in the amount of groundwater and 
the variables that trigger those trends, it is impossible to 
determine the exact region in which a significant and signifi-
cant quantity of groundwater will be available for commer-
cial use by developing advanced hybrid algorithms for map-
ping groundwater potential zones. No factors are included 
in either model why groundwater potential is diminishing 

in a particular location. Unless the impact of these elements 
on the frequency of landslides can be quantified, how can 
management strategies be devised and put into action?

If the impact of these variables on groundwater poten-
tial cannot be established, how will management strategies 
be devised and implemented? Reducing the frequency of 
groundwater decline may be achieved by identifying charac-
teristics associated with prospective zones for groundwater. 
As a result, it is critical to identify the most influential fac-
tors. To determine how important each conditioning variable 
is to the RF modeling process, the MDG and MDA have 
been used (Hollister et al. 2016). In the GWP modeling, all 
elements except TRI were included (based on MDG and 
MDA), but the most relevant ones were the NDMI, NDVI, 
slope, distance to water bodies, and flow accumulation 
(based on MDG and MDA) (Fig. 8). It was difficult to deter-
mine the relative importance of 14 different factors using 
just TPI, aspect, and TRI as a criterion (Fig. 8).

Discussion

Water consumption has grown dramatically in the last dec-
ade due to fast population expansion, particularly in arid 
and semi-arid regions (Rahmati et al. 2016). Groundwater 
is the primary water supply for life in the vast majority of 
the study region, which includes dry and semi-arid areas 
(Mousavi et al. 2017). Groundwater planning and manage-
ment are essential in this area. Hydrogeologists, engineers, 
and decision-makers need specific fundamental tools for 
managing groundwater. GPM can be used as a basic ground-
water management technique (Yousefi et al. 2020).

GPM results from lithology, tectonics, terrain, vegeta-
tion, rainfall, and hydrology are present and accessible in 
the environment. In this study, many types of data were 
employed as input datasets (Kumar et al. 2021). Research-
based on DEMs yields more accurate and essential findings. 
Different DEMs provide different outcomes; for example, 
the ALOS DEM with a spatial resolution of 12.5 m produces 
relevant and excellent results compared to the ASTER and 
SRTM DEMs with 30 m. The authors used a combination 
of geomorphology, geology, and hydrology characteristics 
to determine the spatial groundwater potential. Considering 
the argument issue, spatial analysis is the study's primary 
focus on choosing the best performing technique and mod-
els for GPMs. VIF and tolerance tests have been performed 
on geo-environmental parameters (elevation, aspect, slope, 
lithology, rainfall, land use/land cover, drainage density, soil 
type, distance to fault, distance to road, distance to river, 
NDVI, TPI, TWI, and SPI) (Singha et al. 2020). They have 
proven to be the most effective for groundwater storage.

Based on prior research, it has been discovered that 
numerous factors on groundwater potential are primarily 

Fig. 6   Groundwater potentiality models using a SVM, b ANN, c LR, 
and d stacking
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site-specific and hence cannot be directly generalized to 
other areas. In the Ningtiaota area of China, Bui et al. (2019) 
revealed that elevation was the most influencing variable 
on groundwater potential, while in the Chilgazi region of 
Iran, TWI and distance from rivers were the most relevant 
variables Bui et al. (2019). Nguyen et al. (2020) revealed 
that elevation and rainfall are the most and least essential 
environmental parameters, respectively, in the DakNong 
Province of Vietnam. In contrast, Oikonomidis et al. (2015) 
found that rainfall was the most crucial variable influencing 
groundwater potential in the Greek region of Thessaly. Singh 

et al. (2019) conducted a national-scale groundwater poten-
tial mapping project in New Zealand and found that lithol-
ogy was the most relevant variable to employ. (Tolche 2020) 
and Mallick et al. (2021) have all reported different variable 
rankings for different regions around the world, showing that 
The significance of variables for determining groundwater 
potential varies based on the study area's geo-environmental 
and topo-hydrological characteristics.

The present study constructed a novel ensemble model 
based high resolution groundwater potentiality model (GPM) 
by integrating random forest (RF) meta classiffier based 

Fig. 7   Empirical and binormal ROC curves were used to validate the hybrid models, a SVM, b ANN, c LR, and d stacking

Fig. 8   Analyses of sensitiv-
ity for the best model (AND 
model) using a MDA and b 
MDG
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stacking ensemble machine learning algorithm with high 
resolution groundwater conditioning parameters in Bisha 
watershed, Saudi Arabia. In the present research, twenty-
one parameters were generated from high resolution satel-
lite images and other secondary sources. The novel stacking 
ensemble machine learning algorithm has been developed 
by integrating three base-classifiers, such as artificial neural 
network (ANN), support vector machine (SVM), and logis-
tic regression (LR) with RF meta-classifiers. The resulting 
AUC under the respective ROC (empirical and binormal) 
is 0.831 and 0.906 for SVM, 0.841 and 0.911 for ANN, 
0.819 and 0.903 for LR, and 0.858 and 0.921 for stacking 
(see Fig. 7a–d). Based on the both ROC curves, stacking 
appeared as the best model, followed by ANN, SVM, and 
LR. As a result, the unique hybrid model performed bet-
ter and can be applied to further domains. Although, if all 
possible parameters are combined, a better degree of preci-
sion can be reached. Our findings indicate that GW manage-
ment in the study area region should focus their efforts on 
developing GW exploitation and agricultural operations in 
areas adjacent to wadies. As a result of the increased natural 
recharge, these areas offer a greater GW potential.

The imperative to employ ensemble learning techniques 
to minimize over-fitting was entirely salient in our study 
since the effective training efficiency of single models such 
as ANN, SVM, LR, and RF decreased to a relatively poor 
validation performance, indicating that the training perfor-
mance had been over-fitted (Avand et al. 2020). When it 
comes to performance, while the models achieved different 
ranks (i.e., performance) during the training and validation 
phases, it was discovered that the ensemble models signifi-
cantly improved the predictive ability of the single models 
using the ROC method (), which was used as the primary 
performance metric. When the single models (ANN, SVM, 
and LR) were combined with a single ensemble learning 
approach (RF) inside the stacking framework, the predic-
tive ability of the hybrid model increased by 3.37 percent, 
1.9 percent, and 4.52 percent, respectively, according to the 
results. The previous study has shown that model perfor-
mance may be enhanced by employing the ensemble mod-
eling technique. This is consistent with our modeling results 
(DeSimone et al. 2020; Feizizadeh et al. 2021; Fadhillah 
et al. 2021).

Ensemble modeling methods have been demonstrated to 
be successful in recent research; however, when applied to 
various situations in different locations of the globe, these 
strategies performed differently (Sachdeva and Kumar 
2021). Using Rotation Forest and Bagging, Islam et al. 
(2021) found that the Reduced Pruning Error Tree (RPET) 
technique outperformed MultiBoost and Random Subspace 
(RSS) in the prediction of flood. Pal et al. 2020b) used the 
RSS ensemble learning approach for habitat quality predic-
tion and found an enhanced model performance. This is also 

true for groundwater potentiality prediction studies using 
ensemble approaches (Golkarian et al. 2018; Chen et al. 
2019; Vafaeinejad and Mahmoudi Jam 2021). These find-
ings lead us to conclude that the performance of diverse 
predictive models obtained from different machine learn-
ing and ensemble learning approaches may be significantly 
affected by local variability. This, it seems, necessitates 
additional modeling work across areas to provide reliable 
forecast models.

According to the findings of this research, the new ensem-
ble model described here is a powerful tool for modeling 
complex natural processes. To improve GWPM accuracy, 
various factors should be studied in the future. First and 
foremost, the consequences of restricting or expanding the 
region from which non-well sites are selected to locations 
where wells are situated or to areas outside the distribution 
of wells should be thoroughly examined. Since a second 
consideration, the traditional 80:20 ratio of datasets used 
for both testing and training has to be reexamined, as it may 
be contributing to problems. A comparison of the hybrid 
ensemble model to other ensemble models and deep learn-
ing to forecast groundwater sites should be performed to 
uncover any hidden impacts of the selection techniques used 
to choose features.

Conclusion

In the current study, a novel hybrid stacking model has been 
developed in which ANN, SVM, and LR were used as base 
classifiers, and RF was used as a meta-classifier for the gen-
eration of a groundwater potential map for the Bisha water-
shed, Saudi Arabia. The findings of the RF-based hybrid 
ensemble model are more accurate than the results of the 
three individual models. The study's findings also show that 
morphological characteristics, such as NDMI, NDVI, slope, 
flow accumulation, SPI, distance to the river, elevation, 
and aspect, substantially impact prediction performance. 
A few limitations should be highlighted despite the posi-
tive performance of the established models of groundwater 
spring potential. Several factors may affect the effectiveness 
of models, including the quality and amount of data and 
incorrectly identifying non-spring locations. In addition, 
fine-tuning the stacking framework's structural parameters 
is a computationally taxing undertaking that may need some 
prior user knowledge. Future work might be focused on pro-
viding a technique that automatically adjusts the structural 
parameters or on implementing an alternative evolutionary 
algorithm that requires fewer parameters to be adjusted as a 
direction. A future objective may be to deploy the approach 
in a location with a variety of geo-environmental circum-
stances to gauge its efficacy. In light of the fact that the 
environment and all of its inhabitants rely on groundwater 
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resources, discovering the geographical patterns of its occur-
rence is critical to effective water resources management 
initiatives. Overall, the RF-based feature selection approach 
proposed in this research was determined to be essential for 
evaluating the potential of groundwater springs. As a result 
of its adoption, more accurate and dependable models were 
created at a lower cost. The findings of this research will 
be helpful to local governments and government agencies 
in developing future water resource management strategies 
since they identify possible groundwater spring locations.
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