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Abstract

Manual phenotyping of rice tillers is time consuming and labor intensive, and lags behind the rapid development of 

rice functional genomics. Thus, automated, non-destructive methods of phenotyping rice tiller traits at a high spatial 

resolution and high throughput for large-scale assessment of rice accessions are urgently needed. In this study, we 

developed a high-throughput micro-CT-RGB imaging system to non-destructively extract 739 traits from 234 rice 

accessions at nine time points. We could explain 30% of the grain yield variance from two tiller traits assessed in the 

early growth stages. A total of 402 significantly associated loci were identified by genome-wide association study, 

and dynamic and static genetic components were found across the nine time points. A major locus associated with 

tiller angle was detected at time point 9, which contained a major gene, TAC1. Significant variants associated with 

tiller angle were enriched in the 3ʹ-untranslated region of TAC1. Three haplotypes for the gene were found, and rice 

accessions containing haplotype H3 displayed much smaller tiller angles. Further, we found two loci containing asso-

ciations with both vigor-related traits identified by high-throughput micro-CT-RGB imaging and yield. The superior 

alleles would be beneficial for breeding for high yield and dense planting.

Keywords:  Dynamic phenotyping, GWAS, high throughput, longitudinal traits, micro-CT-RGB, plant phenomics, rice tiller, tiller traits.

Introduction

Rice is one of the most important food crops both in China 
and worldwide (Zhang, 2008). Selecting plants with the ideal 
tiller structure, particularly in terms of tiller angle and number. 
was a key issue in domesticating rice and improving its yield 

(Wang et al., 2008). With the rapid development of functional 
genomics and molecular breeding, the ability to quickly screen 
thousands of lines for targeted phenotypic traits under di�er-
ent growth conditions is important (Fiorani and Schurr, 2013). 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),  
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

© The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Experimental Biology.
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Manual phenotyping methods of tiller traits, such as counting 
tillers, determining whether they are potentially reproductive, 
and measuring the tiller angles with a protractor, are time con-
suming and labor intensive, and potentially damaging, and so 
delay the development of rice genomics for these important 
characters (Houle et al., 2010; Furbank et al., 2011). To bridge 
this gap, progress in the development of high-throughput phe-
notyping technology is required to accelerate gene discovery 
and assist with rice breeding (Yang et al., 2013).

Tiller numbers and angles are two key components of 
plant architecture that a�ect the grain yield of rice (Springer, 
2010). Tiller number largely determines the panicle num-
ber, a key component of yield. Many tiller-related genes have 
been identi�ed in recent years, such as MOC1(Li et al., 2003), 
OsTB1(Takeda et al., 2003), and IPA1 (Jiao et al., 2010). These 
genes are involved in the initiation and outgrowth of axillary 
meristems, and in the auxin and strigolactone signaling path-
way that controls rice tillering (Li et  al., 2003; Takeda et  al., 
2003; Guo et al., 2013). MicroRNAs are also involved in rice 
tillering by regulating the expression of target genes (Xia et al., 
2012; Liang et al., 2014). MOC1, which was �rst isolated and 
characterized in the context of the control of rice tillering, 
positively regulates tiller number by initiating axillary buds 
and promoting their outgrowth (Li et al., 2003). Tiller angle, 
which determines the ideal plant architecture and thus grain 
yield (Sang et al., 2014), has undergone improvement during 
domestication. Small tiller angles make plants more e�cient in 
photosynthesis and increase radiation use e�ciency, and also 
allow denser planting during rice cultivation (Yu et al., 2007). 
Several tiller-angle related genes, such as TAC1, TAC3, OsLIC, 
and PROG1, have been identi�ed and characterized (Yu et al., 
2007; Jin et  al., 2008; Wang et  al., 2008; Dong et  al., 2016). 
TAC1 is a major gene that was identi�ed by forward genetics 
as positively controlling tiller angle (Yu et  al., 2007). A vari-
ant in the 3ʹ-untranslated region (UTR) of the gene changes 
the mRNA level, and higher mRNA levels contribute to a 
larger tiller angle. Based on previous studies, nucleotide diver-
sity in TAC1 is low, and only one single nucleotide polymor-
phism (SNP) in the coding region has been found, resulting in 
synonymous substitution in 113 cultivated rice varieties. The 
small-angle allele of TAC1 exists only in the japonica accessions 
(Jiang et al., 2012).

Recent improvements in detector arrays and micro-focus 
X-ray tubes have allowed the development of computed 
tomography (CT) to produce micro-CT (also termed high-
resolution CT), which can non-invasively scan the internal 
three-dimensional (3D) structure of plant tissues and organs 
(Stuppy et al., 2003). With the addition of appropriate meth-
ods and speci�c image analysis, both 3D visualization and 
volumetric measurements of plant tissues or organs can be 
obtained. High-resolution CT was able to visualize the 3D 
vessel networks of dry grapevine stems (Brodersen et al., 2011) 
and vascular bundles of cut maize stalks (Du et al., 2016), in 
which the reconstructed results were close to those acquired 
by electron microscopy. Micro-CT can also be used to quantify 
�oral traits (numbers of pollen grains and ovules; Staedler et al., 
2018) and wheat grain traits (Hughes et  al., 2017), and thus 
has the potential to replace labor-intensive manual counting. 

Using di�erent sample holders and appropriate X-ray ener-
gies, 3D structures of di�erent sizes, including plant buds and 
in�orescences, barley spikes, and whole barley plants, can be 
measured using micro-CT (Tracy et al., 2017); this application 
demonstrated that micro-CT can be used to measure succes-
sive �ower development and spike growth in a non-destructive 
manner. Moreover, the tiller number and spike length of barley 
can be manually counted using the projected X-ray images 
(Tracy et al., 2017). However, manual counting using projected 
X-ray images is not suitable for tiller counting in large popula-
tions (particularly those with high tiller numbers), and tiller 
growth traits cannot be measured on projected X-ray images.

The rapid development of high-throughput phenotyp-
ing technologies such as �eld high-throughput phenotyping 
(Jose et al., 2014) and cell to whole-plant phenotyping (Stijn 
et al., 2013) has accelerated the genetic mapping of important 
agronomic traits in crops. Using the precision �eld phenotyp-
ing platforms, quantitative trait loci for controlling biomass 
were identi�ed in triticale (Busemeyer et al., 2013). The pan-
icle-related image-analysis pipeline PANorama promoted the 
genetic dissection of rice panicle traits (Crowell et al., 2014). 
Given the abundant genetic variation in natural populations, 
combinations of high-throughput phenotyping and genome-
wide association studies (GWAS) have been conducted to 
reveal the natural genetic variation and to dissect the genetic 
architecture of complex traits such as biomass, grain yield, leaf 
traits, panicle, and salinity tolerance (Yang et  al., 2014, 2015; 
Al-Tamimi et al., 2016; Crowell et al., 2016).

In the present work, we developed a high-throughput 
micro-CT-RGB (HCR) imaging system combining CT and 
RGB imaging in one chamber to extract tillering traits, with 
high spatial resolution (97  μm) and high e�ciency (~310 
plants per day). A  panel containing 234 rice accessions was 
phenotyped non-destructively at nine time points during the 
tillering process, and 739 traits were extracted by HCR and 
used to perform GWAS. In addition, we analyzed the rela-
tionship between tiller senescence and drought resistance, and 
dynamically screened changes in tillering under drought stress. 
Our results demonstrate that combining HCR and GWAS 
provides new insight into the genetic basis of rice tillering and 
architecture.

Materials and methods

Plant material and experimental design

In this study indica rice accessions were used because of their higher genetic 
diversity than japonica subpopulations (Huang et al., 2010). The experi-
ment aimed to measure as many genotypes as possible. Measurements of 
replicate plants for each genotype had high repeatability (w2>0.89) based 
on data from our previous study (Guo et al., 2018) using the same rice 
accessions under similar cultural and environmental conditions to those 
of the current study. On this basis, in the current study one rice plant of 
each genotype was measured with the HCR imaging system. Genotype 
and phenotype information for the 234 accessions was retrieved from the 
RiceVarMap v2.0 website (http://ricevarmap.ncpgr.cn/v2/). Detailed 
cultivar information for the 234 accessions was obtained from the same 
website (http://ricevarmap.ncpgr.cn/v2/cultivars/). The genotype iden-
tity, cultivar name, and all phenotypic traits are tabulated in Dataset S1 
available at Dryad Digital Repository (https://doi.org/10.5061/dryad.
gm18v5f; Wu et al., 2019). Seeds from the accessions were sown in the 
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�eld on 25 May 2015 and transplanted into pots on 16 June 2015. Each 
pot was �lled with 5 kg soil (pH 5.45, total nitrogen 0.241 g kg–1, total 
potassium 7.20 g kg–1, total phosphorus 0.74 g kg–1, alkali-hydrolyzable 
nitrogen 144.06 mg kg–1, available potassium 188.64 mg kg–1, available 
phosphorus 16.81  mg kg–1, organic matter 46.55  g kg–1). During the 
tiller elongation stage (~41–67 days after sowing), the 234 accessions were 
automatically measured every 3 days (nine times in total) using HCR. 
At the mature stage, the e�ective tiller number was counted manually 
from the reconstructed transverse section of tiller images. After harvest, 
203 plants were oven-dried and weighed to obtain the shoot dry weight. 
Then, the 203 rice plants were threshed and then inspected by using a 
yield traits scorer (Yang et al., 2014) to measure the grain yield. In addi-
tion, 35 plants and plastic pipes (see Fig. S1 available at Dryad) were pro-
cessed by HCR and then manually measured to assess the comparability 
of HCR with manual measurements.

Comparisons of the manual and HCR measurements were made using 
mean absolute percentage error (MAPE) and root mean square error 
(RMSE), de�ned as follows:

 MAPE
n

%
i

ai mi

mi

=
−

×
=

∑
1

100
1

n
x x

x
 (1)

 RMSE
n

x x
i

ai mi= −
=

∑
1

1

2
n

( )  (2)

Where n is the total number of measurements, the subscript a refers to HCR 
measurements, the subscript m refers to manual measurements, and the sub-
script i refers to the one of the n measurements on a nominated character.

Fig. 1. Main components and configuration of HCR. (A) Prototype of the HCR system. PLC, Programmable logic controller. (B) Layout of the inspection 
unit. (C) The cone angle of the focal spot of the X-ray source is 33º, and the distance between the X-ray source and the detector (Dsd) is 634 mm, 
thus the projection diameter of the X-ray source (PDsource) is 376 mm. (D) The distance between the focal spot of the X-ray source and the X-ray flat 
panel detector (Dsd), the distance between the X-ray source and the rotation center (Dsc), and the vertical length of the X-ray flat panel detector (VL) are 
634 mm, 484 mm, and 195 mm, respectively, thus the vertical length of the field of view (VLFOV) is 149 mm. (E) The distance between focal spot of the 
X-ray source and the X-ray flat panel detector (Dsd), the distance between the X-ray source and the rotation center (Dsc), and the horizontal length of the 
X-ray flat panel detector (HL) are 634 mm, 484 mm, and 244 mm, respectively, thus the horizontal length of field of view (HLFOV) is 186 mm. The spatial 
resolution can be calculated as 97 μm×97 μm. (F) For the RGB camera, the object distance is 1520 mm, the image distance is 8 mm, and the image 
plane area is 7.09 mm×8.46 mm, thus the field of view is 1607 mm (vertical, SVV)×1347 mm (horizontal, SVH).
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To investigate the implications of tiller senescence for yield and 
drought resistance, three drought-resistance traits (stay-green trait, leaf-
rolling trait, and leaf water content) of 100 indica rice accessions assessed 
in our previous work were re-analyzed (Guo et al., 2018) and compared 
with the tiller senescence of the same 100 accessions in the present study. 
Tiller senescence was calculated as:

 Tiller senescence
TN_9-TN_Effective

TN_9
=  (3)

Where TN_9 is the tiller number at time point 9 (late tillering stage) and 
TN_E�ective is the e�ective tiller number at the mature stage, which is 
distinguished by the presence of a pith-�lled void that indicates that these 
tillers have booted.

In addition, to dynamically screen changes in the tillers under drought 
stress, one rice variety, Zhonghua 11 (Oryza sativa L.  ssp. japonica), was 
inspected with the HCR system every day for 13 consecutive days, 
through progressive drought stress and rewatering.

The experimental design is shown in Fig. S2 available at Dryad. The 
environmental conditions of rice plant growth, including radiation, tem-
perature, humidity, vapor pressure, wind speed, and total rainfall per day 
are shown in Fig. S3 available at Dryad.

Main components and configuration of HCR

The bimodal imaging system, including micro-CT and RGB imag-
ing, was developed to non-destructively measure 75 phenotypic traits. 
The HCR consists of nine main elements: an X-ray source (Nova600, 
Oxford Instruments, UK), an X-ray source chiller (Nova600, Oxford 
Instruments, UK), an X-ray �at panel detector (PaxScan 2520DX, Varian 
Medical Systems, Inc., USA), an RGB camera (AVT Stingray F-504B, 
Allied Vision Technologies Corporation, Germany), a white light, a 

rotation platform (MSMD022G1U, Panasonic, Japan), a lead chamber, a 
computer (M6600N, Lenovo, China), and a programmable logic control-
ler (CP1H, OMRON Corporation, Japan) (see Fig.  1A, B). Diagrams 
showing the con�guration of the HCR system are provided in Fig. 1C–F. 
The trade-o� between the CT image resolution and CT scan area was 
set to provide an image of a whole plant in a single scan with spatial 
resolution of 97 μm and a �eld of view (FOV) 149 mm high×186 mm 
wide. The RGB imaging system’s FOV is 1607 mm high×1347 mm wide 
and its spatial resolution is 656 μm. The main speci�cations of the HCR 
inspection unit are shown in Table S1 available at Dryad.

Image acquisition and analysis of HCR

The image acquisition and analysis pipeline was developed using 
LabVIEW 8.6 (National Instruments, Inc., USA), and the control of 
the X-ray panel detector was developed with calling the dynamic link 
library provided by Varian Medical Systems, Inc., USA. The automated 
image-acquisition software controlled the collection of 380 X-ray pro-
jected images (step 0.6°, total angle 0.6°×380, ~228°, Fig. 2B) and 20 
color images (step 11.4°, total angle 11.4°×380, ~228°; Fig.  2A) col-
lected in parallel while the plant was in the imaging chamber. Tiller traits 
were acquired by the following steps (Fig. S4 available at Dryad): (i) one 
series of 380 X-ray projected images at the same height was selected to 
form a sinogram (Fig.  2C) covering 380 orientations (step 0.6°, total 
angle 0.6°×380, ~228°); (ii) a conventional �ltered back-projection algo-
rithm was applied to reconstruct the transverse section of the rice tiller 
(Fig. 2D); (iii) erosion and dilation were then used to remove the recon-
struction artefacts and a particle �lter with irregular shape was applied to 
remove the leaf blades in the reconstructed image. After image segmen-
tation and small particle removal (Fig. 2E), the tiller number, size, and 
shape were automatically measured (Fig.  2F); (iv) then, two transverse 
tiller images were reconstructed at two di�erent heights (row 600 and 
row 650, representing ~50–55 mm height from the soil surface), and the 

Fig. 2. Image analysis pipeline of HCR. (A, B) As the rice sample rotated, 20 color images and 380 X-ray projected images at different angles were 
acquired synchronously; (C) one row of X-ray projected images at the same height as the 380 X-ray projected images, which formed a sinogram covering 
380 orientations, was selected (step 0.6°, total angle 0.6°×380, ~228°); (D) a conventional filtered back-projection (FBP) algorithm was applied to 
obtain a reconstructed transverse section image of the rice tillers; (E, F) after image segmentation and the removal of small particles, the tiller number, 
size, and shape were counted; (G) two transverse tiller images were reconstructed at two different heights (row 600 and row 650), and the tiller angle 
was calculated using the spatial location of the central point of the rice tiller images; (H) 75 phenotypic traits (including plant color, plant height, digital 
biomass, plant compactness, tiller number, shape, area, and angle) were extracted and stored in a database, which also included RGB images and 
micro-CT images.
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tiller angle (mean, maximum, and SD of the tiller angles in one rice plant) 
was calculated using the spatial location of the central point of the rice 
tiller images (Fig. 2G). Finally, 58 phenotypic traits, including plant color, 
plant height, digital biomass, and plant compactness, were obtained from 
the RGB images and analyses (Yang et al., 2014). A database, including 
the RGB and micro-CT images and the phenotypic traits, was set up 
(Fig. 2H). The de�nitions and abbreviations of the phenotypic traits are 
shown in Table 1. The operation of the HCR system is shown in Figs S5 
and S6 available at Dryad, and Supplementary Video S1 available at JXB 
online. The image analysis pipeline, core source code, and trait de�nitions 
are shown in Fig. S7, Notes S1–S8, and Note S9, respectively, available 
at Dryad.

Growth modeling and yield prediction using phenotypic traits

To test the prediction ability of the di�erent models for total tiller area 
(TTA) and total projected area of the rice plant (TPA), six models, com-
prising linear, power, exponential, logarithmic, quadratic, and logistic 

models, were built and compared. The modeling results were evaluated 
by comparing the R2, MAPE, and SD of the absolute percentage error 
(SDAPE) values. Statistical analyses of the six TTA and TPA models were 
developed with LabVIEW 8.6 (National Instruments, Inc., USA). To 
evaluate the amount of variance in grain yield that can be explained by 
variation in the early growth traits, linear stepwise regression analysis was 
performed with the tiller traits, using SPSS software version 13.0 (SPSS 
Inc., USA).

Genome-wide association study

A total of 2 863 169 SNPs with a minor allele frequency ≥0.05 were used 
for GWAS, and the number of accessions with minor alleles for the SNPs 
was more than six. Information on these SNPs can be accessed from the 
RiceVarMap database (http://ricevarmap.ncpgr.cn/v2/). As in previous 
studies, the genome-wide signi�cance threshold was set at 1.66 × 10–6 
to control for false positives (Yang et al., 2015). A mixed-model approach 
with the factored spectrally transformed linear mixed models program 

Table 1. Digital traits extracted by HCR

Traits Abbreviation

CT Tiller traits (raw traits) Maximum value of total tiller area MAXTTA

Mean value of total tiller area MEANTTA

Standard deviation of total tiller area SDTTA

Maximum value of tiller area/perimeter ratio MAXTAPR

Mean value of tiller area/perimeter ratio MEANTAPR

Standard deviation value of tiller area/perimeter ratio SDTAPR

Convex hull area CHA

Total tiller area/convex hull area ratio THR

Total tiller area/circumcircle area ratio TCR

Total tiller area TTA

Tiller number TN

Mean value of tiller diameter MEANTD

Maximum value of tiller diameter MAXTD

Standard deviation of tiller diameter SDTD

Mean value of tiller angle MEANTA

Maximum value of tiller angle MAXTA

Standard deviation value of tiller angle SDTA

Tiller growth traits Absolute growth rate of total tiller area (TTA) AGRTTAi (i=2,...,9)

Relative growth rate of total tiller area (TTA) RGRTTAi (i=2,...,9)

Absolute growth rate of tiller number (TN) AGRTNi (i=2,...,9)

Relative growth rate of tiller number (TN) RGRTNi (i=2,...,9)

RGB Plant color trait (raw traits) Green color value GCV

Digital biomass (raw traits) Green projected area GPA

Total projected area TPA

Green projected area ratio GPAR

Plant architecture traits (raw traits) Plant compactness PC1-PC6

Perimeter/projected area ratio PAR

Width of the bounding rectangle W

Height of the bounding rectangle H

Fractal dimension without image cropping FDNIC

Total projected area/bounding rectangle area ratio TBR

Height/width ratio HWR

Fractal dimension after image cropping FDIC

Relative frequencies F1-F20

Texture traits (raw traits) 6 histogram texture-related traits M, SE, S, MU3, U, E

15 gray-level co-occurrence matrix texture-related traits T1-T15

Digital biomass accumulation traits Absolute growth rate of total projected area (TPA) AGRTPAi (i=1,...,8)

Relative growth rate of total projected area (TPA) RGRTPAi (i=1,...,8)

Height accumulation traits Absolute growth rate of plant height (H) AGRHi (i=1,...,8)

Relative growth rate of plant height (H) RGRHi (i=1,...,8)

Manual traits Shoot dry weight SDW

Grain yield GY
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FaST-LMM (https://www.microsoft.com/en-us/download/details.
aspx?id=52588), running on Linux, was used for the GWAS (Lippert 
et al., 2011). The kinship coe�cient (K) values were de�ned as the pro-
portion of identical genotypes for the 188 165 evenly distributed random 
SNPs (Xie et al., 2015). Lead SNPs for each trait were determined using 
the ‘clump’ function of Plink (http://zzz.bwh.harvard.edu/plink/down-
load.shtml), running on Linux (Purcell et al., 2007). Potential candidate 
genes were obtained using the ‘clump-range’ function of Plink (Purcell 
et  al., 2007). Considering the strong linkage disequilibrium of rice, a 
region in which the distance of adjacent pairs of associated SNPs was less 
than 300 kb was de�ned as the locus (Yang et al., 2015). Haplotypes were 
determined on the basis of the signi�cant genetic variants.

Results

Performance evaluation of tiller traits extraction and 
measuring efficiency

Thirty-�ve plants (Table S4 available at Dryad) were measured 
both automatically and manually (with manual measurements 
conducted twice) to verify the accuracy of measurement. The 
R2 values of the manual versus automatic measurements were 
0.857, 0.959, and 0.995 for tiller number, tiller diameter, and 
stem wall thickness, respectively (Fig.  3A–C). The MAPE of 
the manual versus automatic measurements for the same three 

measurements were 0.78%, 2.96%, and 3.15%, respectively, and 
the RMSE of the manual versus automatic measurements for the 
same three measurements were 0.34, 0.30 mm, and 0.05 mm, 
respectively. To provide an overall picture of the process, the 
reconstructed images of one rice sample (C055, Sanbaili) at dif-
ferent heights (10.7–54.3 mm distance from the soil surface) 
are shown in Supplementary Video S2 available at JXB online.

In addition, to evaluate the accuracy and repeatability of the 
micro-CT unit, eight round plastic pipes (�xed in one pot, as 
shown in Fig. S1 available at Dryad) were measured manually by 
two people (phenotypic traits are shown in Table S2 available at 
Dryad) and digitally 10 times by the micro-CT unit (phenotypic 
traits are shown in Table S3 available at Dryad). The MAPE of 
the automatic versus manual measurements were approximately 
0.02–1.38%, 0–6.38%, and 0.12–1.87% for tiller diameter, stem 
wall thickness, and tiller angle, respectively (Fig. 3D). The RMSE 
of the automatic versus manual measurements were approximately 
0.07–0.12 mm, 0.02–0.04 mm, and 0.15–1.36°, respectively.

As shown in Fig. S6 available at Dryad, the time taken to 
acquire one CT image was 0.6 seconds, and 380 CT images 
were acquired for each plant. Thus, approximately 4 minutes 
(0.6 seconds×380) were required to complete the CT inspec-
tion of each plant. The time taken for one RGB image was 

Fig. 3. Comparison of automatic digital measurements versus manual measurements. (A–C) Scatter plots of manual measurements versus automatic 
measurements with the micro-CT unit for (A) tiller number, (B) tiller diameter, and (C) stem wall thickness. (D) Absolute percentage error of automatic 
measurements versus manual measurements of eight round plastic pipes used to represent rice tillers. To evaluate the accuracy and repeatability of the 
micro-CT unit, eight round plastic pipes with fixed size were measured manually and digitally 10 times by the micro-CT unit.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jx
b
/a

rtic
le

-a
b
s
tra

c
t/7

0
/2

/5
4
5
/5

1
4
9
5
2
2
 b

y
 A

b
e
ry

s
tw

y
th

 U
n
iv

e
rs

ity
 u

s
e
r o

n
 1

5
 J

a
n
u
a
ry

 2
0
1
9

https://www.microsoft.com/en-us/download/details.aspx?id=52588
https://www.microsoft.com/en-us/download/details.aspx?id=52588
http://zzz.bwh.harvard.edu/plink/download.shtml
http://zzz.bwh.harvard.edu/plink/download.shtml
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery373#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery373#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery373#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery373#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery373#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery373#supplementary-data


High-throughput micro-CT-RGB phenotyping of rice tillers | 551

0.6 seconds, and 20 RGB images were acquired at the same 
time as the CT images. The time taken for manual transfer 
of each plant was approximately 50 seconds. Therefore, when 
continuously operated over 24 hours, the total throughput of 
the HCR system would be 310 plants (~4.6 minutes per plant).

Screening the dynamic process of rice growth at the 
tillering and elongation stages

During the tillering and elongation stages, 234 plants were auto-
matically measured by HCR at nine time points (every 3 days, 
from ~41–67 days after sowing). After all phenotypic images and 
data had been obtained for the nine time points, we screened 
the dynamic process of rice growth and determined the most 
active tillering and initial elongation stages. As illustrated in 

Fig. 4A–I, nine side-view RGB images and nine reconstructed 
images for each plant were obtained for the following image 
analysis. The red circle in Fig. 4B–E indicates the dynamic tiller-
ing and elongation processes. At time point 2 (Fig. 4B), the �rst 
pith cavity appeared, indicating that this plant had progressed 
into the elongation stage. Subsequently, 10 further elongating 
tillers could be identi�ed by the point shown in Fig. 4E, with 
further tillers appearing in subsequent images. The overall (cross-
sectional) growth of elongating tillers is quanti�ed as TTA aver-
aged over the whole group of plants (Fig. 4J). The time of most 
active tiller growth was identi�ed at time 5 (Fig. 4J, blue arrow), 
where the greatest di�erence of TTA occurred between succes-
sive time points. Tiller growth (quanti�ed as TTA) during the 
�rst six periods was relatively faster than that of the later peri-
ods. Interestingly, based on the change in the number of rice 

Fig. 4. Screening the dynamic process of rice growth at the tillering and elongation stages. (A–I) RGB images and reconstructed CT images at nine 
sequential growth time points of rice accession (C055, Sanbaili). The red circles indicate dynamic tillering and elongation processes. (J) Changes in total 
tiller area and the first derivative of total tiller area to reflect the dynamic tiller growth. Error bars represent the SD between the accessions. (K) Distribution 
of the number of samples (accessions) in the initial elongation stage among the nine time points. The blue arrows indicate the time of most active tiller 
growth.
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accessions in the initial elongation stage (Fig. 4K), HCR could 
detect the variation in the initial elongation stage, which lasted 
from time point 1 to 9 or even later.

In a previous study, we found that the dark green leaf area 
ratio was positively correlated with the nitrogen content in 
leaves (Yang et  al., 2015). Interestingly, the growth curve of 
the green color value per unit area (GCV) before time point 
5 indicates that the GCV decreased (indicating the presence 
of more dark green leaves with greater nitrogen content); after 
time point 5, the GCV increased (indicating more light green 
leaves with less nitrogen per unit area) (Fig.  S8 available at 
Dryad). The growth curves of 27 representative traits for the 
tiller and the entire plant are presented in Fig. S8 available at 
Dryad. The �rst derivative of plant height (H), plant width (W), 
and TPA reached the highest value at time point 5, supporting 
the previous �nding that plant vegetative growth reached its 
highest speed in the active tillering stage (i.e. time point 5). The 
dynamic growth of one accession (C055, Sanbaili) is shown in 
Supplementary Video S3 available at JXB online.

Prediction of tiller growth and digital biomass 
accumulation

It would be helpful if a growth model could be designed using 
the phenotypic data obtained in the early growth stage to pre-
dict the �nal digital biomass. In our previous study, TPA was 

correlated with actual biomass (Yang et al., 2014). In addition to 
the manual tiller number count, the TTA extracted by micro-
CT can quantify tiller growth more accurately than the tiller 
number. Fig. 5A and B show the heatmaps of TTA and TPA for 
the 234 accessions at nine di�erent time points. Here, we tested 
six models (linear, power, exponential, logarithm, quadratic, and 
logistic models) of TTA and TPA at the nine points. The results 
were evaluated by comparing the R2, MAPE, and SDAPE values. 
As shown in Table S5 available at Dryad, the logistic models of 
TTA and TPA showed slightly better predictive ability than the 
other �ve model types (R2=0.969 and 0.985, MAPE and SDAPE 
both <6.5%). The actual results versus predicted results of TTA 
and TPA are shown in Fig. 5C and D, respectively.

Prediction of grain yield and shoot dry weight from 
early growth traits

It would bene�t rice breeding if the digitally measured pheno-
typic traits, particularly the traits measured in the early devel-
opment stages, could be used to predict the �nal grain yield 
and shoot dry weight. The R value distribution for modeling 
grain yield in the nine di�erent tillering stages is shown in 
Fig. 6A. This shows that by adding the TTA, the range of R 
increased from 0.30–0.41 to 0.35–0.51, particularly at time 
point 5. After time point 5, non-fertile tillers began to grow, 
providing a possible explanation why the R value decreased. 

Fig. 5. Heatmaps of (A) total tiller area (TTA) and (B) total projected area (TPA) of 234 individual rice plants at nine different time points. (C) Comparison 
of actual total tiller area (blue line) and predicted total tiller area (red line). (D) Comparison of actual total projected area (blue line) and predicted total 
projected area (red line). Error bars represent the SE of the TTA or TPA of the 234 samples at each time point.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jx
b
/a

rtic
le

-a
b
s
tra

c
t/7

0
/2

/5
4
5
/5

1
4
9
5
2
2
 b

y
 A

b
e
ry

s
tw

y
th

 U
n
iv

e
rs

ity
 u

s
e
r o

n
 1

5
 J

a
n
u
a
ry

 2
0
1
9

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery373#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery373#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery373#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/ery373#supplementary-data


High-throughput micro-CT-RGB phenotyping of rice tillers | 553

Fig. 6B shows that the modeling accuracy for the shoot dry 
weight was improved by adding a CT trait, TTA. Moreover, 
we also compared the correlation between TN (tiller number), 
TTA, and grain yield. The R value of TN_5 (TN measured at 
time point 5) versus grain yield was 0.094 (Fig. 6C), and the R 
value of TTA_5 (TTA measured at time point 5) versus grain 
yield was 0.512 (Fig. 6D).

When only two phenotypic traits were selected, 30% 
of the grain yield variance could be explained (Fig.  6E). 
The two phenotypic traits were both tiller traits, namely 
TTA_5 and MEANTA_8 [mean value of the tiller angle 
(MEANTA) measured at time point 8]. We found that the 
rice yield could be increased by higher TTA_5 and lower 
MEANTA_8. Up to 48% of the variance in grain yield 
could be explained by combining 10 traits across all nine 

Fig. 6. Prediction of grain yield and shoot dry weight. (A) Modeling accuracy change for grain yield at nine time points. (B) Modeling accuracy change 
for shoot dry weight at nine time points. (C) Scatter plot of tiller number (TN) versus grain yield at the fifth time point. (D) Scatter plot of total tiller area 
(TTA) versus grain yield at time point 5. (E, F) Scatter plots showing the relationship between the actual and the estimated grain yield using the formula 
predicted by (E) 2 traits and (F) 10 traits. a, b, c, d, e, f, g, h, i and j represent TTA_5, MEANTA_8, THR_4, FDIC_7, MAXTAPR_7, FDIC_8, SDTTA_5, 
TN_3, MEANTAPR_2, and MAXTTA_2, respectively (see Table 1 for definitions).
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time points (Fig. 6F). As shown in Fig. S9 available at Dryad, 
the R2 value ranged from 0.34 to 0.46 when combining 
from three to nine traits.

Genome-wide association study

GWAS of 741 traits (including all 739 traits measured by 
HCR as well as �nal grain yield and biomass) identi�ed 402 

Fig. 7. GWAS results of traits at nine time points measured by HCR. (A) Venn diagram showing the number of associated loci at time points 1, 5, and 
9. (B) Frequency and distribution of loci associated with traits at the nine time points (T1–T9). (C) GWAS plots of mean of tiller angles (MEANTA) at the 
nine time points. The strongest association signal on chromosome 9 corresponded to the locus with highest detection frequency (indicated with an 
asterisk in B).
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signi�cantly associated loci (Dataset S2 available at Dryad). In 
total, 182 and 332 loci were associated with traits measured by 
micro-CT and RGB, of which 70 and 220 were exclusively 
detected by micro-CT and RGB, respectively. The numbers 
of loci associated with traits at di�erent time points ranged 
from 61 to 87. For example, the numbers of loci at time points 
1, 5, and 9 were 61, 86, and 69, respectively; the numbers of 
overlapping loci at time points 1 and 5, time points 5 and 9, 

and time points 1 and 9 were 14, 17, and 8; only four loci were 
detected at all three time points (Fig.  7A). Of the 402 loci, 
353 were detected by the raw traits at nine time points and 
135 were detected by the derived growth-rate-related traits 
(Dataset S2 available at Dryad); 86 loci were simultaneously 
detected by the two groups of HCR traits. Of the 353 loci 
detected by the raw traits, 191 were detected at only one time 
point, while the other 162 loci were detected at two or more 

Fig. 8. Association analyses of TAC1 and MEANTA_3. (A) Local Manhattan plots and heatmap showing the level of linkage disequilibrium of the TAC1 
region. (B) Haplotype analyses of TAC1. The P-value was calculated by ANOVA. Multiple-haplotype comparison was conducted using the least significant 
difference method; different letters above the boxplots indicate significant differences. (C) Images of two representative varieties, Minghui63 (from the H2 
haplotype group) and Zhenshan97 (from the H3 haplotype group).
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time points; only one locus on chromosome 9 (locus 302) was 
detected at all nine time points (Fig.  7B). Furthermore, we 
found that the chromosome 9 locus was signi�cantly associ-
ated with MEANTA measured by micro-CT (Fig. 7C). These 
results demonstrate the existence of dynamic and static genetic 
components across rice growth stages.

For locus 302, the linkage disequilibrium decayed slowly 
(r2=0.57 between SNPs sf0920227209 and sf0920733864) 
across a 500 kb region. TAC1, a cloned gene known to control 
tiller angle (Yu et al., 2007), is located at this locus. We found 
15 signi�cant SNPs distributed in the 3ʹ-UTR region, coding 
region, and 1 kb promoter region, and a signi�cant 1 bp indel 
in the 3ʹ-UTR region (Fig. 8A). All the SNPs within the cod-
ing region caused synonymous mutations. Consistent with a 
previous study (Yu et  al., 2007), the variants in the 3ʹ-UTR 
caused mRNA-level polymorphisms, resulting in tiller angle 
diversity. Three haplotypes for TAC1 were found in our asso-
ciation mapping panel, and we found that tiller angles were 
signi�cantly di�erent among the haplotypes (P=5.15 × 10–7, 
ANOVA). Accessions containing haplotype H3 had much 
smaller MEANTA values (Fig.  8B). Minghui 63 (a known 
restorer line in hybrid breeding systems) and Zhenshan 97 (a 
known maintainer line in hybrid breeding systems) contained 
haplotypes H2 and H3, respectively (Fig. 8C).

Furthermore, we found two loci containing associations 
with both HCR traits and yield. A  lead SNP, sf0401216812, 
on chromosome 4 was associated with AGRTTA_5 (absolute 
growth rate of tillering at time point 5)  (PMLM=1.16 × 10–5) 
and yield (PMLM=8.40 × 10–4), and genotype G at the SNP site 
corresponded to the superior allele for the two traits (Fig. 9A). 
Another lead SNP, sf0630983585, on chromosome 6 was asso-
ciated with AGATPA_4 (growth rate of shoot weight at time 
point 4) (PMLM=1.14 × 10–6) and yield (PMLM=2.93 × 10–4), and 
genotype G at the SNP site corresponded to the superior allele 
for the two traits (Fig. 9B). The favorable alleles at the two loci 
belonged to minor alleles and would be bene�cial in breeding 
for high yield. These results suggest that the vigor of rice plants 
during the tillering stage could contribute to the �nal yield.

Relationship between tiller angle change at the late 
tillering stage and yield

In order to study the relationship between changes in the tiller 
angle and the �nal yield, 50 higher-yield accessions (~58–83 g 
per plant) and 50 lower-yield accessions (~10–41 g per plant) 
were selected from among the 234 indica accessions and ana-
lyzed (Fig.  10A). The MEANTA was calculated and is pre-
sented as the tiller angle of each accession. First, we compared 
the MEANTA of the selected 100 accessions across the nine 
growth stages and found signi�cant di�erences between time 
points 1, 5 and 9 (one-way ANOVA, P<0.01), which indi-
cated that the tiller angle changed slightly during the elonga-
tion stage. There was also a signi�cant change in the tiller angle 
during the late tillering stages between the higher-yield and 
lower-yield groups (MEANTA time point 8 minus MEANTA 
at time point 5), t-test, P<0.01; Fig. 10B). In addition, from 
time point 5 to 8, the MEANTA of plants with higher yield 
fell more than those with lower yield (Fig. 10A). Plants with a 

larger tiller angle at early elongation and a smaller tiller angle 
at later elongation will have better light penetration in the can-
opy later in growth, and this could contribute to their higher 
yield. The statistical analysis is reported in Tables  S6 and S7 
available at Dryad.

Implications of tiller senescence for yield and drought 
resistance

To investigate whether tiller senescence (de�ned as in equa-
tion 2) is related to yield and drought resistance, we �rst cal-
culated the tiller senescence of 100 indica rice accessions. Then, 
50 accessions with higher tiller senescence (~20–42%) and 50 

Fig. 9. Co-localized loci associated with traits measured by HCR and 
yield. (A) The locus on chromosome 4 associated with AGRTTA_5 
measured by micro-CT (upper panel) and yield (lower panel). (B) The locus 
on chromosome 6 associated with AGRTPA_4 measured by RGB (upper 
panel) and yield (lower panel).
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accessions with lower tiller senescence (~0–10%) were com-
pared in terms of their grain yield. Statistical analyses (Table S7 
available at Dryad) showed a signi�cant di�erence for yield 
between the higher and the lower tiller senescence groups 
(t-test, P<0.01). As shown in Fig. 11A, the plants with lower 
tiller senescence had a slightly higher yield than those with 
higher tiller senescence.

In our previous study of drought resistance with a large rice 
population, many drought resistance traits were identi�ed (Guo 
et al., 2018). In this work, three drought resistance traits, includ-
ing the stay-green trait (green projected area ratio; GPAR), leaf-
rolling trait (total projected area/bounding rectangle area ratio; 
TBR), and leaf water content were re-analyzed. GPAR_R is 
calculated as the ratio of GPAR under drought stress to the 
value before drought stress; a higher GPAR_R indicates higher 
drought tolerance. TBR_R is calculated as the ratio of TBR 
under drought stress to the value before drought stress. TBR_R 
is related to the leaf-rolling trait, and a lower TBR_R indicates 
higher drought avoidance. The three drought resistance traits 
were compared in the two tiller senescence groups (i.e. 50 
higher and 50 lower-senescence accessions). There were signif-
icant di�erences in the three drought resistance traits between 
the two tiller senescence groups (t-test, P<0.05, Table S7 avail-
able at Dryad). Interestingly, we found that the rice plants with 
lower tiller senescence had higher scores for GPAR (implying 
better drought tolerance), lower TBR (implying better drought 
avoidance), and higher water content (implying better drought 
tolerance) (Fig.  11B–D). This �nding also indicates that the 
rice accessions with stable tiller formation will also have better 
drought resistance, which are both controlled by some com-
mon quantitative trait loci (Kim et al., 2017).

In addition, to dynamically screen the changes in tillers under 
stress, one variety, Zhonghua 11 (Oryza sativa L. ssp. japonica), 
was inspected with the HCR system daily for 13 days through 
progressive drought stress and rewatering. The reconstructed 
images of tillers during the 13-day period (day 0, before stress; 
day 1–10, during progressive drought stress; day 11–12, rewa-
tering) are shown in Fig.  11E–G, and Supplementary Video 

S4 available at JXB online. It can clearly be seen that the tillers 
shrink and wilt after stress, and completely recover after the 
plant is rewatered. This also indicates that the HCR has the 
potential to non-destructively quantify tiller changes in large 
populations of plants under drought stress.

Discussion

GWAS of HCR traits reveal the dynamic genetic 
architecture of tiller-related traits

With the numerous traits extracted by HCR, GWAS detected 
many signi�cant association signals. The number of loci detected 
at di�erent time points varied (Fig. 7A). Some loci were identi�ed 
at a speci�c time point while others were identi�ed at multiple 
time points (Fig. 7B), indicating that both dynamic and static gen-
etic components operate during the growth stages of rice. Only 
one locus on chromosome 9, related to tiller angle, was detected at 
all nine time points, and the previously identi�ed gene TAC1 was 
located at the locus (Fig. 8A). Six signi�cant SNPs and a signi�-
cant indel were enriched in the TAC1 3ʹ-UTR. We found three 
major haplotypes for the gene in our association mapping panel 
and observed signi�cant di�erences in tiller angle among the three 
haplotypes (Fig. 8B). Although most indica accessions in our study 
harbored the haplotype of the wider tiller angle for TAC1, some 
indica accessions harbored the haplotype of the narrow tiller angle, 
which was not found in previous studies. The polymorphisms in 
TAC1 could be further developed for marker-assisted breeding 
at di�erent densities of planting. Co-localized loci between traits 
indicate that HCR traits have a higher detection power than does 
yield, and that the vigor of rice plants during the growth stages 
contributes to the �nal yield (Fig. 9A, B).

Comparison of different phenotyping methods for 
tiller traits

The traditional methods of determining cereal tiller traits tend 
to be destructive, labor intensive, and time consuming. Some 

Fig. 10. Relationship between tiller angle change at the late tillering stage and yield. (A) Differences in tiller angle change between groups of 50 rice 
accessions with higher yield and lower yield. Error bars indicate the SD of the mean value of all tiller angles of the 50 accessions per group. (B) Difference 
of tiller angle change during the late tillering stages (calculated as MEANTA at time point 8 minus MEANTA at time point 5) between the higher-yield and 
lower-yield groups.
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non-destructive methods of tiller measurement based on two-
dimensional (Boyle et  al., 2015) or 3D-RGB imaging (Fang 
et al., 2016) have shown that RGB computer vision approaches 
can be used to estimate tiller number. However, since the tillers 
usually overlap each other, RGB imaging is a�ected by occlu-
sion and cannot accurately detect the innermost tillers even 
if plants are rotated for multi-angle imaging. The estimation 
error of RGB imaging methods becomes larger with increas-
ing tiller number because of increasing occlusion. Projected 
X-ray images obtained by CT overcomes the problem of 

occlusion, and the tiller numbers can be manually counted 
(Tracy et al., 2017). However, manual counting is not ideal for 
measuring large populations, particularly with large tiller num-
bers. In addition, tiller size and growth traits cannot be meas-
ured from projected X-ray images, and micro-CT is needed to 
measure these traits.

Our approach, using high-throughput imaging of tiller inner 
structure with good resolution and the corresponding image 
analysis pipeline for tiller traits, provides the data required for 
GWAS. In this work, we have integrated CT and RGB imaging 

Fig. 11. The implications of tiller senescence for yield and drought resistance. Effects of higher and lower tiller senescence on (A) grain yield, (B) 
green projected area ratio (stay-green trait), (C) total projected area/bounding rectangle area ratio (leaf-rolling trait), and (D) leaf water content. (E–G) 
Reconstructed tiller images of one rice accession (Zhonghua 11) at three time points: (E) day 0, before drought stress; (F) day 10, after drought stress; (G) 
day 12, after rewatering.
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within one chamber to develop the HCR system and a cor-
responding image analysis pipeline to non-destructively extract 
rice phenotypic traits and provide plant growth data in the 
vertical and horizontal dimensions (Figs 1 and 2). Compared 
with other tiller phenotyping methods, HCR has the follow-
ing advantages:

(i)   The 3D spatial location of tissues can be obtained as traits, 

such as tiller angle, and can be extracted with more accu-

racy than by manually measuring them with a protractor, as 

shown in Fig. 2G. Moreover, the CT system can be easily 

integrated with an RGB imaging device, allowing additional 

visual traits (in this study, a total of 75 traits) to be extracted 

simultaneously (Fig. 2H).

(ii)  The image acquisition time per plant is approximately 4.6 

minutes, and the time required for extracting subsequent 

traits is approximately 2 minutes when combined with 

graphics processing unit acceleration, thus improving the 

measurement e�ciency per plant.

(iii)  Many novel traits, such as TTA, MEANTA, and the absolute 

growth rate of total tiller area (AGRTTA) can be investigated 

across time. When comparing the tiller number and grain 

yield, TTA had a better correlation with grain yield and pro-

vided better quanti�cation of tiller growth (Fig. 6C, D).

Potential application and extension of HCR

The HCR system and the corresponding software were devel-
oped to measure the tiller traits of pot-grown rice across its 
di�erent growth stages, but could easily be extended to many 
other crops with multiple stems. Small grain cereals, such as 
barley, wheat, and oats, have a similar canopy structure, and, 
with some modi�cation, larger grasses such as sugar cane and 
the biofuel species could be accommodated.

Delivery of the sample to the imaging chamber is done manu-
ally, limiting throughput. With conveyor-assisted transport, the 
total throughput of the HCR system could be increased to 
480 plants per day (~3 minutes per plant). Moreover, one could 
easily envision simultaneous rotation of the X-ray source and 
panel detector, combined with mounting on an unmanned 
ground vehicle to acquire similar information from plants in 
the �eld.

Trade-o�s between the CT image resolution and scan area 
currently restrict the application of the system. To provide suf-
�cient FOV for scanning all the tillers in this study, the spa-
tial resolution was set at 97 μm. With better spatial resolution 
(30  μm; Fig.  12), the tiller and booting development of the 
main stem could potentially be visualized and their dynamics 
traced more clearly and non-destructively from the seedling 
stage to the heading stage; this would be useful to study rice 
growth and development in the future.

Conclusions

In this study, we developed an HCR imaging system to extract 
tiller-related phenotypic traits with high spatial resolution (97 μm) 
and high e�ciency (~310 plants per day). A diverse panel con-
taining 234 indica accessions was phenotyped non-destructively at 
nine time points during the tillering stage, and a total of 739 traits 
extracted by HCR were used to perform a GWAS. A total of 
402 signi�cantly associated loci revealed both dynamic and static 
genetic components a�ecting tillering and yield. A major locus 
associated with tiller angle was detected at nine time points, and 
the gene TAC1 was located at the locus. Signi�cant variants asso-
ciated with tiller angle (evaluated by MEANTA) were enriched 
in the 3ʹ-UTR of TAC1. Three haplotypes for the gene were 
found, and the tiller angles of accessions containing haplotype H3 
were much smaller. Furthermore, two loci contained associations 
with both HCR traits and yield, which could be bene�cial for 
breeding for high yield and dense planting.

Supplementary data

Supplementary data are available at JXB online.
Video S1. Operation of high-throughput micro-CT-RGB 

imaging system.
Video S2. Reconstructed images of one rice sample (C055, 

Sanbaili) at di�erent heights.
Video S3. Dynamic growth of one rice accession (C055, 

Sanbaili).
Video S4. Dynamic change of one rice accession (Zhonghua 

11) during drought process (day 0, before stress; days 1–10, after 
drought stress; days 11–12, rewatering).

Fig. 12. Reconstructed transverse section CT image of a rice tiller at high spatial resolution (30 μm) (left) and transverse section photographic image of 
the rice tiller after sectioning (right).
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Data availability

All the phenotypic data and images can be viewed and down-
loaded via the link http://plantphenomics.hzau.edu.cn/
checki�ogin_en.action by following these steps: (i) select ‘rice’; 
(ii) select ‘2015-tiller’ in the year section; (iii) select one of the 
accession IDs in the ID section and then press ‘search images’; 
(iv) nine CT images and nine side-view color images can be 
viewed and downloaded; (v) a similar process can be used to 
view and download phenotypic traits by pressing ‘search data’. 
The detailed procedure for the database is shown in Fig. S10 
available at Dryad.

Data deposition

The following tables and �gures are available at Dryad Data 
Repository: doi: 10.5061/dryad.gm18v5f

Data collected from 234 rice accessions, including genotype 
ID, cultivar name, and all phenotypic traits.

Dataset S1. Rice accession information and phenotypic 
traits (RGB, CT, and manual traits) used in this work.

Dataset S2. GWAS results.
Fig. S1. Plastic round pipes screened in the HCR system.
Fig. S2. Experimental design.
Fig. S3. Experimental conditions.
Fig. S4. Control �ow of image acquisition.
Fig. S5. Work�ow chart of operation of HCR.
Fig. S6. Sequence diagram of the micro-CT-RGB pheno-

typing system.
Fig. S7. Diagram of image processing and feature extraction.
Fig. S8. Dynamic growth curve of rice phenotypic traits.
Fig. S9. Modeling results of grain yield using di�erent num-

bers of traits.
Fig. S10. Work�ow chart of database.
Note S1. Source code of sinogram extraction.
Note S2. Source code of CT reconstruction.
Note S3. Source code of tiller extraction.
Note S4. Source code of tiller rotation.
Note S5. Source code of tiller diameter extraction.
Note S6. Source code of tiller angle extraction.
Note S7. Source code of �ll holes.
Note S8. Source code of tiller area traits extraction.
Note S9. De�nitions of the traits.
Table  S1. Main speci�cations of the micro-CT-RGB 

inspection unit.
Table S2. Manual measurements of eight plastic pipes with 

two workers.
Table  S3. Automatic measurements of eight plastic pipes 

with 10 replications.
Table  S4. Comparison of automated measurements and 

manual measurements of rice.
Table  S5. Comparison of actual TTA/TPA and predicted 

TTA/TPA with six models.
Table  S6. Statistical analysis results of one-way ANOVA 

using SPSS software.
Table  S7. Statistical analysis results of t-test using SPSS 

software.
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