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Combining Image-level and Segment-level Models for

Automatic Annotation

Daniel Kuettel, Matthieu Guillaumin, and Vittorio Ferrari

Computer Vision Laboratory, ETH Zurich, Switzerland

Abstract. For the task of assigning labels to an image to summarize its con-

tents, many early attempts use segment-level information and try to determine

which parts of the images correspond to which labels. Best performing meth-

ods use global image similarity and nearest neighbor techniques to transfer labels

from training images to test images. However, global methods cannot localize the

labels in the images, unlike segment-level methods. Also, they cannot take advan-

tage of training images that are only locally similar to a test image. We propose

several ways to combine recent image-level and segment-level techniques to pre-

dict both image and segment labels jointly. We cast our experimental study in an

unified framework for both image-level and segment-level annotation tasks. On

three challenging datasets, our joint prediction of image and segment labels out-

performs either prediction alone on both tasks. This confirms that the two levels

offer complementary information.

Keywords: image auto-annotation, image region labelling, keyword-based im-

age retrieval

1 Introduction

In recent years, automatic image annotation has received increasing attention [11, 13,

17, 18]. In its basic version, which we call image-level annotation, the task is to assign

a few semantic labels to a test image, roughly describing its contents (fig. 1(a)). In

its elaborate version, which we call segment-level annotation, the semantic labels are

assigned to every segment in the image (fig. 1(a)4). The union over the segment labels

is then proposed as image labels [2, 4, 7].

Segment-level annotation poses additional challenges compared to image-level an-

notation. First, labels for the segments in the training images are not given, and must be

estimated from the image labels. As a consequence, segment-levels methods need to be

robust to errors in this estimation. Second, appearance features extracted from segments

are less distinctive than global image features, which incorporate contextual layout in-

formation. Finally, even with perfect segment labels, their union does not always match

user-provided image labels, since the latter focus on the salient objects in the image.

Overall, segment-level annotation is a much more difficult task, which explains why

recent global methods outperform local ones for image-level annotation.

On the other hand, global methods cannot localize labels in the test images, but

merely indicate their presence (fig. 1(a)3). This limits the interpretability of the different

methods and reduces the spectrum of possible applications of the output predictions:

image labels are restricted to classification and indexing purposes. With localized labels

instead, it is possible to visualize the learned concepts and identify their spatial extent in
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Fig. 1. Left (a): A test image (1) of a bear out of its typical context in the wild (2), highlighting

the need for compositionality. On the other hand, context is a powerful force for recognizing cars

in typical images such as (3). (4) shows a localization of the labels in (3). Right (b): Summary of

image annotation models. For each arrow there are several applicable models. Alternatives are

discussed in the respective sections. For E and F, we present novel methods to combine segment

and image-level models.

the images. Therefore, segment labels can be used to train object detectors or compute

class-specific features invariant to position and scale. Overall, they provide a deeper

understanding of an image.

Our work builds on the observation that image-level and segment-level techniques

have several complementary strengths. Segment-level methods explicitly attempt to de-

termine which parts of the training images belong to each label. This is typically done

by describing the local appearance of segments and then searching for recurrences over

the training set with a probabilistic model [2, 3, 5, 9, 19]. Segment-level methods can

recognize the presence of a class in a test image even if it appears in a context not ob-

served during training (e.g. a bear in a cage while training images show bears in the

wild, fig. 1(a)1+2). This compositional character is a strength of segment-level meth-

ods and endows them with great generalization potential. On the other hand, the global

image layout is more characteristic than the appearance of individual segments, as it

indicates certain combinations of labels (cars-roads in fig. 1(a)3). Recent image-level

methods [17, 25] employ global image similarities and predict labels for a test image

based on the labels of its most similar training images. Those methods perform better

on the image-level annotation task [1, 11], as they better exploit the large number of

available images annotated by keywords.

The observations above suggest that segment-level prediction is a task of its own,

which should be evaluated on a per-pixel basis, and that combining segment-level and

image-level predictions may help both tasks. The potential for interaction between the

two levels is largely unexplored and very promising. Image labels help reduce the space

of possible segment-level annotations. On the other hand, even imperfect segment labels

carry valuable complementary information about image content.

In this paper we explore the combination of image and segment levels and make

the following contributions: (i) we present a unified view of existing methods as pro-

cessing stages in a generic scheme (sec. 2); (ii) we propose new alternative models to

perform many of the stages (sec. 3 to 6); (iii) we propose novel joint models to com-

bine the predictions from image and segment levels (sec. 7). In sec. 8 we present the

datasets and features we used. Through extensive experiments, we demonstrate that our

combined models perform better at both segment-level and image-level annotation than
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either component alone (sec. 9). We conclude and draw directions for future research

in sec. 10.

Related works. Our work relates to the numerous segment-level and image-level meth-

ods discussed above, as we seek to combine the two strands.

Some earlier works tried to incorporate context in segment-level methods, e.g. by

modeling co-occurence of labels [6] or their spatial relationships [23]. However, these

methods typically do not use global image predictions. Most importantly, their train-

ing scenarios are radically different from ours, where ground-truth segment labels are

available at training time. Therefore, they address a different task, known as semantic

segmentation in the literature [14, 20], which can be seen as the fully supervised version

of segment-level annotation.

Note how several earlier methods proposed for image label prediction actually per-

form segment-level annotation. Early methods based on probabilistic models [2, 5, 19]

describe the image as an orderless bag of segments. Non-parametric mixture models

like multiple bernoulli relevance models [9] also rely on image regions.

2 Models Overview

Before investigating ways to combine segment-level and image-level information, we

present a unified view which incorporates most previous works. Fig. 1(b) shows the two

main existing ways to obtain predictions on a test image using image-level (arrow A)

or segment-level methods (sequence of arrows B-C-D). Image-level methods [1, 11, 17,

25] directly transfer labels from training images to test images using global image simi-

larities (A). Segment-level methods [2–5, 9, 19] first estimate labels for the segments in

the training images (B), then transfer them to the segments in the test image (C). Finally,

they derive a prediction of image labels from these predicted segment labels (D).

In the following sections, we first present various alternatives for the components in

fig. 1(b) (arrows), including new ones that we propose. We then present novel methods

to combine segment and image-level models in sec. 7 (stages E and F) .

3 Image Label Transfer (A)

Transferring labels from training images to test images is the most direct way to predict

image labels. This strategy has recently been shown to be very successful [1, 11, 17].

Formally, let I be the set of N training images Ii. The dictionary D is the set of

unique labels in the annotations of the training images. There are V labels in D and

we refer to them by their id l ∈ {1..V }. Each training image is annotated with labels

from D. We summarize the annotation as Ll, which is an indicator function for label l.
If image Ii is annotated with label l, then Ll(Ii) = 1, and 0 otherwise.

Here, we focus on the recent, state-of-the-art TagProp [11]. which transfers la-

bels using a weighted nearest neighbor approach, but other works fall in this category

(A) [17, 25].

3.1 TagProp

The label prediction Ll(Y ) for a test image Y is based on a weighted sum over the

training images:

tagpropl(Y ) = p(Ll(Y )|I) =
N
∑

i=1

πyip(Ll(Ii)) (1)
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Where p(Ll(Ii)) = 1 − ǫ for Ll(Ii) = 1, ǫ otherwise. In [11] several variants

for πyi are presented. We summarize here the best performing variant, which produces

state-of-the-art results. Specifically, the weights πyi are

πyi =
exp (−dw(Y,Ii))∑
j
exp(−dw(Y,Ij))

with dw(Y, i) = w
T
dyi (2)

where dyi is a vector of base distances between Y and Ii. A separate base distance

is computed for each type of image feature and w is a vector of positive coefficients for

combining these distances. This variant is called ML, for metric learning, because w is

learned so as to maximize the log-likelihood L of the leave-one-out predictions on the

training set

L =
∑

i,l

cil ln p(Ll(Ii)|I\Ii) (3)

where I\Ii is the set of training images without Ii, and cil is a reweighting parame-

ter for labels. It gives more weight to present labels than to absent ones since the absence

of labels in the annotation is less reliable information [11]. As the log-likelihood (3) is

concave, we maximize it using a projected-gradient algorithm. The first derivative of

eq. (3) with respect to w is

δL
δw

=
∑

i,j Wi(πij − ρij)dij with ρij =
∑

l
ciw
Wi

p(Ll(Ij)|Ll(Ii)) (4)

This learning step was shown by [11] to outperform earlier, ad-hoc ways to transfer

labels from image neighbors [17]. Note that, in order to keep learning efficient, the

dyi are only computed for the K nearest neighbors (typically 200) of Y in I. We set

πyi = 0 for all others.

Weighted nearest neighbor models tend to have low recall, since rare labels are un-

likely to appear in many neighbor images. Therefore, [11] further adds a word-specific

logistic discriminant model to boost the probability for rare labels:

p(Ll(Y )|I) = σ(αlxyl + βl) with σ(z) = (1 + exp(−z))−1 (5)

xyl =

N
∑

i

πyip(Ll(Ii)) (6)

The parameters (αl, βl) and w are learned in alternating fashion to maximize eq. (3).

See [11] for details.

4 Segment Label Estimation (B)

We discuss here models to estimate segment labels from image labels during training

(fig. 1(b), arrow B). This stage is necessary since only ground-truth image labels are

available for training. Estimating segment labels from image labels can be seen under

different points of view: as a Multiple Instance Learning problem [12] where an image

forms a bag of instances (segments); as a constrained clustering problem [7]; or the

missing segment labels can be recovered by MRFs [21]. The same task is also referred

to as the Label-to-Region problem by a few authors [16].

Formally, the task is to estimate the labels of every segment s ∈ Si in every training

image Ii, guided by the given image labels Ll(Ii). This involves estimating the proba-

bility p(Ll(s)|{Si}, I) of Ll(s) = 1 for every label l and segment s in every image i.
We present below three alternative approaches for this task (either one can be used).
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4.1 Label Copy

As a straightforward approach, labels can be simply copied from an image to its seg-

ments. In this case, all segments in an image are assigned the same labels. We obtain

the following expression for the segment labels

p(Ll(s)|{Si}, I) = Ll(Ii). (7)

This is a conservative approach. It contains noise for the presence of a label, but

almost none for the absence of a label. Some methods for segment label transfer (C) are

very robust to label presence noise and perform surprisingly well with label copy.

4.2 Token Model

This model represents segments by visual words as in [7]. All Ns segments are collected

in the set S = ∪iSi. We describe the appearance of each segment sj ∈ S with a feature

vector fj (sec. 9) and then apply k-means to all vectors to obtain Q cluster centers

cq . Each cq is a visual word and C = ∪qcq is the codebook of visual words. We now

assign each segment sj to its closest cluster center cq and denote the id q as the token

T (sj) of sj . The Token Model represents segments solely by their token. This turns the

estimation of p(Ll(s)|{Si}, I) into

p(Ll(s)|{Si}, I) = p(Ll(T (s))|{T (Sj)}, I). (8)

Representing a segment as a token rather than a feature vector is beneficial because

tokens are discrete and finite, whereas feature vectors live in a continuous and typically

high-dimensional space. Therefore, estimating (8) is easier than estimating the distribu-

tion p(Ll(s)|{Si}, I) directly.

In the spirit of [7], we adopt a simple clustering approach, which assigns exactly

one label zij to each segment sij of image Ii

Ll(sij) =

{

1 if l = zij
0 otherwise.

(9)

From a given segment-label assignment z we derive the empirical label-token dis-

tribution

p(Ll(t)|t, z) = Z

T (sij)=t
∑

ij

Ll(sij), (10)

where Z is the normalization factor and t is a token.

To learn the labeling we use an EM-like scheme. We initialize zij with a random

label of image Ii. In the first step, the probability in eq. (10) is estimated using the

last assignments zij . In the second step, zij are estimated using eq. (10) (keeping them

restricted to the labels Ll(Ii) of the ground-truth image labels). The steps are repeated

until convergence.

4.3 Label-to-Region (LTR)

This is the approach described in the recent work of [16]. It consists of two stages. First,

corresponding segments between image with common labels are found. Second, labels

are assigned to segments based on these correspondences.

In the first stage, a segment s in an image Ii is approximated in the feature space

as a sparse linear combination of segments s′ ∈ S ′ in other images I\Ii sharing at

least one label. Then, labels are transferred to s from S ′ according to the sparse linear
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Fig. 2. Left (a): Example segment label estimations on two training images (ground-truth anno-

tated only at the image level). Right (b): The Global Segprop model. The prediction for a test

image (top) is a mixture over the nearest neighbors of the image’s segments (center, shown with

lines) in the training set (bottom). For clarity, only the first nearest neighbor n1 of each segment

is shown.

combination. This scheme is repeated for all segments until convergence. The initial

labels for the segments are copied from the image, as in Label Copy (sec. 4.1). For each

segment, this stage returns a probability vector over labels (multinomial distribution).

In the second stage, labels are assigned to segments. For each image, the probability

vectors of the segments are clustered into as many clusters as there are labels for the

image. The resulting clusters are then labeled with the most likely label according to

the centroid. Finally, each segment is given the label of the its cluster.

5 Segment Label Transfer (C)
We present here two alternatives for transferring labels from training segments to seg-

ments in a test image Y . While this is not as direct as image-level predictions (A), it

is more flexible as it can explain the test image as a combination of segments not ob-

served during training. At this stage, segment labels on the training set have already

been derived from ground-truth image labels (B). Throughout this section, S is the set

of segments si in the training set.

5.1 Token Model

The Token Model trained in (B) is directly applicable to test images. We apply to each

test image segment y the quantization procedure described in sec. 4.2 and obtain its

token t=T (y). Then, the multinomial distribution p(Ll(t)|t) in (10) is used to predict

the label of y

tokenmodell(y) = p(Ll(t)|t) ∝

T (s)=t
∑

s∈S

Ll(s). (11)

For any given token, this is the vector of frequencies of estimated segment labels in

the training set.

5.2 SegProp

As a novel alternative to the Token Model, we propose here an approach analog to

TagProp (sec. 3) to transfer labels from training segments to test segments. We refer to

it as SegProp, for Segment-level Propagation. The output of SegProp for label l for a

test image segment y is

segpropl(y) = p(Ll(y)|S) =

Ns
∑

i=1

πyip(Ll(si)), (12)
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where pk(Ll(s)) = 1 − ǫ for Ll(s) = 1, ǫ otherwise. Therefore, the label prediction

of a segment is a weighted sum over the training segments si. As in sec. 3, we restrict

ourselves to the K nearest neighbors, set πyi = 0 for all others, and use the same

projected-gradient method to learn this model. Note that, for a test segment y, SegProp

outputs a vector of probabilities with one entry per label (e.g. [p(L1(y)) . . . p(LV (y))]).

6 Image Labels from Segment Predictions (D)

The last stage of predicting image labels using segments is to transfer labels to the

image from the predicted labels of its segments. When each segment label is predicted

as a multinomial or multiple Bernoulli distributions, it is natural to combine them, for

instance using a mixture model. We detail two alternatives below. Let Y denote a test

image and {yr} the set of its segments.

6.1 Maximum Prediction

In this approach, we combine segment-level predictions into an image-level one by

keeping, for each label, the largest prediction over the segments. This procedure takes

advantage of the compositionality of segments. If two regions are predicted to have

different labels, it indeed transfers both labels to the image. Formally, we define:

p(Ll(Y )|{yr}) = max
r

p(Ll(yr)). (13)

6.2 Global SegProp

Instead of considering each segment to have the same importance in the final prediction,

an alternative is to use a mixture over the segments. This is the base of our new Global

SegProp model. Specifically, Global SegProp outputs an image-level prediction as a

mixture of the labels of the training neighbors of its R largest segments {yr} (largest

area relative to image):

p(Ll(Y )|{yr}) =

Ns
∑

i=1

πyip(Ll(si)) (14)

Where p(Ll(s)) = 1 − ǫ for Ll(s) = 1, ǫ otherwise. The components for dyi (see

eq. (2)) are the feature space distances for segment si to the R largest segments {yr}.

As before, we compute the K nearest neighbors for every of the R largest segments,

take the union set, and set πyi = 0 for segments not in this set.

Importantly, the weights are now optimized for image-label prediction during train-

ing, whereas SegProp optimizes them for segment-label prediction. Hence, this model

perform stages (C) and (D) jointly (fig. 2(b)).

7 Joint Label Prediction

In this section we propose several models for combining the image and segment levels

for predicting labels of a test image Y . This is desirable as the information that the

two levels offer is orthogonal. The global, image-level models are more distinctive be-

cause they capture context. The local, segment-level models are more flexible thanks to

compositionality. Moreover, they can annotate the test image at the segment level. By

doing the prediction jointly, we can hope to bring some contextual information into the

segment-level predictions as well as improving image annotation by exploiting compo-

sitionality.

We devise three alternatives to combine TagProp (A) with segment-level predictions

(C), for achieving both segment-level prediction (E) and image-level prediction (F). The
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Table 1. Summary of pixel annotation results on the MSRC-21 dataset.

Name (Parameters) A B C E Overall acc.

Token Model (Q=2300) - Token Token - 24.4%

SegProp (Q=2300,K=50) - Token SegProp - 25.6%

SegProp (K=50) - LTR SegProp - 29.6%

SegProp (K=50) - Copy SegProp - 31.4%

TagProp+Token TagProp Token Token Prod. 27.8%

TagProp+SegProp TagProp Copy SegProp Prod. 33.8%

first two are rather simple and based on multiplying the output probabilities (sec. 7.1

and 7.2). Last, we propose a more complex one, based on combining neighborhoods of

image-level and segment-level models (sec. 7.3).

7.1 Joint Segment-level Prediction by Product (E)

In this joint model, the image-level prediction acts as a prior to guide the segment-level

prediction. To include the prediction for image Y to predict its segment yi, we compute

p(Ll(yi)|Y ) as:
p(Ll(yi)|Y ) = p(Ll(Y ))p(Ll(yi)), (15)

where p(Ll(Y )) is the output of any image-level method (A), and p(Ll(yi)) of any

segment-level prediction (C).

For (A), we have only considered TagProp, so p(Ll(Y )) = tagpropl(Y ). For (C),

p(Ll(yi)) can be set to either tokenmodell(yi) or segpropl(yi) (sec. 5), leading to com-

binations that we refer to as “TagProp×Token” and “TagProp×SegProp”.

7.2 Joint Image-level Prediction by Product (F)

In order to achieve the effect of improving image-level prediction using segment-level

prediction, we propose to combine the output of any image-level method (A) with the

image-level prediction (D) corresponding to a segment-level method (C):

p(Ll(Y )|{yi}, Y ) = p(Ll(Y )|Y )p(Ll(Y )|{yr}). (16)

Again, TagProp will be used for p(Ll(Y )|Y ), while p(Ll(Y )|{yr}) can be obtained

by Maximum Prediction (D) from any segment-level method, or by using Global Seg-

Prop (sec. 6.2). As in the previous section, we refer to these as “TagProp×Token” and

“TagProp×SegProp”.

7.3 Tagprop + Global SegProp (F)

We propose a novel and more elaborate technique to predict image labels by combining

image-level and segment-level information. We include both segment neighbors (as in

Global Segprop) and image neighbors (as in Tagprop)

p(Ll(Y )|{yr}, I)=

Ns
∑

i

πs
yip(Ll(si)) +

N
∑

i

πI
yip(Ll(Ii)) (17)

Note that there are two sets of weights, πS for segment neighbors, and πI for image

neighbors. By fixing one set of weights, we can maximize the log-likelihood over the

other set as done for eq. (3). So, we learn both sets in alternation. As done in sec. 3.1, for

efficient learning we only consider the K nearest neighbors of Y for image neighbors.

For segment neighbors, we include the T nearest neighbors for each of the R top largest

segments in Y . In total, there are K + RT neighbors. We set to 0 the π weights for

training images/segments not in this set.
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8 Data Sets and Features

In this section, we describe the datasets we experiment on, and the image/segment fea-

tures we use. Note that to properly evaluate our approaches on segment-level annotation

from image labels, datasets with ground-truth pixel annotation are required (MSRC-21,

SIFT-Flow).

The MSRC-211 dataset contains 591 images of 23 object classes, annotated at the

pixel level. We adopt the evaluation protocol of [21] and keep the 21 most frequent

classes and void, leaving horses and mountain out. As in [21, 24], we use a random

selection of 531 images for training and the other 60 for testing.

The SIFT-Flow2 dataset [15] contains 2688 images with a total of 33 objects and

background classes annotated at the pixel level (sky, sea, etc.). We use the training and

test subsets defined in [15], with 200 images for testing and the rest for training.

The Corel 5k3 dataset [7] is commonly used for image auto-annotation. It comes

with pre-defined training and test images that have been manually labeled with at most

5 keywords out of a vocabulary of 260. The training set consists of 4500 images while

the test set has 499 images, which we use to evaluate image-level prediction. There is

no pixel-level annotation for this dataset.

To describe images globally, we adopt the features of [11]. They consist of GIST,

color histograms (RGB, LAB, HSV) with 16 bins per channel, and bag-of-features his-

tograms. For the latter, SIFT and Hue [22] descriptors are computed on a multiscale grid

of points and at Harris interest points. These descriptors are quantized using K-means

with 1000 centroids for SIFT and 100 for Hue. Additionally, histograms over three hor-

izontal regions are also computed for all descriptors except for GIST. This results in 15

different descriptors. For the base distances, we use L2 for GIST, L1 for color, χ2 for

bag-of-features.

For segments, we adapt the descriptors described above. First, color histograms

are computed with only 12 bins per channel to reduce the dimensionality. Quantized

local descriptors are accumulated in individual histograms of segments based on the

location of the interest points. In total, there are 7 descriptors. The base distances are

computed analog to the image-level case. For the Token Model, we have reimplemented

the segment features of [2]: relative size and position in the image, average and standard

deviation of pixel RGB and LAB, and shape features such as ratio of area to perimeter,

eccentricity and ratio of area to convex hull. Here, L2 is used as a distance measure.

Our segments are computed using [8].

9 Experimental Evaluation

We present here the experimental protocols and our results for both segment and image

label prediction tasks.

Segment-level prediction. Segment-level prediction is evaluated using a standard mea-

sure for semantic segmentation [15, 20, 21]: the percentage of correctly predicted pixels

over all pixels (overall pixel accuracy).

1 http://research.microsoft.com/en-us/projects/

objectclassrecognition/
2 http://people.csail.mit.edu/celiu/CVPR2009/
3 http://kobus.ca/research/data/eccv_2002/
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Table 2. Pixel annotation results on the SIFT-Flow dataset.

Name (Parameters) Overall acc.

Token Model (Q=2300) 18.5%

SegProp (K=50) 34.2%

TagProp+Token 31.1%

TagProp+SegProp 35.9%

Table 3. Image annotation results on the Corel5k dataset. TagProp is abbreviated as TP and

SegProp as SP.
Name (Parameters) A B C D E BEP

Token Model (Q=2300) - Token Token Max. - 8.2%

SP (Q=2300,K=50) - Token SP Max. - 11.2%

SP (K=50) - Copy SP Max. - 14.9%

Global SP (R=10,K=5) - Copy Global SP - 19.8%

TP (K=200) TP - - - - 36.2%

TP+Token TP Token Token Max. Prod. 22.2%

TP+SP TP Copy SP Max. Prod. 27.9%

TP+Global SP (K=200, R=10, T =5) - Copy - - TP+G SP 37.0%

In tab. 1, we summarize the different methods that we compare for segment-level

annotation on the MSRC-21 dataset. The Token Model achieves an overall accuracy of

24.4%. Our proposed SegProp model performs considerably better, reaching 29.6% in

conjunction with LTR for stage B, and 31.4% with the simple label copy mechanism

for stage B. As SegProp is very robust to the presence of label noise, it performs well

in conjuction with label copy.

More importantly, when combining the segment-level predictions with image-level

predictions from TagProp, we obtain significant improvements: +2.2% for SegProp and

+3.4% for the Token Model. The larger improvement for the Token Model can be ex-

plained by the higher complementarity of the methods and features, compared to Seg-

Prop. Our TagProp+SegProp combination achieves the best overall accuracy of 33.8%.

In tab. 2, we give the accuracy on the SIFT-Flow dataset. The same conclusions can

be drawn: SegProp is superior to the Token Model for segment-level annotation, and

the combination with TagProp improves both models. In fig. 3, we illustrate the benefit

of using image-level prediction to guide segment-level prediction.

Note that several works [15, 20] report higher scores than ours for both datasets.

However, they operate in the fully supervised scenario, i.e. using ground-truth pixel

labels for training, whereas we use only image labels. Those methods are able to train

strong appearance classifiers, and can leverage position and smoothness priors.

Image-level prediction. Following previous works [10, 11], we measure the Break-Even

Point score (BEP). To compute the BEP, first the images are ordered by the predicted

probability for a label l. This list is truncated to the length of the true number of rele-

vant images (using ground-truth). The BEP measures the percentage of relevant images

in this truncated list, averaged over all labels l = 1 . . . V . Some works [7, 11, 17] ad-

ditionally measure precision/recall after assigning the 5 highest-scoring labels to each

test image. However, as many test images have fewer than 5 ground-truth labels, the

algorithm performance is incorrectly penalized. As a result, the maximum achievable
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Fig. 3. Example images from the MSRC-21 (top row) and SIFT Flow (bottom row) data set. The

first column shows a test image for each. The ground-truth segmentations with their labels are

shown in the second column. The last two columns highlight the benefits of using image-level pre-

dictions to help segment level prediction. Label predictions using SegProp and TagProp+SegProp

(top row), Token and TagProp+Token respectively (bottom row), are shown. In both cases, the

combined method improves over the segment-level one.

precision is not 100%. We report BEP scores and agree with [10, 11] that they are more

meaningful.

Tab. 3 summarizes the performance of the methods we compare on the Corel5k

dataset. The Token Model achieves a low performance of 8.2%, in line with the pub-

lished results of a similar model [2]. As in the segment-level evaluation, our SegProp

model improves over the Token Model for stage C and reaches 11.2%. Moreover, the

gain is higher when using label copy in stage B: 14.9%. Further improvement is ob-

tained by fusing the C and D stages in our newly proposed Global SegProp model:

19.8%.

As the ‘TagProp’ row shows, consistent with previous observations [11, 17], directly

predicting image labels using a global similarity outperforms segment-level methods on

this task. Note that our result of 36.2% using TagProp with K = 200 closely matches

the best variant of TagProp reported in [11] (36.3%).

Our integrated TagProp+Global SegProp method brings a large improvement over

Global SegProp (+17.2%). Importantly, it also improves over state-of-the-art TagProp

alone. Therefore, our method also improves over other works such as [9, 13], which

were outperformed by TagProp (see scores for MBRM or TGLM within [11]).

10 Conclusion

We have presented a unified view on image-level and segment-level methods, where

existing works can be casted in a common framework. We have proposed new models

for some of the stages and, importantly, novel models to perform joint prediction on

both levels.

We have conducted extensive experiments on two challeging data sets for pixel-

level annotation and on a third one for image-level annotation. Our evaluation confirms

that combining image-level and segment-level models brings better results than either

model alone, on both tasks. The improvement is particularly strong for the segment

labeling task. This shows that both levels have complementary strengths. Finally, note
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that our combined method TagProp+SegProp performs both tasks at the same time. It

labels both the pixels and the whole image, unlike TagProp and image-level methods in

general, which only deliver image labels.
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