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Combining Image Reconstruction and Image Analysis
with an Application to Two-Dimensional Tomography∗

Alfred K. Louis†

Abstract. The tasks of image reconstruction from measured data and the analysis of the resulting images
are more or less strictly separated. One group of scientists computes by applying reconstruction
algorithms to the images; the other then operates on these images to enhance the analysis. First
attempts at combining image reconstruction and image analysis, in a nonsystematic way, are known
as Lambda tomography or Tikhonov–Phillips methods with �1-norms or with level-set methods. The
aim of this paper is to provide a general tool to combine these two steps; i.e., even in the recon-
struction step the future image analysis step is taken into account, leading to a new reconstruction
kernel. Here we concentrate on linear methods. As a practical example we consider the image
reconstruction problem in computerized tomography followed by an edge detection. We calculate a
new reconstruction kernel and present results from simulations.
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1. Introduction. In order to extract information from a given image, analysis tools are
used. In a first step one applies operators on that image; then the searched-for information is
found by operating on these enhanced versions of the original picture. Images typically are two-
dimensional arrays of numbers. Of course, three-dimensional arrays for volume data or even
time-dependent data, which may amount to four-dimensional data, are conceivable. Promi-
nent analysis tools are edge detection methods where first partial derivatives of smoothed
versions of the image are computed, followed by recognition methods. A typical example is
the Canny edge detector; see [4]. Other operations can be found, e.g., in [6, 11]. Here we
restrict our discussion, as mentioned above, to linear operators. In denoising one can think of
solving the heat equation with homogeneous boundary conditions and the original image as
initial condition, at the final time T the image is considered to be denoised.

We have to mention, of course, that nonlinear methods also play an essential role. But
this does not—at least at the moment—fit into our framework.

Attempts to combine reconstruction and analysis are known, but are not systematically
pursued. As an example we mention the Λ computerized tomography, in which local inversion
formulas produce images where the singular support is preserved; this means that those images
have jumps wherever the original image has them (see, e.g., [10, 13, 21]). The use of Tikhonov–
Phillips regularization with �1-norms results in smooth images; see, e.g., [5]. Level-set methods
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in combination with tomography data lead to the determination of the boundary of the object,
at least if the object is relatively smooth with jumps along smooth curves; see, e.g., [29].
Another possibility is the direct calculation of wavelet coefficients of the searched-for solution;
see [22] and, for an application to tomography, [3, 14]. These coefficients may be used in
classification algorithms or in local reconstructions; see [26]. Here, as a mollifier (see next
section), we use the scaling function and the wavelets.

In order to make the statements more precise we consider the following example. In
computerized tomography the images are produced by applying reconstruction algorithms to
the measured data. In this way one calculates images which are smoothed versions of the
original density distributions. The result can be presented as

fγ = f ∗ eγ =: Eγf,

where f is the original object and eγ is a mollifier depending on the reconstruction method.
In the image analysis part, for example, in the above-mentioned edge detection methods, one
then computes derivatives of smoothed versions of this image. Typically one calculates in a
first step

fγβk =
∂

∂xk

(
Gβ ∗ fγ

)
=

∂

∂xk

(
Wβfγ

)
=

∂

∂xk

(
WβEγf

)
,

where Gβ represents a mollifier, for example, a Gaussian kernel, and where the two parameters
β and γ are chosen independently. The aim of this paper is to provide a method which allows
for directly computing in one step the smoothed version of the derivative. To this end in section
2 we generalize the concept of approximate inverse as introduced in [20]. We precompute
independently of the data g a reconstruction kernel ψγ by solving an auxiliary problem A∗ψγ =
eγ . Then the solution is calculated as g ∗ ψγ . A further advantage is that invariances of the
operator combined with suitable mollifiers lead to very efficient reconstruction methods.

In section 2 we present some basic facts about linear ill-posed problems, and in section
3 we introduce the approximate inverse for combining the two steps of regularization and
analyzing. In section 4 we study the regularization properties of the new method. Section 5
is devoted to the efficient calculation of the result using invariances of the included operators.
Finally in the last section we present results for the case of tomography in combination with
edge detection, and we derive a new filter and present results from simulations, showing that
the results obtained in this way are better than with the classical approach of separately
performing reconstruction and differentiation. In addition the computing is much quicker.

2. Linear ill-posed problems. We consider a continuous mapping A between the Hilbert
spaces X and Y . The problem (A,X, Y ) is called well-posed if Af = g has a unique solution
that depends continuously on the data. If one of those conditions is not fulfilled, the problem
is called ill-posed. It is important to include the spaces in this definition; then by changing
the spaces we may get well-posed problems. The reason for choosing the given spaces is that,
on one hand, the data, including the noise, are mostly not smooth enough to choose a smaller
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190 ALFRED K. LOUIS

space Y . On the other hand, by selecting a larger space X we may change the concept of
solution, including, for example, distributions.

Many integral equations of the first kind lead to compact operators between X and Y ,
which means that, if the operator does not have finite rank, the range of Y , denoted by R(A),
is not closed, and hence the inverse is not continuous. In order to define solutions for these
in the classical sense not necessarily solvable problems, we introduce the pseudoinverse with
domain of definition D(A†) = R(A) ⊕ N (A∗) ⊂ R(A) ⊕ N (A∗) = Y mapping g ∈ D(A†) to
the uniquely determined f ∈ N (A)⊥ ⊂ X, which solves

(2.1) Af = PR(A)g,

where PR(A) is the orthogonal projection onto the closure of the range of A. Hence the

null-space of the thus defined A† is N (A†) = N (A∗).
To measure the degree of ill-posedness, which is important in selecting the appropriate

regularization, in principle two concepts are used. One is based on the decay of the singular
values of the compact operator A; see [17]. Another possibility is to consider the smoothing
properties of A as introduced by Natterer (see [24]) if the spaces are based on L2-spaces. We
say that A smoothes α steps in a Sobolev scale if

c1‖f‖H−α ≤ ‖Af‖L2 ≤ c2‖f‖H−α(2.2)

or

c1‖f‖L2 ≤ ‖Af‖Hα ≤ c2‖f‖L2 ,(2.3)

where the Sobolev norms for functions in R
N are defined as

(2.4) ‖f‖2
Hα =

∫
RN

(
1 + |ξ|2

)α|f̂(ξ)|2dξ

with the Fourier transform

(2.5) f̂(ξ) = (2π)−N/2

∫
RN

f(x) exp
(
−ıξ�x

)
dx.

In the case of Fourier integral operators this definition coincides with the fact that the singular
values σn of A as mapping between L2-spaces decay like O(n−α). We say that the problem
(A,L2, L2) is ill-posed of order α.

In this paper we use the smoothing properties in Sobolev scales to measure the degree of
ill-posedness for spaces X = L2(U) and Y = L2(V ) for suitable domains U and V .

The theory of regularization is concerned with the definition of solutions for arbitrary
data in Y with the additional aspect of balancing the influence of the unavoidable data error
against the best possible resolution in the reconstruction. This is achieved by constructing
operators Tγ : Y → X with the property that

lim
ε→0

Tγ(ε,gε)g
ε = A†g

when g ∈ D(A†) and the erroneous data gε go to g for ε → 0.
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It is shown in [19] that many of the well-known regularization methods, including the
truncated singular value decomposition, the Tikhonov–Phillips method, and iterative methods
such as Landweber and CG, as well as their approximate inverses, are of the form

Tγ = MγÃ
†

with a smoothing operator Mγ and a suitable continuation of A† to all of Y . Another possi-
bility is to first smooth the data and then to invert.

In order to extend the operator A† to all of Y = R(A) ⊕N (A∗), we define on N (A∗)

Ã†g = A†g = 0, g ∈ N (A∗).

The right-hand side of condition (2.3) says that A maps L2(U) continuously to Hα(V ) ⊂ L2(V )
for α > 0; hence R(A) ⊂ Hα(V ) ⊂ L2(V ). The left-hand side of condition (2.2) says that A
is continuously invertible from N (A)⊥ ⊂ L2(V ) to H−α(U), where the norm of the inverse is
bounded by c−1

1 . Hence we define Ã† on R(A) as this inverse, observing that on R(A) this
coincides with the definition of A† due to (2.1), and get the following theorem.

Theorem 2.1. The continuation of the pseudoinverse A† to all of Y = L2(V ) is a mapping
with Ã† : L2(V ) → H−α(U) with ‖Ã†‖ ≤ c−1

1 .

Proof. We decompose g ∈ L2(V ) into g = g1 + g0 with g1 ∈ R(A) and g0 ∈ N (A∗); then
due to the above construction and (2.2) we get

‖Ã†g‖H−α≤c−1
1 ‖g1‖L2≤c−1

1 ‖g‖L2 ,

which completes the proof.

If we use differential operators in the image analysis step, then, with the same arguments
as above, we consider these operators L as mapping

L : D(L) ⊂ X → X

in order to not change the space where the solution or the approximate solution is presented.
Obviously, differential operators are unbounded mappings when considered as

L : D(L) ⊂ L2(U) → L2(U).

In order to measure the degree of making the functions less smooth, we assume for a t > 0
that

(2.6) ‖Lf‖Hs−t ≤ cL,s‖f‖Hs ;

i.e., L is a differential operator or a pseudodifferential operator of order t. The problem of
determining Lf from Af = g is then ill-posed of order α+t, which means that the ill-posedness
is enhanced. When first dealing with ill-posed problems one might think that, by choosing the
right spaces, the problem becomes well-posed, but this is impossible, as the above discussion
shows.
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192 ALFRED K. LOUIS

3. Approximate inverse for combining reconstruction and analysis. The motivation for
the approximate inverse where the problem Af = g is stably solved by

Tγg = 〈g, ψγ〉

with a reconstruction kernel fulfilling A∗ψγ = eγ with a prescribed mollifier eγ is at least
twofold. First, the calculation of those functionals of the solution may be stably achieved, in
contrast to the calculation of the solution itself. This was already observed with the Backus–
Gilbert method [1]. The method is too time-consuming to evaluate the solution at all points.
See also Eckhardt [8] for the calculation of the derivative of the solution. In connection
with tomography it was observed by Grünbaum [7] that the filtered backprojection leads to
a mollified version of the searched-for solution. For an early application of the calculation of
functionals of the solution to partial differential equations, see [15] and the recent paper by
Ovall [27].

The second reason for the introduction of the approximate inverse was to derive fast
inversion formulas for the case when the same problem has to be solved repeatedly with
different right-hand sides, as is the case for such measuring devices as X-ray scanners. Essential
for the method to be fast is the selection of the mollifier eγ according to the invariances of
the operator A, as was observed in [17], where applications to some nonlinear problems are
also treated. The essential difference from the mollification method of Murio (see, e.g., [23])
is that f ∗ eγ does not replace f in the equation Af = g, where in that way the kernel of the
integral operator is smoothed, which even amplifies the ill-posedness of the problem.

In this section we generalize the method of the approximate inverse as analyzed in [18].
Let A : X → Y be a linear operator between the Hilbert spaces X and Y , and let L : X → Z
be a linear, possibly unbounded, operator between the Hilbert spaces X and Z. Typical
examples that we have in mind are differential operators where Z = X and L : X → X is
unbounded, or Z = �2 when we compute the wavelet coefficients of the solution, or Z = R

N

when we compute N of those coefficients. In the last two cases the operator L is bounded.
In the reconstruction part we have to solve

(3.1) Af = g

and then we apply the operation L on the so computed solution f for the image analysis.
Now we adapt the concept of approximate inverse, first introduced in [20]. In [8, 18] even

derivatives of the solution of Af = g are directly calculated. We now compute instead of Lf
an approximation

(Lf)γ = 〈Lf, eγ〉
with a prescribed mollifier eγ(x, ·) ∈ X. The value x depends on the application. In the
situation X = L2(U) and L : X → X, x ∈ U is the reconstruction point where Lf is
evaluated. In the wavelet application x is the index of the scaling function or the wavelet
coefficient. We formulate in the following theorem the principle of the reconstruction method,
and the technical details, as conditions on the mollifier, are treated in the next section.

Theorem 3.1. Let eγ(x, ·) ∈ X be a suitably chosen mollifier, and let ψγ(x, ·) ∈ Y be the
solution of the auxiliary problem

(3.2) A∗ψγ(x, ·) = L∗eγ(x, ·).
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Then the smoothed version of the image analysis operation is directly computed from the given
data g as

(3.3) (Lf)γ(x) = 〈g, ψγ(x, ·)〉.

Proof. We write the smoothed version of the image analysis part as

(Lf)γ(x) = 〈Lf, eγ(x, ·)〉.

Now we use the adjoint operator of L and the auxiliary problem to continue:

(Lf)γ(x) = 〈f, L∗eγ(x, ·)〉
= 〈f,A∗ψγ(x, ·)〉
= 〈g, ψγ(x, ·)〉,

where in the last step we have used the original equation Af = g.
We remark that if the auxiliary problem is not solvable, i.e., if L∗eγ is not in R(A∗) ⊂

N (A)⊥, then we solve the normal equation AA∗ψγ = AL∗eγ , which still leads to a regularized
pseudosolution of the problem of finding Lf .

Definition 3.2. The operator Sγ : Y → Z defined as

(3.4) Sγg = 〈g, ψγ(x, ·)〉

is called the approximate inverse of A to compute an approximation of Lf , and ψγ is called
the reconstruction kernel.

4. Regularization method. In this section we study the smoothness conditions necessary
to guarantee a suitable solution to the whole problem generalizing the results of [19, 12] in
the framework of ill-posed problems [9, 17]. Let A be a linear operator between the Hilbert
spaces X and Y , and let L be a linear operator between the Hilbert spaces X and Z.

Definition 4.1. A regularization of A†
L := LA† for finding the enhanced solution Lf ∈ Z of

Af = g and the application of the image analysis operator L is a family of operators

{Tγ}γ>0, Tγ : Y → Z

with a mapping γ : R
+ × Y → R

+ such that for all g ∈ D(A†
L) and for all gε ∈ Y with

‖g − gε‖ ≤ ε the equality
lim

ε→0,gε→g
Tγ(ε,gε)g

ε = LA†g

holds.
If the operator L is bounded, then clearly any regularization Tγ for A† leads with LTγ to

a regularization of LA†. Hence we discuss in the following unbounded operators and use the
notation introduced in section 2. The problem (A,L2(U), L2(V )) is ill-posed of order α, and
L is a pseudodifferential operator of order t. In this setting the pseudoinverse Ã† maps L2(V )
to the space H−α(U) and then L to H−(α+t)(U). This space is too large; hence we need some
smoothing operator to come back to L2(U) from this large space H−(α+t)(U). In the rest of
this section the spaces are considered as spaces over U ; hence we omit U .
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Theorem 4.2. Let Mγ : H−(α+t) → L2 be a family of linear continuous operators such that

(i) ‖Mγf‖L2 ≤ c(γ)‖f‖H−(α+t) for all f ∈ N (A)⊥,

(ii) lim
γ→0

‖MγLf − Lf‖ = 0 for all f ∈ N (A)⊥.

Then Tγ = MγLÃ
† is a regularization of A†

L for finding Lf if we chose γ in such a way that
c(γ)ε → 0 for ε → 0.

Proof. Let g ∈ D(A†) and gε ∈ L2 such that ‖gε − g‖L2 ≤ ε; then we get with A†g =
Ã†g for all g ∈ D(A†) that

‖Tγg
ε −A†

Lg‖ ≤ ‖Tγ(g
ε − g)‖ + ‖Tγg −A†

Lg‖
= ‖MγLÃ

†(gε − g)‖ + ‖Tγg − Ã†
Lg‖

≤ c(γ)‖LÃ†(gε − g)‖H−(α+t) + ‖MγLÃ
†g − LÃ†g‖

≤ c(γ)cL,−αc
−1
1 ε + ‖MγLÃ

†g − LÃ†g‖
ε→0−→ 0

for ε → 0 and γ such that c(γ)ε → 0.
We now look for conditions for eγ from section 3 in order to guarantee that the method

presented there is a regularization. The function eγ(x, y) is defined for x, y ∈ U . If we consider
a mollifier eγ of convolution type in R

N , then we can derive the following result. We denote
the Fourier transform of eγ by êγ .

Theorem 4.3. Let eγ(x, y) be of convolution type, i.e., eγ(x, y) = eγ(x− y), and let

(i) (2π)N/2sup
ξ
{(1 + |ξ|2)(α+t)/2|êγ(ξ)|} ≤ c(γ),

(ii) sup
ξ∈RN

(
|(2π)N/2êγ(ξ) − 1|

)
γ→0−→ 0.

Then Tγg(x) = 〈eγ(x, .), LÃ†g〉 is a regularization of A†
L for finding Lf .

Proof. We check the conditions of Theorem 4.2 as follows:

‖Mγf‖2 = ‖F(Mγf)‖2

= (2π)N
∫

RN

|êγ(ξ)f̂(ξ)|2dξ

= (2π)N
∫

RN

(1 + |ξ|2)−(α+t)(1 + |ξ|2)(α+t)|êγ(ξ)|2|f̂(ξ)|2dξ

≤ (2π)N sup
ξ
{(1 + |ξ|2)(α+t)/2|êγ(ξ)|}2

︸ ︷︷ ︸
c(γ)2

‖f‖2
H−(α+t) ,

which proves part (i) in Theorem 4.2, and

‖MγLf − Lf‖2 = ‖F(MγLf − Lf)‖2 =

∫
RN

|(2π)N/2êγ(ξ) − 1|2|L̂f(ξ)|2dξ

≤ sup
ξ∈RN

(
|(2π)N/2êγ(ξ) − 1|

)
‖Lf‖2

L2

−→0,
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which proves part (ii) in Theorem 4.2.
Example. Let N = 2, and let eγ be such that

êγ(ξ) = (2π)−1sinc
γ|ξ|π

2
χ[−1/γ,1/γ](|ξ|)

with sinc x = sinx/x. Checking the conditions of Theorem 4.3, we obtain

(i) (2π)1/2sup
ξ
{(1 + |ξ|2)(α+t)/2|êγ(|ξ|)} =

(
1 +

∣∣∣∣1γ
∣∣∣∣2
)(α+t)/2

= c(γ),

(ii) sup
ξ

|2πêγ(ξ) − 1| → 0 for γ → 0,

where we have used that |sinc (x)| ≤ 1 and limγ→0 sinc (γx) = sinc (0) = 1. We also note

that supξ |ê(ξ)| ≤ (2π)−1. Hence EγÃ
†
L is a regularization of A†

L.

5. Invariances. The computational efficiency of the approximate inverse depends heavily
on the use of invariances. We mention again the reconstruction problem in tomography. If
we choose for each reconstruction point x a special mollifier, namely, eγ(x, ·), then the recon-
struction kernel also depends on x, and the number of values to store is then the number of
reconstruction points times the number of data. If we use invariances, for example, translation
and rotational invariances of the Radon transform, and we use these invariances to produce
the mollifier, we can reduce this number of values to compute and store to just the number
of views per direction. The mathematical basis for this can be found in [18]. Here we derive
the corresponding result for the combination of reconstruction and image analysis.

Theorem 5.1. Let A : X → Y and L : X → Z be the two operators as above. Let

T1 : Z → Z,

T2 : X → X,

T3 : Y → Y

be linear operators with

L∗T1 = T2L
∗,(5.1)

T2A
∗ = A∗T3,(5.2)

and let Ψγ be the solution of the following auxiliary problem for a general mollifier Eγ ∈ D(L∗):

(5.3) A∗Ψγ = L∗Eγ .

Then the solution for the special mollifier

(5.4) eγ = T1Eγ

is

(5.5) ψγ = T3Ψγ .
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Proof. We start with the right-hand side of the auxiliary problem and use the above
relations to get

L∗eγ = L∗T1Eγ = T2L
∗Eγ = T2A

∗Ψγ = A∗T3Ψγ ;

hence T3Ψγ solves the auxiliary problem.
As a consequence we observe that the solution for a special mollifier fulfilling the condition

eγ = T1Eγ can be found as
〈f, eγ〉 = 〈g, T3Ψγ〉.

If, for example, the operators A and L are of convolution type and if we also choose the
mollifier eγ to be of convolution type, then the mappings Tk are all of translation type, which
means that the final reconstruction formula also is of convolution type.

6. Tomography and edge detector. The mathematical model of computerized tomogra-
phy in two dimensions, for the parallel geometry, is the Radon transform; see, e.g., [25]. It is
defined as

Rf(θ, s) =

∫
R2

f(x)δ(s− x�θ)dx,

where θ ∈ S1 is a unit vector and s ∈ R.
We consider R as a mapping

R : L2(Ω) → L2(S
1 × R),

where Ω is a bounded domain in R
2. In the notation of section 2 we have A = R, U = Ω,

and V = S1 ×R. The Radon transform has a trivial null-space. The relations (2.2) and (2.3)
hold with α = 1/2; see [25].

In the following we summarize a few results. The central slice theorem, or projection
theorem, is nothing but the formal application of the adjoint operator for fixed direction θ on
exp(ısσ):

(6.1) R̂f(θ, σ) = (2π)1/2f̂(σθ).

The Radon transform of a derivative is

(6.2) R
∂

∂xk
f(θ, s) = θk

∂

∂s
Rf(θ, s);

see, e.g., [25] and generalizations for higher derivatives. The inversion formula for the two-
dimensional Radon transform is

(6.3) R−1 =
1

4π
R∗I−1,

where R∗ is the adjoint operator from L2 to L2 known as backprojection

R∗g(x) =

∫
S1

g(θ, x�θ)dθ

and the Riesz potential I−1 is defined with the Fourier transform

Î−1g(θ, σ) = |σ|ĝ(θ, σ),
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where the Fourier transform acts on the second variable.

The following invariances are well established for the Radon transform. Consider for
x ∈ R

2 the shift operators T x
2 f(y) = f(y − x) and T x�θ

3 g(θ, s) = g(θ, s− x�θ); then

(6.4) RT x
2 = T x�θ

3 R.

Another couple of intertwining operators is found by rotation. Let Θ be a unitary 2×2 matrix
and DΘ

2 f(y) = f(Θy). Then

(6.5) RDΘ
2 = DΘ

3 R,

where DΘ
3 g(θ, s) = g(Θθ, s). With the (TR)∗ = R∗T ∗ we get the relations used in Theo-

rem 5.1. These two invariances lead, for a mollifier of convolution type and independent of
the directions, i.e., eγ(x, y) = Eγ(‖x − y‖), to a reconstruction kernel for determining f of
convolution type, independent of the direction, namely, ψγ(x; θ, s) = Ψγ(s− x�θ).

For the edge detectors we use differential operators Lk = ∂
∂xk

. These operators are con-
sidered as

Lk : D(Lk) ⊂ L2(Ω) → L2(Ω);

hence the scalar products used in the following are L2 scalar products. They fulfill condition
(2.6) with

t = 1.

We recapitulate the facts necessary to apply the results from the last section. The Radon
transform fulfills conditions (2.2) and (2.3) with α = 1/2. The range of R is described by
consistency conditions, known as Helgason–Ludwig–Gelfand conditions; for references see,
e.g., [25, 28]. The operators Lk fulfill (2.6) with t = 1, which means that the domain of R†

Lk

consists of those functions in D(R†) such that R†g ∈ H1(Ω); hence LkR
†g ∈ L2(Ω). The

whole problem of determining Lkf from Rf = g is thus ill-posed of order

(6.6) α + t = 3/2.

We observe that Lk also intertwines with the shift operators considered above. Hence, The-
orem 5.1 tells us immediately that if we choose a mollifier of convolution type, then the
reconstruction also is of filtered backprojection type as is the case for the standard recon-
struction algorithm for determining f . In order to find the dependency of the reconstruction
kernel with respect to the direction, we make use of the relation of the Radon transform and
the differential operators given in (6.2).

Theorem 6.1. Let the mollifier eγ(x, ·) be given as

(6.7) eγ(x, y) = Eγ(‖x− y‖).

Then the reconstruction kernel for finding Lkf , where Lk = ∂
∂xk

, is ψγ(x, ·) with

(6.8) ψγk(x; θ, s) = θkΨγ(s− x�θ),
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where θk is the kth component of θ and where Ψγ(s) is determined as

(6.9) Ψγ = − 1

4π

∂

∂s
I−1REγ .

If, in addition, Êγ fulfills the conditions of Theorem 4.3, then Sγg := 〈g, ψγk〉 is a regulariza-

tion of R†
Lk

.

Proof. We start with the auxiliary problem and use the inversion formula for R:

R∗ψγ = L∗
keγ

= R−1RL∗
keγ

=
1

4π
R∗I−1RL∗

keγ ;

hence we get

ψγ =
1

4π
I−1RL∗

keγ .

The relation (5.2) between Radon transform and differential operators together with L∗
k = −Lk

results in

ψγ = − 1

4π
θkI

−1 ∂

∂s
Reγ .

Using Fourier transforms we see that I−1 and ∂
∂s commute; hence

ψγ = − 1

4π
θk

∂

∂s
I−1Reγ .

Now eγ is independent of a direction, as are Reγ and the derivatives. Combining this with
the conclusions of Theorem 5.1, we prove the above statement.

In the following we present a special mollifier for verifying the theoretical results of the
preceding chapters. The cut-off frequency is denoted as b and is related to the γ used before
by

(6.10) b = 1/γ.

In a first step we choose the mollifier for the reconstruction part. Because of its advantageous
properties we select the mollifier stemming from the Shepp–Logan kernel,

(6.11) ê1
b(ξ) = (2π)−1sinc

‖ξ‖π
2b

χ[−b,b](‖ξ‖).

For the differentiation part we choose with a possibly different parameter β (cf. [16])

(6.12) ê2
β(ξ) = (2π)−1sinc

‖ξ‖π
β

leading to a combined kernel of the form

(6.13) Ebβ = e1
b ∗ e2

β
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with

(6.14) Êbβ(ξ) = (2π)−1sinc
‖ξ‖π
2b

sinc
‖ξ‖π
β

χ[−b,b](‖ξ‖).

Theorem 6.2. The mollifier Ebβ given in (6.13) is of convolution type and radially symmet-
ric. It fulfills with γ = 1/b (see (6.10)) and β = τb

(i) (2π)sup
ξ
{(1 + |ξ|2)3/4|Êbβ(ξ)|} ≤ c(γ) =

(
1 + γ−2

)3/4
,

(ii) sup
ξ∈R2

(
|(2π)N/2Êbβ(ξ) − 1|

)
γ→0−→ 0.

Hence, Tbβg = 〈g, ψbβ〉 with ψbβ determined according to Theorem 6.1 is a regularization for
determining Lkf , using all the invariances presented in this section.

Proof. Compared to the example at the end of section 4, the Fourier transform of the
mollifier Ebβ used here has an additional factor sinc (π‖ξ‖/β) which is also bounded by 1;
hence estimate (i) follows. Due to the fact that the parameter β is tied to b and hence also
tends to ∞ for γ → 0, this sinc-factor also tends to 1, which proves condition (ii).

In order to compute the reconstruction kernel for determining Lkf , we start by computing
the Radon transform of Ebβ, where we use the fact that the Radon transform of a convolution
is the convolution of the Radon transforms

REbβ = Re1
b ∗ Re2

β.

Next we use the convolution theorem for Fourier transforms and the projection theorem for
the Radon transform to get

(REbβ)ˆ(σ) = (2π)1/2(Re1
b)ˆ(σ)(Re2

β)ˆ(σ)

= (2π)3/2ê1
b(σθ)ê

2
β(σθ),

where we use the fact that Ebβ(x) depends only on the length of x; hence its Radon transform
is independent of θ, and in the last step we can use any θ. In the following we write, for
the sake of simplicity, ec(σ) instead of ec(σθ). Now we apply differentiation and the Riesz
potential:

− 1

4π

(
∂

∂s
I−1REbβ

)
ˆ(σ) = − 1

4π
(2π)3/2ıσ|σ|ê2

β(σ)ê1
b(σ)

= (2π)1/2
(
−ıσ(2π)1/2ê2

β(σ)
)(1

2
(2π)−1/2|σ|ê1

b(σ)

)
= (2π)1/2

(
ψ̂2
β(σ)

)(
ψ̂1
b (σ)

)
=

(
ψ2
β ∗ ψ1

b

)
ˆ(σ).

The kernel ψ1
b is with the above choice of e1

b the Shepp–Logan kernel (see [25, p. 111])

ψ̂1
b (σ) =

1

8π2
(2π)1/2|σ|sinc

‖ξ‖π
2b

χ[−b,b](‖ξ‖)
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with

(6.15) ψ1
b (s) =

b2

2π3

π
2 − bs sin(bs)
π
2

2 − (bs)2
.

For the kernel ψ2
β we observe that

ψ̂2
β(σ) = −ıσ(2π)−1/2sinc

(
σπ

β

)
= −ıσ(2π)−1/2 sin(σπ/β)

σπ/β

= −ı
β

π
(2π)−1/2 1

2ı

(
exp

(
ıσπ

β

)
− exp

(
−ıσπ

β

))
= − β

2π

(
δ̂−π/β − δ̂π/β

)
(σ),

where we used in the last step that

δ̂s(σ) = (2π)−1/2 exp(−ısσ).

For the final result of ψbβ we then get

ψbβ(s) = ψ2
β ∗ ψ1

b (s)

=
β

2π

(
ψ1
b

(
s +

π

β

)
− ψ1

b

(
s− π

β

))
.

Now we choose b = β, which means τ = 1 in the last theorem, and, as usual (see again
[25]), we put b = π/h and s� = �h and get the new filter

(6.16) ψπ/h(s�) =
1

π2h3

8�(
3 + 4�2

)2 − 64�2
, � ∈ Z.

To present the algorithm we assume that the data Rf(θ, s) are given for sk = kh, k =
−q, . . . , q, h = 1/q, and θj = (cosϕj , sinϕj)

� with ϕj = π(j − 1)/p, j = 1, . . . , p.
We choose

(6.17) b =
π

h
,

leading to the filter ψγ from above.
Step 1. For j = 1, . . . , p, evaluate the discrete convolutions

(6.18) vm,j = h

q∑
�=−q

ψb(sj − s�)Rf(θm, s�), j = −q, . . . , q.

Step 2. To get the partial derivatives with respect to xk, k = 1, 2, calculate

(6.19) vkm,j = θm,kvm,j .
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Step 3. For each reconstruction point x compute the discrete backprojection

(6.20)

(
∂

∂xk
f

)
b

(x) =
2π

p

p∑
m=1

(
(1 − η)vkm� + ηvkm,�+1

)
,

where, for each m and x, � and η are determined by

s = θ�x, � ≤ s/h < � + 1, η = s/h− �.

When comparing to the standard reconstruction (see, e.g., [25]), we observe that the
filter changes and, in addition, we have Step 2, the multiplication with cosϕm or sinϕm,
respectively. The filter is the same for both derivatives.

Here we optimize the choice of the different filters and the selection of the parameters. In
order to test the algorithm we choose the well-known Shepp–Logan phantom, where we use
the densities originally given by Shepp–Logan; i.e., the skull has the value 2, and the brain
has the value 1 (in contrast to the work of many authors, where these values are lowered by
1 leading to a brain consisting of air, as in the outside of the skull). The objects inside the
brain differ by 1% up to 3% from the surrounding tissue.

The number of data is p = 720 and q ≈ p/π, namely, q = 326 leading to 653 rays per
view. The reconstruction is computed on a 1025 × 1025 grid.

Figures 1 and 2 show the result of the above-mentioned algorithm with exact data. We
observe that even the height of the jumps is correctly computed within the numerical approx-
imation of the derivatives.

Then we add to the data 5% noise. Figure 3 shows the density reconstruction and Figure
4 the application of the smoothed derivative in the x1-direction. Figures 5 and 6 show the
result of the above algorithm; the contours of the object are clearly visible, which is even
the case for the objects differing by only 1% relative to the surrounding tissue. This is not
the case for the classical approach in Figure 4 and also not the case for the application of
Λ tomography, where the second derivative of the data is computed and backprojected; see
Figure 7.

The artifacts outside the object can easily be removed by implementing the support theo-
rem for the Radon transform stating that the object vanishes on lines parallel to θ not meeting
the support of the data; see [2].

Figure 8 shows that if we do not follow the theoretically motivated strategy of parameter
selection as above we get much worse reconstructions. If we choose a smaller γ, then we
lose resolution. As a consequence we note that it pays to combine the two steps of image
reconstruction and image analysis wherever possible.

Finally, Figures 9 and 10 show |L1f |+ |L2f |, where the colortable is changed such that the
highest values are black, and the same window is used for both images. Figure 9 is produced
with the method presented here, and Figure 10 with first reconstructing f and then performing
the differentiation on the smoothed reconstructions as in Figure 4.

Where the computation time is concerned, this approach differs only by the filter selection
from the standard filtered backprojection, so it is as fast as this, and the additional comput-
ing time for the differentiation of the reconstruction is not needed. When taking into account
that the backprojection step in the calculation is due to the determination of which detector
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Figure 1. Application of the above algorithm for the derivative in the x1-direction with exact data.
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Figure 2. Application of the above algorithm for the derivative in the x2-direction with exact data.
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Figure 3. Classical reconstruction of noisy data.
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Figure 4. Smoothed derivative in the x1-direction of the image in Figure 3.
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Figure 5. Application of the above algorithm for the direct computation of the derivative in the x1-direction.
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Figure 6. Application of the above algorithm for the direct computation of the derivative in the x2-direction.
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Figure 7. Λ tomography [10].
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Figure 8. Reconstruction of the same data set with β = b replaced by β = 2b in the second filter.
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Figure 9. Display of |L1f | + |L2f | with the method presented here.
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Figure 10. Display of |L1f | + |L2f | when first the function is reconstructed and then the derivatives are
computed from the smoothed image; compare to Figure 4.
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position is to be used for a combination of direction and reconstruction points, even the
calculation of three images, namely, the density itself and the two derivatives, is almost as
fast as the reconstruction of the image itself if it is performed in one program.
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