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Abstract
Recently there has been increasing interest in ways of using out-
of-domain (OOD) data to improve automatic speech recogni-
tion performance in domains where only limited data is avail-
able. This paper focuses on one such domain, namely that of
disordered speech for which only very small databases exist,
but where normal speech can be considered OOD. Standard ap-
proaches for handling small data domains use adaptation from
OOD models into the target domain, but here we investigate
an alternative approach with its focus on the feature extraction
stage: OOD data is used to train feature-generating deep belief
neural networks. Using AMI meeting and TED talk datasets, we
investigate various tandem-based speaker independent systems
as well as maximum a posteriori adapted speaker dependent
systems. Results on the UAspeech isolated word task of dis-
ordered speech are very promising with our overall best system
(using a combination of AMI and TED data) giving a correct-
ness of 62.5%; an increase of 15% on previously best published
results based on conventional model adaptation. We show that
the relative benefit of using OOD data varies considerably from
speaker to speaker and is only loosely correlated with the sever-
ity of a speaker’s impairments.
Index Terms: Speech recognition, Tandem features, Deep be-
lief neural network, Disordered speech

1. Introduction
Large vocabulary automatic speech recognition (ASR) research
has in recent years been driven partly by increasingly bigger
datasets. However, there are many domains in which only small
amounts of in-domain data is available for training purposes; ei-
ther because they represent challenging acoustic environments,
where recordings are difficult to obtain, or they represent rarely
occurring speaking styles, such as highly emotional speech.
Research into how to increase performance of ASR systems
through the use of readily available large out-of-domain (ODD)
datasets is therefore receiving a lot of interest.

This paper is concerned with one such small data domain,
namely the recognition of disordered speech such as is often
needed when working in the area of assistive technology for
people with severe physical impairments. Their underlying
neuro-motor conditions tend to co-occur with speech articula-
tory motor control problems, which causes speech disorders:
this condition is known as dysarthria.

People with disordered speech will often be able to com-
municate with family, friends and carers with little or no prob-
lems, whilst at the same time being close to unintelligible to
un-familiar listeners [1]. ASR systems that have only been

trained on normal speech, can in this respect be regarded as
‘un-familiar’ listeners and the resulting poor performances ren-
ders off-the-shelf systems unusable for all but speakers with the
most mild impairments [2]. As a results, ASR systems must be
designed specifically for the target domain of dysarthric speech
if not for the individual speaker. At the same time this domain
is and will remain inherently ‘small’ in terms of data because
of a lack of dysarthric speakers, and because each speaker can
find it upsetting and difficult to produce a substantial amount of
speech.

In this paper we investigate ways of boosting the recogni-
tion of dysarthric speech by treating normal speech as OOD.

1.1. Previous work and contributions of presented work

The standard way of making use of OOD knowledge has taken
the form of using models trained on OOD data and perform-
ing speaker adaptation like maximum a posteriori (MAP) [3]
and maximum likelihood linear regression (MLLR) [4] to a tar-
get domain. Several studies have investigated adaptation tech-
niques with disordered speech [5, 6]. In [7] we investigated
the use of MAP adaptation from a normal speech speaker in-
dependent model onto the dysarthric domain; likewise, [8] also
explored the use of OOD models with MAP with some success.

The alternative approach we present here uses the OOD
training data at the feature extraction stage to improve the
quality of the features by training deep belief neural networks
(DNNs) [9] for extracting features for tandem-based systems
[10]. We will explore both the standard tandem features and
the newly introduced ‘multi-level adaptive network’ (MLAN)
features, which add a further neural network layer to the tan-
dem features [11]. Recent work has shown the promise of these
techniques for multiple cross-domain scenarios, such as cross-
language ASR [12, 13] and cross-domain ASR [11, 14]. Aniol
[15] showed some promising results for disordered speech.

Despite the obvious similarities between such cross-
language studies and the normal vs. dysarthric framework pro-
posed here, there are notable difference which makes the ap-
plication to this new domain non-trivial and worth investigat-
ing. The degree and type of inter- and intra-speaker variabilities
which occur for non-impaired speakers (even if speaking in dif-
ferent languages). Dysarthric speakers will typically only have
a reduced phone set they can utilise, and there is often a large
variation between each instance of a word. Other factors not
present for multi-language and multi-accent domains are the ef-
fect of tiredness and general physical wellness.

In the remainder of the paper we describe our experimental
setup (Section 2) and results (Section 3) addressing the question



of which features and data work best for the OOD pre-training
framework and to what degree this depends on the speaker.

2. Experimental setup
The underlying methodology of this study compares a range
of different systems of increasing complexity, each of which
use OOD data in a different way. Each system has been indi-
vidually optimised and performance is compared using percent
correct on the UAspeech isolated word1 task. The UAspeech
database [16] was chosen as it is one of the largest databases
available for English dysarthric speech and with 15 speakers
has a relatively large variation of severity of speech impairment.
For the OOD data we have chosen to work with two different
OOD datasets: the ‘TED talk’ [17] and the AMI meeting room
datasets [18] and their corresponding pre-trained feature extrac-
tion front-ends. Further details about the data can be found in
Section 2.1.

Although previous work outlined above has shown MLAN
feature-based systems to outperform tandem-based systems in
OOD frameworks, it is unclear to what degree this ports to
the normal vs. disordered scenario, and we therefore chose
to include both types of feature generation framework in the
study. For comparison, we have also investigated the effect of
speaker adaptation (using MAP) and alongside this, how stan-
dard speaker dependent (SD) systems fare with the OOD and
in-domain data. Finally, a number of baseline systems were in-
corporated in the study based on ordinary PLP-based speaker
independent (SI) systems. More details about the individual
features and training strategies are given in sections 2.2 and 2.3.
Section 2.4 provides information on decoding and scoring.

2.1. Data

2.1.1. In-domain dataset: UAspeech

The UAspeech database contains synchronised audio and vi-
sual streams from 15 speakers (4 female and 11 male). The
dysarthric speakers were asked to repeat single words from
5 groups: 10 digits, 29 Nato alphabet letters, 19 command
words (’delete’, ’enter’ etc.), 100 common words (’the’,’will’
etc.), and 300 uncommon words chosen to be phonetically
rich and complimentary to the remaining words (’Copen-
hagen’,’chambermaid’ etc.). In total, each speaker has produced
around 70 minutes of speech. Full details of the corpora can be
found in [16].

The speakers all have a type dysarthric speech, and accom-
panying the database are percent intelligibly scores as obtained
from listening tests with unfamiliar listeners. These range from
4% to 95%. Following previously published work using the
UAspeech for ASR (e.g. [5]) the data was divided into training
and test data with a 2:1 split, using blocks 1 and 3 for training
and block 2 for testing.

2.1.2. Out-of-domain datasets: TED and AMI

The ‘TED talk’ dataset [17] consists of a series of lectures com-
prising a total of 138 hours of training data. Most lectures have
a single American English native speaker speaking in a well-
rehearsed, planned fashion which - although not read - bears
strong similarity to data types such as broadcast news. The
recordings are all from close-talking microphones on headsets

1Isolated word recognition is an appropriate task for dysarthric
speech as it reflects ‘command-and-control’ applications, which are par-
ticularly relevant for this group of people.

and of high quality. In contrast the AMI dataset (126.8 hours)
[18] consists of meeting room headset microphone recordings
with multiple speakers per session. The speech is conversa-
tional of nature and there is a relatively large variety in accent,
(although all speakers can be considered fluent in English).

2.2. Feature extraction

Two different tandem-based feature extraction frameworks have
been investigated: a standard tandem-based feature generator
and an MLAN-based generator.

The term ‘tandem features’ refers to feature vectors com-
promised of a conventional feature vector - in our case a 13-
dimensional PLP vector with added first and second order
derivatives - augmented with features extracted from a pre-
trained DNN [10]. Recently an extension to the original tan-
dem features was proposed, Multi-level Adaptive Networks
(MLAN) [11] where tandem features are passed through a fur-
ther neural network trained on phone-level labels, before be-
ing augmented with the original PLP features. For each dataset
(AMI, TED and UAspeech), both tandem and MLAN features
have been extracted.

All TED and UAspeech networks share the same architec-
ture with 4 layers and 1024 hidden units in each with the same
phone set modelled at the output. As was found in [12], with
appropriate regularisation, good results can be obtained even
for as little as 1 hour of training data. PCA was applied to
all output posteriors in order to de-correlate and to reduce di-
mensionality from 45 to 30. The nets were trained on globally-
normalised PLP features with added energy and first and second
order derivatives. For further details on how the TED networks
are trained, please refer to [19]. The AMI networks were trained
on filterbank outputs and the AMI features are stacked bottle-
neck features as described in [18].

Because of the difference in style of data as well as their
associated feature extraction networks, we expect the AMI and
the TED OOD feature generators to be complementary to each
other to some degree. This can be illustrated by looking at
cross-recognition results: applying the TED test sets to the
corresponding TED models gives a word error rate (WER) of
24.9%, whereas when applying the TED test set to the AMI
models a WER of 30.7% is obtained [20].

2.3. Acoustic modelling

All Hidden Markov Models (HMMs) were trained using the
maximum likelihood (ML) criterion. State-clustered, triphones
having Gaussian mixture models with standard mixing-up to
16 components per state were used. Both the tandem and the
MLAN features used are 69-dimensional and the HMM sys-
tems were trained starting from a monophone system and subse-
quently doing triphone training. Systems based on single-pass-
retraining were also tested but overall very little difference was
found between the two different training strategies. All final
tri-phone systems were optimised with respect to the number of
states with most systems achieving the best performance around
1300-1500 states for MLAN based systems and around 500 for
tandem based systems.

2.4. Decoding

The UAspeech task is single word recognition and it was de-
cided to follow the decoding strategy deployed in [7]. A uni-
form language model was used, with a word grammar network
containing silence models at the start and end, and all possible



In-domain Out-of-domain

System UAspeech AMI Ted

PLP ML-SD 50.9 - -
PLP ML-SI 50.6 22.4

+SD-MAP 54.1 40.1

Tandem ML-SD 55.8 55.9 54.4
Tandem ML-SI 56.0 57.5 55.0

+SD-MAP 57.9 61.8 60.8

Table 1: Word accuracy rates for UAspeech and AMI based
PLP and Tandem system. All systems are tested on the
UAspeech test set. See text for system name descriptions.

test words in parallel. The dictionary contains 256 entries (the
number of different words in the test set) with an average of
1.66 pronunciations per word.

3. Results
Table 1 shows all the main PLP and tandem-based results in
percent correct as averaged over all speakers, when tested on
the UAspeech test set using models containing only UAspeech
(i.e., in-domain data only) and OOD (AMI and TED).

Before discussing the benefits of using OOD features gen-
erated from pre-trained DNNs, it is interesting to look at the
UAspeech-only results in comparison to previously published
work. The table shows the ‘PLP’-based results, which are here
for reference and were first published in [7] – these are the
speaker dependent (PLP ML-SD ), speaker independent (PLP
ML-SI ) and speaker adapted (PLP ML-SI+SD-MAP ) systems,
with the PLP ML-SI system being the previously highest scor-
ing system with 54.1%. New for the current work are the
tandem-based results, which all collectively improve on the pre-
vious results with between 9 and 12% relatively. Results for a
similar SD tandem system is reported in [15] with an overall
correctness of 52.3% in comparison to the 55.8% correctness
achieved for the Tandem ML-SD in this study.

3.1. Effect of OOD feature generators

The OOD PLP and tandem results are also shown in Table 1.
As explained in the introduction, using features extracted from
DNNs pre-trained on ODD is an alternative to the conventional
method of doing adaptation from the OOD models to the tar-
get domain. Results of both approaches are given in Table1:
for the AMI data, the tandem-based system show an improve-
ment in comparison with the PLP-based MAP system, 61.8%
vs. 40.1%, a relative improvement of over 54%!. In general,
comparing the OOD-based results to the UAspeech-only base-
line results in Table 1 shows an increase in performance for all
systems except the TED Tandem ML-SI system which has a
lower correctness than the corresponding Tandem ML-SI sys-
tem (55.0% vs. 56.0%). For the normal ML systems, the im-
provements range from 2.7% to 7.3% relatively; for the MAP
versions of these systems larger relative improvements are seen
- up to 7.9%.

3.2. How to best use OOD

Comparing the tandem and the MLAN-based systems gives
some insight into the best ways of using the OOD data.

Table 2 introduce the MLAN results, which are all bet-

Out-of-domain

System AMI TED AMI+TED

MLAN ML-SD 57.8 57.1 58.1
MLAN ML-SI 58.1 58.6 60.1

+SD-MAP 61.8 61.3 62.5

Table 2: Word accuracy rates for MLAN-based systems. All
systems are tested with the UAspeech test set. See text for system
name descriptions.

ter than the tandem systems in Table 1 to which they are
comparable. In terms of which OOD data and feature gen-
eration to use, for the best tandem-based systems we ob-
serve that UAspeech (57.9%) < UAspeech+TED (60.8%) <
UAspeech+AMI (61.8%) and correspondingly for the best
MLAN-based system we get that UAspeech+TED (61.3%) <
UAspeech+AMI (61.8%) < UAspeech+AMI+TED (62.5%).
These conclusions are based on the SD-MAP systems. How-
ever, the picture is less clear from the ML-SI systems where
TED is the worst for the tandem features, but the second best
choice of OOD for the MLAN-based system.

For the AMI dataset, there is only a small difference be-
tween the tandem and the MLAN system, but for TED, the
MLAN system is better than the tandem system (55.0% vs.
58.6%). When looking at the MAP adapted system, the pic-
ture is again less clear with all systems having performances
between 60.8% and 61.8%. The only exception is the over-
all best performing system, which is the AMI+TED MLAN
SI+SD-MAP with a correctness of 62.5%. This is a relative
increase of 15.5% compared to the previously best published
result of 54.1% [7].

3.3. Inter-speaker variabilities

In [7] we observed a large variation from speaker to speaker as
to which system was the best for them. For the systems pre-
sented here, the best system for any of the 15 UAspeech speak-
ers is always one of the MAP adapted systems. However, which
data and feature set is best varies with 3, 3, 1, 2, and 7 speakers
favouring the AMI tandem ML-SI+SD-MAP, the AMI MLAN
ML-SI+SD-MAP, the TED tandem ML-SI+SD-MAP, the TED
MLAN ML-SI+SD-MAP and the AMI+TED ML-SI+SD-MAP
systems respectively.

We also observe that the benefit of using OOD data varies
considerably from speaker to speaker and is only loosely corre-
lated with the severity of a speaker’s impairments. For each
speaker we compared the performance of the OOD systems
with the corresponding UAspeech-only system. We found that
although there appears to be an overall decreasing trend where
the less severely dysarthric speakers see smaller added benefit
from OOD, there are clearly some deviations from this. For ex-
ample, two speakers with 6 and 7% intelligence respectively,
obtain vastly different improvements from the OOD systems:
where the former sees very little improvement (7.3%) in perfor-
mance and the 7% speaker improves with (31.5%).

In [21], we investigate further how the speaker specific vari-
ations observed at the phone level posterior probabilities output
from the DNNs can be used to learn more accurate, speaker-
specific transcriptions.



4. Discussion and conclusions
The work presented here is motivated by our interest in im-
proving the performance of automatic recognition for dysarthric
speech - a domain in which only relatively small amounts
of data is available. We address the issue by investigating
ways of using OOD data (i.e. normal speech) to boost fea-
ture generation and thereby the acoustic modelling of dysarthric
speech. Tandem and MLAN feature generating front-ends using
DNNs have been pre-trained on the TED talk and AMI meet-
ing datasets and tested on the UAspeech isolated word task of
dysarthric speech. We have demonstrated a large improvement
on previously published results, with an increase of up to 15%
for our best system for a MAP adapted MLAN system pre-
trained on AMI and TED data. For individual speakers (each
with very varying speech impairments and degrees of intelligi-
bility) there is some variability in terms of which OOD and fea-
ture type would provide them with the best performing system.
For future work we intend to explore ways of improving the
training strategies for both the pre-training and the in-domain
HMM training stage to better reflect speech impairment charac-
teristics specific to the individual speaker.
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