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abstract: A persistent question in biology is how information from

ancestors combines with personal experiences over the lifetime to

affect the developmental trajectories of phenotypic traits. We address

this question by modeling individual differences in behavioral de-

velopmental trajectories on the basis of two assumptions: (1) dif-

ferences among individuals in the behavior expressed at birth or

hatching are based on information from their ancestors (via genes,

epigenes, and prenatal maternal effects), and (2) information from

ancestors is combined with information from personal experiences

over ontogeny via Bayesian updating. The model predicts relation-

ships between the means and the variability of the behavior expressed

by neonates and the subsequent developmental trajectories of their

behavior when every individual is reared under the same environ-

mental conditions. Several predictions of the model are supported

by data from previous studies of behavioral development, for ex-

ample, that the temporal stability of personality will increase with

age and that the intercepts and slopes of developmental trajectories

for boldness will be negatively correlated across individuals or ge-

notypes when subjects are raised in safe environments. We describe

how other specific predictions of the model can be used to test the

hypothesis that information from ancestors and information from

personal experiences are combined via nonadditive, Bayesian-like

processes.

Keywords: innate, predispositions, developmental systems, differential

consistency, intraindividual variability, IIV, Bayesian updating, per-

sonality, boldness, repeatability.

Introduction

A long-standing assumption in biology is that information

that shapes the development of behavior can come from

a variety of different sources. Information can come from

an individual’s distant ancestors (e.g., via genes; Leimar

et al. 2006; Shea 2007) or from its immediate ancestors
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(e.g., via maternal effects [Uller 2008] or inherited epi-

genetic markers [Bonduriansky and Day 2009; Shea et al.

2011]). Of course, information can also come from per-

sonal experiences that animals have over the course of

their lifetimes, for example, via learning (Shettleworth

2010) or the many other processes by which information

from the environment can affect development (reviews in

West-Eberhard 2003; Gluckman et al. 2005b; Bateson and

Gluckman 2011).

What is not clear is how information from an individ-

ual’s ancestors and information from its personal expe-

riences combine with each other over ontogeny to affect

the expression and development of phenotypic traits. The

lack of attention to this question has left empiricists who

study individual differences in developmental patterns

with observations in search of explanations. For instance,

investigators who use longitudinal protocols to study per-

sonality in humans and animals have found that person-

ality is less temporally stable (less differentially consistent)

early in life than later in life (squid: Sinn et al. 2008;

humans: Roberts and DelVecchio 2000; Caspi et al. 2005;

dogs: Fratkin et al. 2013; fish: Edenbrow and Croft 2011),

but the reasons for this pattern are currently unclear. Sim-

ilarly, researchers have detected significant positive or neg-

ative correlations across individuals or genotypes between

trait values and the developmental plasticity of those traits

(Auld et al. 2010; Mathot et al. 2012), but again, the rea-

sons for these patterns are obscure.

To date there have been two suggestions about ways that

information from ancestors might combine with infor-

mation from personal experiences to affect developmental

trajectories. Classical quantitative genetics begins with the

assumption that the effects of genes and experiential fac-

tors on phenotypic traits are additive (Falconer and

Mackay 1996), and this assumption has been incorporated

into models showing that selection can favor the evolution

This content downloaded from 128.120.194.195 on Thu, 2 Oct 2014 11:49:56 AM
All use subject to JSTOR Terms and Conditions

mailto:jastamps@ucdavis.edu
http://www.jstor.org/page/info/about/policies/terms.jsp


000 The American Naturalist

of developmental mechanisms that combine information

from genetic cues and information from environmental

cues to predict the conditions that are likely to occur dur-

ing an individual’s lifetime (Leimar 2005, 2009; Leimar et

al. 2006). Other authors have suggested that information

from ancestors, evolutionary history, or genes might be

combined with information from personal experiences via

nonadditive, Bayesian-like processes (e.g., Dall et al. 2005;

McNamara et al. 2006; Pierre and Green 2008; Schmidt

et al. 2010). This idea follows from the widespread success

of Bayesian approaches to model learning (McNamara and

Houston 1980; Dall et al. 2005; Courville et al. 2006;

McLinn and Stephens 2006; Trimmer et al. 2011) and from

the fact that, in principle, Bayesian updating is the best

way to combine information from different sources to

estimate the state of the world (Lange and Dukas 2009).

Bayesian models for combining information from an-

cestors with information from personal experience sound

promising, but at present, such models are still in their

infancy. Frankenhuis and Panchanathan (2011a, 2011b)

made an important first step in addressing this issue, by

using Bayesian approaches to demonstrate how stochastic

variation in sampling might lead to individual differences

in developmental trajectories, even if every individual

starts with the same information from their ancestors (i.e.,

every individual has the same prior distribution). Their

model provides a plausible explanation for intragenotypic

variability, situations in which virtually isogenic animals,

raised under the same set of conditions, express different

behavior (Freund et al. 2013; Stamps et al. 2013). However,

it does not address the broader question of how devel-

opmental trajectories would be affected if individuals be-

gan with different prior distributions, based on infor-

mation from their ancestors.

Two problems, one minor and one major, must be ad-

dressed to investigate how individual differences in infor-

mation from ancestors might combine with information

from personal experiences to affect trait development.

First, any general model of development must account for

the fact that individuals or genotypes that express the same

mean trait values at a given age can differ in their devel-

opmental plasticity, that is, the extent to which their trait

values change after exposure to the same external stimuli

(e.g., Cohen et al. 2008; Auld et al. 2010; Dingemanse and

Wolf 2013). For instance, individuals who express the same

level of antipredator behavior at a given age can express

very different levels of antipredator behavior after expo-

sure to cues from a predator (Bell and Sih 2007). In Bayes-

ian models, this issue can be easily addressed using prior

or posterior distributions that differ with respect to both

their means and their variances (see “Model Description”

and apps. A, E; apps. A–E available online).

The second, more challenging problem is designing a

testable model. A major sticking point is finding a way to

estimate the prior distributions of individuals before they

have been exposed to a particular type of personal expe-

rience. Empiricists using Bayesian models to study learning

typically sidestep this problem, either by assuming that

every individual has the same, noninformative prior dis-

tribution at the beginning of the experiment (e.g., Holyoak

and Cheng 2011) or by thoroughly pretraining their sub-

jects to ensure that they all have the same prior distribution

before measuring their behavior (e.g., McLinn and Ste-

phens 2006; Biernaskie et al. 2009). Here we suggest one

possible solution to this problem: assume that the behavior

expressed by naive individuals, before they have had any

relevant personal experience, is based on information from

their ancestors. Behavioral biologists studying develop-

ment routinely make this assumption (e.g., Adret 2004;

Bremner 2011; Westerman et al. 2012; Waters and Burg-

hardt 2013). By extension, if individuals not only express

a given type of behavior soon after birth or hatching but

also continue to express that behavior as they grow and

develop, it seems reasonable to assume that personal ex-

periences during the juvenile period might affect the de-

velopmental trajectory of that behavior. Building on these

assumptions, we show how one can estimate the mean

and the variance of the prior distributions of neonates on

the basis of the mean and the variability of the behavior

they express soon after birth or hatching. Then, standard

Bayesian approaches can be used to predict the behavioral

developmental trajectories of different individuals as a

function of the behavior they expressed as neonates and

to predict how those developmental trajectories would

change as a function of the conditions in which those

individuals were raised. This approach can be used to gen-

erate predictions that can be readily tested by empiricists,

using protocols already available to study individual dif-

ferences in behavioral traits.

We illustrate this approach by analyzing the develop-

mental trajectories for behavior patterns related to “bold-

ness,” a personality trait that has been studied in a wide

range of animals, including humans (Fox et al. 2005; Réale

et al. 2007; Conrad et al. 2011). One advantage of focusing

on boldness is that in many species, individuals exhibit

different levels of boldness soon after birth or hatching,

before they have been exposed to personal experiences that

might provide information about the level of danger in

their environment (e.g., see Edenbrow and Croft 2011;

Sussman and Ha 2011). In addition, it is possible to es-

timate, at least at a qualitative level, information relevant

to danger that might be conveyed to developing individ-

uals by cues they perceive in their environment. For in-

stance, it seems reasonable to assume that repeated ex-

posure to cues from predators over ontogeny might

indicate that the environment was relatively dangerous.
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Conversely, the absence of cues from predators, aggressive

conspecifics, or any other potential dangers might also

convey information about the current environment (Sih

1992; Welton et al. 2003; Stamps et al. 2009). In particular,

it seems reasonable to assume that the continued absence

of any cues indicative of danger over ontogeny would

indicate to developing animals that the current environ-

ment is relatively safe.

The goals of this study were to explore the implications

of assuming that information from ancestors and infor-

mation from personal experiences are combined by Bayes-

ian updating and, in particular, to design a simple model

based on this assumption whose predictions could be read-

ily tested by empiricists studying individual differences in

the development of behavioral and other traits. We first

describe the model and its predictions and then consider

conditions that have to be satisfied to test those predic-

tions. We show that several of those predictions are already

supported by empirical data and discuss others that could

be readily tested in a controlled laboratory setting. Finally,

we conclude with suggestions for future research on the

question of how information from ancestors and experi-

ence combines across ontogeny to affect the developmental

trajectories of behavioral and other traits.

Model Description

Since excellent introductions to the use of Bayesian models

for studying animal behavior are available elsewhere (see

McNamara and Houston 1980; Hilborn and Mangel 1997;

McNamara et al. 2006; Trimmer et al. 2011), here we

summarize the concepts most relevant to this study. Bayes-

ian models include four basic components: prior distri-

butions, posterior distributions, likelihood functions, and

response functions. Informally, a prior distribution spec-

ifies an individual’s beliefs about a biologically relevant

variable (e.g., the state of danger) before it has a given

experience (e.g., being chased by a predator), and a pos-

terior distribution specifies that individual’s beliefs about

that same variable after it has had that experience. The

likelihood function for a particular type of experience

specifies the probability that that experience would occur,

given each possible state of the variable; the response func-

tion links beliefs to behavior, by specifying the relationship

between an individual’s current belief (based on its prior

or posterior distribution) and the behavior it expresses

based on that belief. The posterior distribution after one

experience becomes the prior distribution for the next

experience, which is why Bayesian approaches are useful

for modeling development, where it is typical for a given

individual to have a series of experiences over ontogeny,

each of which may provide additional information about

a state of the world (Frankenhuis and Panchanathan

2011a, 2011b). When Bayesian models are empirically

tested, most authors do not assume that individuals behave

in a strictly Bayesian fashion. Instead, it is typically as-

sumed that humans or animals use rules of thumb or other

cognitive processes that yield reasonable approximations

of the estimates of patterns of behavior that would be

generated by Bayesian updating (McNamara and Houston

1980; Gigerenzer and Todd 1999; McNamara et al. 2006;

Trimmer et al. 2011; Bowers and Davis 2012). For addi-

tional background on the Bayesian approach used in this

study, see appendix A.

Here, we consider how animals might combine infor-

mation from ancestors and information from personal ex-

periences to estimate the state of a variable we call

“danger,” where danger indicates the risk of injury, harm,

or death. We assume that in nature, the state of danger

can take on a value ranging from a minimum value in the

safest possible environment to a maximum value in the

most dangerous possible environment. For computational

ease, we assume that there are 100 possible states of danger,

ranging in increments of 0.01 from a minimum value of

0 (no danger) to a maximum value of 1.0 (the maximum

level of danger in the natural environment), and we de-

scribe prior distributions and posterior distributions that

specify the probability that the level of danger falls within

each of the 100 mutually exclusive possible states (see app.

B).

One of the difficulties in describing prior distributions

is that, in theory, these distributions can take on a variety

of different shapes. For our model we use the beta dis-

tribution to generate a wide range of biologically reason-

able prior distributions. Beta distributions use two param-

eters, a and b, to generate probabilities whose values

continuously vary in the range between 0 and 1. We focus

on sets of a and b values that generate monotonically

increasing, monotonically decreasing, unimodal (hump-

shaped), and uniform distributions. We do not consider

U-shaped distributions (a ! 1 and b ! 1), in which the

extreme states of 0 and 1 are both more likely to occur

than any of the intermediate states.

This study asks how differences among agents in the

means and the variances of their prior distributions would

affect the behavior of those agents after they all had the

same experience (same likelihood function). We focused

on prior distributions with mean values ranging from 0.1

to 0.9. For each of these mean values, we set the lowest

variance at 0.001 and determined the beta distribution that

generated this variance. For each mean value, we also de-

termined the beta distribution with the highest possible

variance, under the constraint noted above (beta distri-

butions with a ≥ 1 and/or b ≥ 1).

Beta distributions were also used to model biologically

reasonable likelihood functions for a given variable. Like-
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lihood functions can vary with respect to their “reliability”

(McLinn and Stephens 2006) or “validity” (Frankenhuis

and Panchanathan 2011a), terms that indicate the prob-

ability of a given experience being associated with the dif-

ferent possible states of the variable. We assume that any

personal experiences or cues that generate likelihood func-

tions are readily perceived by every individual, so that we

can ignore sampling costs or individual differences in es-

timates of the state due to sampling error (see Frankenhuis

and Panchanathan 2011b). In the main text, we illustrate

the basic concepts using a simple right-biased likelihood

function (i.e., one that indicates that the experience is

more strongly associated with states with high values than

with states with low or moderate values), but we consider

a range of other possible likelihood functions in appendix

C.

Response functions link prior or posterior distributions

with the behavior that an agent expresses based on those

distributions. When prior and posterior distributions are

continuously distributed, the mean (expected value) of

those distributions is generally considered to provide the

best estimator of the state (Trimmer et al. 2011), so we

assume that the mean level of behavior expressed by an

agent at any given time is directly related to the mean of

its prior or posterior distribution at that point in time. In

the text, we illustrate our main points by using linear

response functions, in which the mean level of behavior

is linearly related to the mean of the prior or posterior

distribution. However, we have also examined response

functions with other shapes (sigmoid, exponential, and

asymptotic; see app. D).

An important innovation is our assumption that the

variability of the behavior of an agent at a given time is

positively related to the variance of its prior or posterior

distribution at that point in time. At the individual level,

the stochastic, short-term variability in the behavior ex-

pressed in a given context is termed “intraindividual var-

iability” (IIV; Nesselroade 1991; Stamps et al. 2012; Wang

et al. 2012; Biro and Adriaenssens 2013). At the genotypic

level, the stochastic variability in the behavior of isogenic

individuals reared under the same conditions and then

tested at the same age in the same context has been called

“intragenotypic variability” (Stamps et al. 2013). Recent

empirical studies have revealed significant differences

across individuals in IIV (Stamps et al. 2012; Biro and

Adriaenssens 2013; Briffa et al. 2013) and significant dif-

ferences across genotypes in intragenotypic variability

(Kain et al. 2012; Stamps et al. 2013), indicating that it is

practical to detect differences among agents in either type

of behavioral variability, if such differences exist. Impor-

tantly, there is empirical support for the assumption that

IIV is related to the variance of prior distributions. Recent

studies of animals and humans indicate that subjects can

be trained to estimate the variance of prior distributions

and that when this is done, the IIV of their neural activity

and/or their behavioral responses is positively related to

the variance of those prior distributions (Daw et al. 2005;

Berniker et al. 2010; Funamizu et al. 2012).

In order to model how information from ancestors af-

fects behavioral developmental trajectories, we assume that

agents with all of the prior distributions described above

(mean values from 0.1 to 0.9, variances from 0.001 to the

maximum possible variance for each mean) exist in the

same population, that the mean behavior of each neonate

is directly related to the mean of its prior distribution, and

that the variability of its behavior is directly related to the

variance of its prior distribution. Each agent is then ex-

posed to the same experience (i.e., an experience with a

given likelihood function). We combine the prior distri-

bution with the likelihood function, using Bayesian up-

dating to obtain a posterior distribution, as described in

appendix B, and we assume that the mean and variance

of the behavior each agent expresses after exposure to the

experience are directly related to the mean and variance

of its posterior distribution. This process allows us to es-

timate how a single experience would affect the means and

variances of the posterior distributions of agents with a

wide range of prior distributions (see app. E). We then

repeat this process and plot the output of the response

function for each of the prior or posterior distributions

to predict changes over ontogeny in the expected behavior

and the variability of behavior of each agent.

For each agent, we can compute a developmental tra-

jectory, which describes the expected (mean) level of be-

havior expressed by that agent at a series of ages. The

expected behavior at birth or hatching (i.e., at age 0) is

given by the intercept of an agent’s developmental trajec-

tory, and the change in behavior after one or more ex-

periences is indicated by the shape or slope of its devel-

opmental trajectory. We can also determine how the

behavioral variability of an agent changes over ontogeny,

by plotting the intraindividual or intragenotypic variability

of behavior for each agent at age 0 and at each successive

age. Analyses were run for the full range of prior distri-

butions indicated above (see app. E), but for purposes of

illustration in the text we focus on 15 agents, each with a

different prior distribution (five means of 0.1, 0.3, 0.5, 0.7

or 0.9 and three variances of 0.001, 0.02, and the maximum

possible variance for the given mean). Together, these 15

distributions span the range of prior distributions that are

possible under the assumptions of our model. We assume

that each individual is exposed four times to the same

experience (same likelihood function), and then we graph

the effects of that experience on its developmental trajec-

tory and behavioral variability over ontogeny.
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Figure 1: Left, developmental trajectories (based on the expected behavior at five ages) for 15 hypothetical agents (individuals or genotypes),
after repeated exposure to an experience with a moderately reliable, right-biased likelihood function (shown on right), assuming a linear
response function. The means of their prior distributions (at age 0) are indicated by the following symbols: circles for 0.1, squares for 0.3,
upward triangles for 0.5, diamonds for 0.7, and downward triangles for 0.9. The variances of their prior distributions are indicated by lines:
dot-dashed gray for 0.001, dashed black for 0.02, and solid black for the maximum variance for the given mean. Right, the likelihood
function indicates the probability of the experience, given the state (P(ExpFState), for each of the 100 possible states, ranging from 0 to 1.

Results and Discussion

How Different Prior Distributions Affect

Developmental Trajectories

We can now consider how developmental trajectories of

agents with different prior distributions would change if

they were all repeatedly exposed to a right-biased likeli-

hood function (fig. 1). One obvious result is that most

developmental trajectories are nonlinear: for those agents

whose behavior changes over ontogeny, the rate of change

in behavior is higher early in ontogeny than later in on-

togeny. In addition, the shapes of the trajectories vary

systematically across agents. In the current example, in

which the likelihood function is right biased, ontogenetic

changes in behavior very early in life (age 0–1) are most

pronounced for agents whose prior distributions have low

means and high variances, and they are least pronounced

for agents whose prior distributions have very high means

(e.g., 0.9) or very low variances (0.001). In addition, when

the slopes of developmental trajectories are computed

across the entire period (from age 0 to age 4), the slopes

and intercepts of the trajectories are negatively related to

one another across the 15 agents. Figure 1 also shows that

differences among agents in prior distributions can have

long-lasting effects on their behavior later in life. That is,

despite repeated exposure to an experience with a mod-

erately reliable likelihood function, agents with very low

mean scores for behavior at age 0 still have lower scores

at age 4 than agents who had high scores at age 0.

Finally, figure 1 indicates that the temporal consistency

of individual differences in behavior is lower early in on-

togeny (age 0–1) than later in ontogeny (age 3–4). Dif-

ferential consistency (also called “broad-sense repeatabil-

ity”) indicates the extent to which individual differences

in behavior are maintained over a specified period of time

(Hayes and Jenkins 1997; Caspi and Roberts 2001; Stamps

and Groothuis 2010). The differential consistency of be-

havior over a given period (e.g., from age 0 to age 1) can

be estimated by computing the slope of each agent’s de-

velopmental trajectory over that period and then com-

puting the variance, across agents, in their slopes. Differ-

ential consistency is negatively related to the variance in

slopes across agents, so that the highest possible value of

differential consistency occurs when every agent has the

same slope. In the example illustrated in figure 1, the slopes

of the developmental trajectories vary more across agents

early in ontogeny (age 0–1) than they do later in ontogeny

(age 3–4), indicating that differential consistency increases

with age.

We next consider how the variability of behavior (IIV

for individuals or intragenotypic variability for genotypes)

would change over ontogeny if agents with different prior

distributions were repeatedly exposed to the same, right-

biased experience (fig. 2). When agents have prior distri-
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Figure 2: Change over ontogeny in the behavioral variability (in-
traindividual variability for individuals, intragenotypic variability for
genotypes) of 15 hypothetical agents after repeated exposure to an
experience with a moderately reliable, right-biased likelihood func-
tion (fig. 1, right), assuming a linear response function. Symbols and
lines indicate prior means and prior variances as in figure 1. All of
the agents with prior distributions with very low behavioral vari-
ability (0.001) are indicated by the same dot-dashed gray line because
for all of them, behavioral variability is maintained at levels near 0
throughout their lives.

butions with high variance (indicated by solid lines), the

variability of behavior is high at age 0, after which it usually

declines over ontogeny. A notable exception is the agent

with a low prior mean and a high prior variance (indicated

by circles and solid black lines in fig. 2), whose behavioral

variability increases from age 0 to age 1 and then gradually

declines later in ontogeny. This result follows from a gen-

eral principle of Bayesian updating, namely, that infor-

mation that sharply conflicts with an individual’s previous

estimate of the state of the world is likely to decrease,

rather than increase, its level of certainty about its estimate

of the state (see app. E; fig. E2; figs. A1, A2, C1–C7, D1–

D4, E1, E2 available online). For agents whose prior dis-

tributions have intermediate variance (0.02, indicated by

dashed lines), behavioral variability declines modestly, if

at all, over ontogeny. Finally, in agents with prior distri-

butions with low variance (0.001, indicated by dot-dashed

lines), variability is very low at age 0 and remains at the

same low level for the rest of ontogeny. Across all of the

agents, the model predicts that both average variability

and interindividual differences in variability would be

higher early in ontogeny (from age 0 to age 1) than later

in ontogeny (from age 3 to age 4).

At a qualitative level, most of these patterns are robust

to changes in likelihood and response functions (see apps.

C, D). Across all of the likelihood functions and response

functions tested, our model indicates that if animals are

repeatedly exposed to the same experience, that is, the

same likelihood function, then (1) the rate of change of

behavior is higher early in ontogeny than later in ontogeny,

(2) the temporal consistency of differences among agents

in mean levels of behavior (differential consistency) is

lower earlier in ontogeny than later in ontogeny, (3) the

rate of change in behavior over ontogeny is highest for

agents whose mean level of behavior when naive differs

most from the behavior encouraged by the likelihood func-

tion, (4) differences among agents in their prior distri-

butions continue to affect the behavior expressed by those

individuals later in life, (5) on average, behavioral vari-

ability declines over ontogeny, and (6) agents with low

behavioral variability at birth or hatching change their

behavior less over ontogeny than do agents with high be-

havioral variability at birth or hatching.

However, one important pattern that does change as a

function of likelihood functions is the relationship, across

agents, between the absolute value (i.e., the magnitude)

of the slope, S, and the intercept, I, of their developmental

trajectories. Right-biased likelihood functions encourage

negative relationships between I and S (e.g., figs. 1, C1–

C4). However, if the same set of agents were repeatedly

exposed to an experience with a left-biased likelihood

function, the model predicts a positive relationship be-

tween I and S (e.g., fig. C6), while repeated exposure to

a unimodal (hump-shaped) likelihood function is ex-

pected to lead to a nonlinear relationship, across agents,

between I and S (e.g., fig. C7). Thus, for the same set of

agents, correlations between the intercepts and the mag-

nitude of the slopes of their behavioral developmental tra-

jectories are predicted to vary as a function of the likeli-

hood function for the conditions in which they were raised.

Testing Predictions of a Bayesian Model of Development

Assumptions. An important consideration in testing any

Bayesian model of behavioral development is choosing the

right type of personal experience. This is not a trivial prob-

lem, because many types of experiences, especially those

that occur early in life, constrain the development of be-

havioral and other traits by restricting the resources avail-

able for somatic growth and development (Monaghan

2008; Bateson and Gluckman 2011; Nettle et al. 2013).

Examples include periods of food deprivation or bouts of

infection soon after birth or hatching. Such experiences

might provide information about food levels or risk of

parasitism later in life, but they also have immediate effects

on the level or quality of resources that can be allocated

to the development of the physiological and morphological

systems that generate behavior (Gluckman et al. 2005a;

Monaghan 2008; Devevey et al. 2010). Situations in which
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a given experience provides information about conditions

later in life but also has immediate effects on resource

allocation are more complicated to model and study

(Monaghan 2008; Nettle et al. 2013). Hence, empirical

tests of Bayesian models of development should focus on

personal experiences that provide organisms with infor-

mation about the state of the world but do not directly

affect the resources that are available to support somatic

growth and development.

A second important implicit assumption is that the state

of the world remains constant over the period when be-

havior is measured. In the laboratory, it may be possible

to ensure that environmental conditions do not change

through ontogeny. However, this assumption must also be

approximately valid under natural conditions for the study

species. If in nature the state of the world is highly variable

over ontogeny, individuals might weigh recent information

more heavily than old information when estimating the

current state (Mangel 1990). Alternately, an individual’s

own internal state might provide it with information about

predictable changes in the state of the world over ontogeny.

For instance, if small juveniles are more vulnerable to

predators than large juveniles (e.g., Sogard 1997), an in-

dividual’s current size might provide it with indirect, rel-

atively reliable information about its current risk of pre-

dation. Similarly, if juveniles are less likely than adults to

be attacked by conspecific adults (delBarco-Trillo et al.

2011; Templeton et al. 2012), an individual’s maturational

state might provide it with information about its risk of

being attacked. In support of these ideas, there is evidence

that developmental trajectories for boldness can change

when individuals undergo major transitions in morpho-

logical or physiological state (e.g., during maturation [Sinn

et al. 2008] or across metamorphosis [Hedrick and Kortet

2012]), even if those animals are maintained in captivity

under constant conditions. Thus, the predictions of the

current model are most likely to apply when the state of

variables such as danger does not vary predictably over

ontogeny in the natural habitat.

A final caveat is that all of the subjects in an experiment

should have equal access to cues that provide information

about the state of the world. Under natural conditions,

this may not be the case, for example, bolder individuals

might be more likely to sample the environment, and

hence gain more information about it, than shy ones (see

Mathot et al. 2012). Practically speaking, this means using

cues that can be readily perceived by every subject and do

not require active sampling.

Predictions. A general prediction from our model is that

when different individuals or genotypes develop under the

same set of conditions, differential consistency (broad-

sense repeatability) will increase with age. Our model

therefore provides a simple general explanation for the

ontogenetic increases in the temporal stability of person-

ality that have been reported in several taxa (see “Intro-

duction”).

More important, our model predicts specific patterns

of developmental trajectories when agents who express

different levels of behavior when naive are raised under

specific sets of environmental conditions. For instance, we

suggest that an extended period with no cues from pred-

ators, aggressive conspecifics, or other dangers would, un-

der natural conditions, indicate that an individual was

living in a relatively safe environment. Conveniently, many

researchers studying the development of behavioral traits,

including boldness, raise and maintain their subjects under

standard laboratory conditions. In part because of animal

welfare concerns and in part to reduce variability in be-

havior, standard laboratory conditions typically lack any

cues or stimuli from predators, aggressive conspecifics, or

other biotic or abiotic cues that might be associated with

risk or danger in nature. Of course, tests used to assess

boldness necessarily involve exposing subjects to stimuli

they perceive to be at least modestly dangerous. However,

it is possible to assay boldness using stimuli that do not

reliably indicate high levels of danger, to conduct tests

infrequently, and to maintain the experimental subjects

under benign conditions between each test (e.g., Edenbrow

and Croft 2011). Thus, assuming that an individual’s level

of boldness would be negatively related to its estimate of

the level of danger in the environment (see app. A), our

model predicts that repeated exposure to experiences sug-

gesting (with intermediate reliability) that the environment

was safe would generate developmental trajectories for

boldness similar to those illustrated in figure 1.

Although studies of individual or genotypic differences

in the developmental trajectories of boldness are still quite

rare, we found two that appear to satisfy the criteria out-

lined above. Recently, Sussman and Ha (2011) reported

on a study of developmental trajectories for boldness in

pigtailed macaques (Macaca nemestrina). Their subjects

were maintained in individual cages, with no exposure to

predators or dangerous conspecifics from birth through

the first 10 months of life, and the monkeys exhibited

significant differences in boldness as neonates. As pre-

dicted by our model, the rate of change in boldness was

highest in infants and declined at older ages: the juveniles’

developmental trajectories had the shapes predicted by the

model (best fitted using growth equations in which be-

havior scores approached asymptotes at older ages). In

addition, as predicted by our model, there was a significant

negative relationship (r p !0.52, P ! .001) across 152

individuals between their intercepts and slopes: infants

who were initially shy changed more (became much

bolder) over the 10-month period, while infants who were
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initially bold did not change as much (remained relatively

bold) over the same period of time (A. Sussman, personal

communication).

In a second example, Edenbrow and Croft (2011) stud-

ied the ontogeny of boldness in mangrove killifish (Kryp-

tolebias marmoratus), taking advantage of the fact that this

is one of a handful of vertebrates that produce clones.

They raised fish from 20 genotypes in isolation from hatch-

ing, with no cues from predators, including conspecifics

(cannibalism has been reported in this species; see Taylor

2012). The fish began to mature at about 90 days, so we

focus here on the results of tests of boldness for juveniles

at days 2, 30, and 61 posthatch. Levels of boldness at day

2 varied significantly across the genotypes (M. Edenbrow,

personal communication). Subsequently, boldness in-

creased nonlinearly as a function of age, with higher rates

of change for young juveniles than for older juveniles and

significant differences among the genotypes in the slopes

of their developmental trajectories for boldness (Edenbrow

and Croft 2011). In this case, there was a nonsignificant

negative relationship across the 20 genotypes between

boldness scores at day 2 and the rate of increase in boldness

from day 2 to day 61 (r p !0.371, P p .107; M. Eden-

brow, personal communication).

Several predictions of our model have not yet been

tested. One is that the developmental trajectories of the

same agents would vary in specific ways if they were raised

under conditions with different likelihood functions. For

instance, if the set of killifish clones described in the pre-

vious paragraph were repeatedly exposed during the ju-

venile period to cues from predators, we predict that their

developmental trajectories for boldness would be similar

to those illustrated in figure C6. That is, individuals who

initially were very bold would become shyer, while indi-

viduals who were initially shy would remain shy. In con-

trast, if the same clones were raised with cues indicating

an intermediate level of danger, we predict that their tra-

jectories would be similar to those illustrated in figure C7:

very bold individuals would become shyer, very shy in-

dividuals would become bolder, and intermediately bold

individuals would maintain their behavior. That is, our

model predicts that relationships between the intercepts

and the magnitude of the slopes of developmental trajec-

tories for the same set of agents can be negative or positive

or have other shapes, depending on the likelihood func-

tion. Thus, it provides a possible explanation for observed

variation across studies and across species in the extent

and direction of correlations between trait values and the

developmental plasticity of those traits (Auld et al. 2010;

Mathot et al. 2012).

Several novel, nonintuitive predictions of the model fol-

low from our assumption that behavioral variability at

birth or hatching is related to the variance of the prior

distribution, that is, the extent to which neonates are “cer-

tain” about their prior estimate of the state of the world

(see app. A). Here, the major caveat is that the behavior

in question should be fully functional in neonates, since

the intraindividual variability of some types of behavior

may change over ontogeny as a result of maturational

changes in neurological or morphological systems (see the

ontogenetic changes in the IIV of reaction times in hu-

mans; Tamnes et al. 2012). However, if we can assume

that the variability of the behavior expressed by a neonate

reflects that individual’s uncertainty about its estimate of

the state of the world, several predictions are possible. For

instance, our model indicates that for agents who express

the same mean level of behavior when naive, those with

high levels of behavioral variability as neonates would tend

to change their mean behavior more over ontogeny than

those with low levels of behavioral variability at the same

age. The model also predicts that when agents express

intermediate levels of behavioral variability as neonates,

behavioral variability would initially increase with age for

agents whose mean behavior as neonates was very different

from the level of behavior encouraged by the experience

but would decline with age for agents whose mean be-

havior as neonates was closer to the level of behavior en-

couraged by the experience.

General Discussion and Conclusions

This study provides a simple but potentially powerful way

to begin investigating a long-standing question in biology,

namely, how information from ancestors combines with

information from personal experiences to generate indi-

vidual or genotypic differences in developmental patterns.

In the absence of attention to this question, it has been

difficult for empiricists to interpret patterns they have ob-

served in their data and difficult for theoreticians to in-

corporate reasonable assumptions about this process into

their models.

We illustrated this approach with a simple scenario, in

which individual differences in estimates of one variable

(here, danger) affect the development of one type of be-

havior (here, behavior related to boldness). However, as-

suming that the basic conditions are met (e.g., behavior

is expressed by neonates and then continues to be ex-

pressed by juveniles), the same approach could be ex-

tended to generate testable predictions involving other

continuously distributed variables (e.g., population den-

sity), other behavioral traits (e.g., aggressiveness), or even

physiological traits that vary among neonates, continue to

be expressed over ontogeny, and change in response to

cues from the environment (e.g., developmental trajec-

tories for stress responsiveness and the hypothalamic-

pituitary-adrenal axis; Hostinar et al. 2014; Koch et al.
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2014). In addition, of course, individual differences in

prior distributions might affect the developmental trajec-

tories of trait syndromes involving combinations of be-

havioral, physiological, and morphological traits (see Ka-

sumovic 2013). However, since morphological traits often

respond more slowly and less reversibly to changes in en-

vironmental cues than do behavioral traits (Gabriel et al.

2005; Hossie and Murray 2012), more complicated models

involving lagged or constrained responses might be re-

quired to predict the developmental trajectories of mor-

phological traits under different sets of environmental con-

ditions, as a function of differences among agents in their

prior distributions at birth or hatching.

More generally, we suggest that a better understanding

of how information from ancestors combines with infor-

mation from personal experiences over ontogeny will be

necessary to convert the study of individual or genotypic

differences in developmental patterns from a descriptive

to a predictive science. Despite many years of discussion

about ways that genes, maternal effects, personal experi-

ences, and other factors might interact over ontogeny to

affect the development of behavioral and other traits (see

Oyama 2000; Bateson and Gluckman 2011), empirical

studies of individual or genotypic differences in devel-

opmental trajectories or of relationships between the in-

tercepts and slopes of developmental trajectories are still

primarily descriptive, because there is little theory to drive

them. We hope that this article will encourage others to

consider how information from ancestors might combine

with information from personal experiences over ontogeny

to affect developmental trajectories. For instance, it might

be useful to construct models based on different assump-

tions about rules for combining information from ances-

tors and information from experience (e.g., models based

on additive rules) and then ask which models do a better

of job of predicting individual or genotypic differences in

developmental trajectories. Once we have a better idea of

how information from ancestors and information from

personal experiences combine over ontogeny to affect de-

velopmental trajectories, it will be possible to incorporate

reasonable assumptions about this process into future

studies of the proximate and ultimate factors responsible

for the interindividual or intergenotypic variation in de-

velopmental trajectories that is so often observed for be-

havioral and other traits.
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Effects of the Means and Variances of Prior Distributions on Bayesian Updating

Here, we show how differences between individuals in the means of their prior distributions affect Bayesian updating.

One individual (fig. A1A) has a prior distribution with a high mean, indicating that at birth or hatching, this individual

estimates that the level of danger is more likely to be high than it is to be low or moderate. This individual is then

maintained for a period (e.g., a month) under “safe” conditions, with no exposure to cues from predators, aggressive

conspecifics, or any other potential dangers. As is indicated by the shape of the likelihood function, this type of

experience is more likely to occur when the level of danger is low than when it is moderate to high. When this

individual’s prior distribution is combined with this likelihood function, via Bayesian updating, it yields the posterior

distribution shown in figure A1A. That is, after the experience, this individual revises downward its belief about the level

of danger. Finally, assuming that “boldness” is negatively related to the mean of the prior or the posterior distribution for

danger, we would expect this individual to be bolder after the experience (based on the mean of its posterior distribution)

than it was when it was naive (based on the mean of its prior distribution).

A second individual (fig. A1B) has a prior distribution with a low mean, indicating that when it is naive, this

individual estimates that the level of danger is more likely to be low than it is to be moderate to high. This individual is

then exposed to the same experience (same likelihood function) as the individual in figure A1A. However, in this case,

the estimate of the state of danger provided by this individual’s prior distribution is very similar to the estimate of the

state of danger provided by the experience. As a result, its posterior distribution is very similar to its prior distribution.

By extension, we would expect this individual’s boldness score after the experience to be similar to its score when it was

naive.

This example illustrates a very general, very basic feature of Bayesian updating, namely, that the effects of the same

experience on estimates of the state of the world depend on the discrepancy between the prior distribution and the

likelihood function (Courville et al. 2006). One can intuitively see that if a naive individual believes that the world is a

safe place, an extended period of time with no cues indicative of danger simply confirms its initial belief and hence has

little or no effect on its belief that the world is safe. On the other hand, if a naive individual believes that the world is

dangerous, an extended period of time with no cues indicative of danger is a “surprise,” so this experience is more likely

to change its estimate of danger.

A second important point is that the effect of a potentially informative experience on an individual’s estimate of the

state of the world also depends on the variance of its prior distribution (fig. A2). Consider a situation in which two

individuals both have prior distributions with the same mean value (mean p 0.8). That is, when naive, both of them

estimate that the state of danger is relatively high. However, the variance of the first individual’s prior distribution (fig.

A2A) is much higher than the variance of the second individual’s prior distribution (fig. A2B). Both individuals are then

exposed to experience indicating that the level of danger is moderately low. In the case of the first individual, this

experience leads to a reduction in its estimate of the level of danger, that is, a posterior distribution shifted to the left of

its prior distribution (fig. A2A). However, in the case of the second individual, the same experience has little effect on its

estimate of danger; its posterior distribution is very similar to its prior distribution (fig. A2B). Thus, although both

individuals would be expected to express the same low level of boldness when naive, after the same experience, the first

individual’s level of boldness would increase, but the second individual’s level of boldness would not change.

In this case, the intuitive explanation is that the variance of an individual’s prior distribution indicates the degree of

confidence an individual has in its initial belief about the state of the world. If a naive individual vaguely suspects that

the world might be dangerous, experience indicating that it is actually safe should alter its estimate of the state of the

danger, and hence its behavior. However, if a naive individual firmly believes that the world is dangerous, that same

experience should have little or no effect on either its belief or its behavior.
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Figure A1: Effect of the mean of the prior distribution on Bayesian updating. Two individuals are both exposed to the same experience,

with the likelihood function indicated in red. The first individual has a prior distribution with a high mean (A); the second individual has

a prior distribution with a low mean (B). When the likelihood function and the prior distribution contradict each other (A), the posterior

distribution is displaced from the prior distribution. In contrast, when the likelihood function and the prior distribution are concordant (B),

the posterior distribution is very similar to the prior distribution.
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Estimating Posterior Probabilities Using Bayesian Estimation

Our analysis is based on the assumption that an individual’s behavior is influenced by its estimate of the value of a

variable A (e.g., danger) and that these values can vary continuously between a minimum and a maximum. However, for

the purposes of computing the posterior probability, it is easier to discretize the variable into a number of small, mutually

exclusive states. We assume that the minimum and maximum values of the variable are Amin p 0 and Amax p 1. Thus,

when we discretize the variable into n p 100 equally spaced states between its minimum and maximum values, the ith

state will be bounded by (0.01(i ! 1), 0.01i). If A1, A2, ..., An are the n individual states, then the probability of the

variable being in state Ai is described by P(Ai). Also, since A1, A2, ..., An represent all possible states of the variable, the

sum of their probabilities will add up to 1, that is,

P(A )" P(A )" … " P(A ) p 1.1 2 n

Next, P(B) is the probability that experience B will occur. The probability of B, given variable A, is given by the Law

of Total Probabilities as , where P(BFAi) represents theP(BFA) p P(A )P(BFA )" P(A )P(BFA )" … " P(A )P(BFA )1 1 2 2 n n

conditional probability of B, given the state Ai. The conditional probability function relating the experience to the

variable, that is, P(BFA), is called the likelihood function (see “Model Description”). Using Bayes’s theorem, we can now
estimate the posterior probability of any given state Ai, given the occurrence of the experience B, as

P(A )P(BFA )i i
P(A FB) p .i

P(B)

In our analysis, we use the beta distribution (see “Model Description”) to describe both prior distributions and

likelihood functions. The general form of the probability density function for a beta distribution is

G(a " b)
a!1 b!1P(x) p x (1! x) ,

G(a)G(b)

with 0 ≤ x ≤ 1 and P(x) p 0 for all x outside this range, where G represents the Gamma function and a and b are

parameters of the beta distribution. Because this analysis involves two different beta distributions, we describe the prior

distribution using a beta distribution in which a p a and b p b and the likelihood function using a second beta

distribution, in which a p c and bp d.

For n p 100, for the prior distribution we can numerically approximate the probability P(Ai) by

0.01(i ! 1)" 0.01i
P(A ) p 0.01p p 0.01p (0.01i ! 0.005),i A A[ ]2

where pA(x) is the probability density function for the first beta distribution. Similarly, the probability of occurrence of the

experience B, given the ith state Ai, can be computed as

0.01(i ! 1)" 0.01i
P(BFA ) p p p p (0.01i ! 0.005),i B B[ ]2

where pB(x) is the probability density function for the second beta distribution.

The posterior probabilities of each of the states can then be computed as follows. First, we compute the prior

distribution. If we indicate the midpoint of the ith state as and A1, A2, ..., An are the n statesy p (0.01i ! 0.005)i
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associated with variable A, then the prior probability distribution may be computed using the standard beta probability

density function as

G(a ! b)
a"1 b"1P(A ) p 0.01p (y ) p 0.01 (0.01i " 0.005) (1" 0.01i ! 0.005) .i A i

G(a)G(b)

Similarly, the conditional probability, P(BFAi), for each state can be computed using the beta probability function with
parameters c and d as

G(c ! d)
c"1 d"1P(BFA ) p 0.01p (y ) p 0.01 (0.01i " 0.005) (1" 0.01i ! 0.005) .i B i

G(c)G(d)

Based on Bayes’s theorem, the posterior probability of each state is given by , for i p 1,P(A FB) p P(A )P(BFA )/P(B)i i i

2, ..., n. Finally, we need to normalize these posterior probabilities, so that the sum .P(A )! P(A )! … ! P(A ) p 11 2 n

Normalization is required because we have specified that A1, A2, ...., An cover all possible states of the variable A, so that

the sum of the probabilities of these states must add up to 1 for any prior or posterior distribution. We normalize the

posterior probabilities by dividing each P (AiFB) by the term

100

P(A FB),! i
ip1

so that the final posterior probabilities are given by

P(A FB) P(A )P(BFA ) P(B) P(A )P(BFA )i i i i i
p p .100 100 100

P(B)! P(A FB) ! P(A )P(BFA ) ! P(A )P(BFA )i i i i iip1 ip1 ip1

The posterior distribution generated by this procedure is not necessarily a beta distribution, even though the prior

distribution was a beta distribution. However, this posterior distribution can be used as the prior distribution for the next

experience because this posterior distribution is available as a computed distribution at the end of the process described

above.

Although P(B) can take on many different values, the value of P(B) itself does not affect the computation of the

posterior distribution, because of the process of normalizing the posterior probabilities (see equation above). An

alternative method for computing the distributions for P(Ai) and P(BFAi) would be to use the cumulative probability
distribution function for a beta distribution. For example, the prior distribution can be computed as P(Ai) p

betaCDF(0.01i, a, b) " betaCDF(0.01(i " 1), a, b), where betaCDF is the beta cumulative distribution function with

parameters a and b. This function is available in most standard statistical packages (e.g., R, SAS).
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Effects of Different Likelihood Functions on Developmental Trajectories

Effects of the Reliability of Likelihood Functions on Developmental Trajectories

Differences among agents (individuals or genotypes) in developmental trajectories are most apparent for likelihood

functions with intermediate reliabilities. When the likelihood function for a given experience is very unreliable (fig. C1),

the experience has little effect on the behavior of any agent. As a result, differences across agents in developmental

trajectories will be difficult to detect, and any behavioral differences observed in naive agents will be largely maintained

through ontogeny. Conversely, when the likelihood function for a given experience is very reliable (fig. C4), the

experience has a very strong effect on the behavior of all but those agents whose prior distributions have very low

variance. As a result, after a relatively short period, most agents express similar behavior.

For all figures in this appendix, the means of the prior distributions (at age 0) are indicated by symbols—circles for

0.1, squares for 0.3, upward triangles for 0.5, diamonds for 0.7, and downward triangles for 0.9—and the variances of the

prior distributions are indicated by lines—dot-dashed gray for 0.001, dashed black for 0.02, and solid black for the

maximum variance for the given mean. The likelihood functions used to generate each set of developmental trajectories

are indicated in the right-hand panel. For each likelihood function, we indicate the probability of the experience, given

the state (P(ExpFState)) for each of the 100 states from 0 to 1.
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Figure C1: Developmental trajectories (left) for a likelihood function with mean p 0.556, var p 0.076, a p 1.25, and b p 1 (right).
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Figure C2: Developmental trajectories (left) for a likelihood function with mean p 0.667, var p 0.056, a p 2, and b p 1 (right).
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Figure C3: Developmental trajectories (left) for a likelihood function with mean p 0.800, var p 0.0267, a p 4, and b p 1 (right).
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Figure C4: Developmental trajectories (left) for a likelihood function with mean p 0.889, var p 0.010, a p 8, and b p 1 (right).

Effects of the Shapes of Likelihood Functions on Developmental Trajectories

For likelihood functions of different shapes, the behavior of different agents tends to converge on the behavior

encouraged by the experience. In addition, rates of change in behavior are higher early in ontogeny than later in

ontogeny, differential consistency is lower early in ontogeny than later in ontogeny, differences among agents in prior

distributions have long-lasting effects on behavior, and there are predictable relationships, across agents, between

intercepts and the shapes or slopes of their developmental trajectories. These effects are illustrated here using a right-

biased (fig. C5), a left-biased (fig. C6), and a unimodal (fig. C7) likelihood function.
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Figure C5: Developmental trajectories (left) for a right-biased likelihood function with mean p 0.667, var p 0.056, a p 2, and b p1

(right).
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Figure C6: Developmental trajectories (left) for a left-biased likelihood function with mean p 0.333, var p 0.056, a p 1, and b p 2

(right).
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Figure C7: Developmental trajectories (left) for a unimodal likelihood function with mean p 0.5, var p 0.04, a p 2.625, and b p

2.625 (right).
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Effects of Different Response Functions on Developmental Trajectories

We model different response functions as follows: (1) a linear function, B p m; (2) an asymptotic function, B p 1 !

e!m/0.3; (3) an exponential function, B p (1/27)(e!m/0.3
! 1); and (4) a sigmoid function, B p 1/(1 " e10(m!0.5)); m is the

mean of a prior or a posterior distribution and B is level of behavior. For each response function, we illustrate the

developmental trajectories of 15 hypothetical agents, each of which was exposed four times to a personal experience with

a right-biased likelihood function with intermediate reliability (mean p 0.67, var p 0.056, a p 2, and b p1; see fig.

C2).

For all figures in this appendix, the means of the prior distributions (at age 0) are indicated by symbols—circles for

0.1, squares for 0.3, upward triangles for 0.5, diamonds for 0.7, and downward triangles for 0.9—and the variances of the

prior distributions are indicated by lines—dot-dashed gray for 0.001, dashed black for 0.02, and solid black for the

maximum variance for the given mean. The shape of the response function is shown in a panel to the right of each set of

developmental trajectories.
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Figure D1: Developmental trajectories (left) for a linear response function (right).
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Figure D2: Developmental trajectories (left) for an asymptotic response function (right).
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Figure D3: Developmental trajectories (left) for an exponential response function (right).
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Figure D4: Developmental trajectories (left) for a sigmoid response function (right).
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Joint Effects of Mean and Variances of Prior Distributions on Bayesian Updating

Here we consider how the means and variances of prior distributions jointly affect Bayesian updating, based on the model

outlined in the text (also see app. B). We define a variable Dmean to indicate the effect of a given experience on an

individual’s estimate of the state, where Dmean p (mean of the posterior distribution ! mean of the prior distribution). A

second variable, Dvar, indicates the effect of a given experience on an individual’s certainty about that estimate, where

Dvar p (variance of the posterior distribution ! variance of the prior distribution). Figures E1 and E2 indicate the values

of Dmean and Dvar, respectively, after individuals with a range of prior distributions have been exposed once to an

experience with a right-biased likelihood function with intermediate reliability.

Many basic features of Bayesian updating are evident in figure E1. Because the likelihood function for this particular

experience is right biased, the experience has a much stronger effect on the estimate of the state (Dmean) for individuals

whose prior distributions had low mean values (e.g., prior mean p 0.1) than for individuals whose prior distributions had

high mean values (e.g., prior mean p 0.9). In addition, regardless of their prior means, the same experience has less

effect on the estimate of the state for individuals whose prior distributions had low variance (e.g., prior variance ! 0.01)

than for individuals whose prior distributions had higher variance.

The mean and variance of an individual’s prior distribution also determine how a given experience will affect an

individual’s degree of certainty about its estimate of the state of the world, as indicated by Dvar (fig. E2). Although

exposure to experience with a right-biased likelihood function usually reduces uncertainty (indicated by negative values of

Dvar), there are two important exceptions. First, if prior distributions have low mean values (here, ≤0.2), this experience

increases rather than decreases uncertainty (indicated by positive values of Dvar). In addition, this experience has little or

no effect on uncertainty for individuals whose prior distributions had a low variance to begin with. Both of these patterns

make intuitive sense. If the information provided by personal experience sharply conflicts with an individual’s belief

before that experience, then the individual should be more uncertain about the state of the world after the experience than

before. Otherwise, reasonably informative experience should reduce uncertainty, except for individuals whose uncertainty

was already low before the experience.
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Figure E1: Effects of an experience with a moderately reliable right-biased likelihood function on Dmean (the difference between the mean

of the posterior distribution and the mean of the prior distribution), for prior distributions with a range of means and variances. The

likelihood function (right) indicates the probability of the experience, given the state, for each of the 100 possible states between 0 and

1. In this case, the likelihood function has a mean of 0.67 and a variance of 0.056; it was generated by a beta function in which a p 2

and b p 1.
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Figure E2: Effects of a moderately reliable right-biased likelihood function on Dvar (the difference between the variance of the posterior

distribution and the variance of the prior distribution), for prior distributions with a range of means and variances. The likelihood function

is the same as that in figure E1. The axes for this figure are oriented differently from those in figure E1 to improve legibility.


