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Abstract Multilabel classification is an extension of conventional classification in which a
single instance can be associated with multiple labels. Recent research has shown that, just
like for conventional classification, instance-based learning algorithms relying on the near-
est neighbor estimation principle can be used quite successfully in this context. However,
since hitherto existing algorithms do not take correlations and interdependencies between
labels into account, their potential has not yet been fully exploited. In this paper, we pro-
pose a new approach to multilabel classification, which is based on a framework that unifies
instance-based learning and logistic regression, comprising both methods as special cases.
This approach allows one to capture interdependencies between labels and, moreover, to
combine model-based and similarity-based inference for multilabel classification. As will
be shown by experimental studies, our approach is able to improve predictive accuracy in
terms of several evaluation criteria for multilabel prediction.

Keywords Multilabel classification · Instance-based learning · Nearest neighbor
classification · Logistic regression · Bayesian inference

1 Introduction

In conventional classification, each instance is assumed to belong to exactly one among a
finite set of candidate classes. As opposed to this, the setting of multilabel classification
allows an instance to belong to several classes simultaneously or, say, to attach more than
one label to a single instance. Problems of this type are ubiquitous in everyday life: At
IMDb, a movie can be categorized as action, crime, and thriller; a CNN news report can
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be tagged as people and political at the same time; in biology, a typical multilabel learning
example is the gene functional prediction problem, where a gene can be associated with
multiple functional classes, such as metabolism, transcription, and protein synthesis.

Multilabel classification has received increasing attention in machine learning in recent
years, not only due to its practical relevance, but also as it is interesting from a theoretical
point of view. In fact, even though it is possible to reduce the problem of multilabel classi-
fication to conventional classification in one way or the other and, hence, to apply existing
methods for the latter to solve the former, straightforward solutions of this type are usually
not optimal. In particular, since the presence or absence of the different class labels has to
be predicted simultaneously, it is obviously important to exploit correlations and interdepen-
dencies between these labels. This is usually not accomplished by simple transformations to
standard classification.

Even though quite a number of more sophisticated methods for multilabel classification
has been proposed in the literature, the application of instance-based learning (IBL) has not
been studied very deeply in this context so far. This is a bit surprising, given that IBL algo-
rithms based on the nearest neighbor estimation principle have been applied quite success-
fully in classification and pattern recognition for a long time (Aha et al. 1991). A notable
exception is the multilabel k-nearest neighbor (MLKNN) method that was recently pro-
posed in Zhang and Zhou (2007), where it was shown to be competitive to state-of-the-art
machine learning methods.

In this paper, we propose a novel approach to multilabel classification, which is based on
a framework that unifies instance-based learning and logistic regression, comprising both
methods as special cases. This approach overcomes some limitations of existing instance-
based multilabel classification methods, including MLKNN. In particular, it allows one to
capture interdependencies between the class labels in a proper way.

The rest of this paper is organized as follows: The problem of multilabel classification
is introduced in a more formal way in Sect. 2, and related work is discussed in Sect. 3.
Our novel method is then described in Sect. 4. Section 5 is devoted to experiments with
several benchmark data sets. The paper ends with a summary and some concluding remarks
in Sect. 6.

2 Multilabel classification

Let X denote an instance space and let L = {λ1, λ2 . . . λm} be a finite set of class labels.
Moreover, suppose that each instance x ∈ X can be associated with a subset of labels L ∈ 2L ;
this subset is often called the set of relevant labels, while the complement L \L is considered
as irrelevant for x. Given training data in the form of a finite set T of observations in the
form of tuples (x,Lx) ∈ X × 2L , typically assumed to be drawn independently from an
(unknown) probability distribution on X × 2L , the goal in multilabel classification is to
learn a classifier h : X → 2L that generalizes well beyond these observations in the sense of
minimizing the expected prediction loss with respect to a specific loss function; commonly
used loss functions will be reviewed in Sect. 5.3.

Note that multilabel classification can be reduced to a conventional classification problem
in a straightforward way, namely by considering each label subset L ∈ 2L as a distinct (meta-
)class. This approach is referred to as label powerset (LP) in the literature. An obvious
drawback of this approach is the potentially large number of classes that one has to deal
with in the newly generated problem; obviously, this number is 2|L| (or 2|L| − 1 if the empty
set is excluded as a prediction). This is the reason why LP typically works well if the original
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label set L is small but quickly deteriorates for larger label sets. Nevertheless, LP is often
used as a benchmark, and we shall also include it in our experiments later on (cf. Sect. 5).

Another way of reducing multilabel to conventional classification is offered by the binary
relevance approach. Here, a separate binary classifier hi is trained for each label λi ∈ L,
reducing the supervision to information about the presence or absence of this label while
ignoring the other ones. For a query instance x, this classifier is supposed to predict whether
λi is relevant for x (hi(x) = 1) or not (hi(x) = 0). A multilabel prediction for x is then
given by h(x) = {λi ∈ L |hi(x) = 1}. Since binary relevance learning treats every label
independently of all other labels, an obvious disadvantage of this approach is that it ignores
correlations and interdependencies between labels.

Some of the more sophisticated approaches learn a multilabel classifier h in an indirect
way via a scoring function f : X × L → R that assigns a real number to each instance/label
combination. The idea is that a score f (x, λ) is in direct correspondence with the probability
that λ is relevant for x. Given a scoring function of this type, multilabel prediction can be
realized via thresholding:

h(x) = {λ ∈ L|f (x, λ) ≥ t},
where t ∈ R is a threshold. As a byproduct, a scoring function offers the possibility to pro-
duce a ranking of the class labels, simply by ordering them according to their score. Some-
times, this ranking is even more desirable as a prediction, and indeed, there are several
evaluation metrics that compare a true label subset with a predicted ranking instead of a
predicted label subset (cf. Sect. 5.3).

3 Related work

Multilabel classification has received a great deal of attention in machine learning in recent
years, and a number of methods has been developed, often motivated by specific types of
applications such as text categorization (Schapire and Singer 2000; Ueda and Saito 2003;
Kazawa et al. 2005; Zhang and Zhou 2006), computer vision (Boutell et al. 2004), and bioin-
formatics (Clare and King 2001; Elisseeff and Weston 2002; Zhang and Zhou 2006). Be-
sides, several well-established methods for conventional classification have been extended
to the multilabel case, including support vector machines (Godbole and Sarawagi 2004;
Elisseeff and Weston 2002; Boutell et al. 2004), neural networks (Zhang and Zhou 2006),
and decision trees (Vens et al. 2008).

In this paper, we are especially interested in instance-based approaches to multilabel clas-
sification, i.e., methods based on the nearest neighbor estimation principle (Dasarathy 1991;
Aha et al. 1991). This interest is largely motivated by the multilabel k-nearest neighbor
(MLKNN) method that has recently been proposed in Zhang and Zhou (2007). In that pa-
per, the authors show that MLKNN performs quite well in practice. In the concrete ex-
periments presented, MLKNN even outperformed some state-of-the-art model-based ap-
proaches to multilabel classification, including RankSVM and AdaBoost.MH (Elisseeff and
Weston 2002; Comite et al. 2003).

MLKNN is a binary relevance learner, i.e., it learns a single classifier hi for each label
λi ∈ L. However, instead of using the standard k-nearest neighbor (KNN) classifier as a base
learner, it implements the hi by means of a combination of KNN and Bayesian inference:
Given a query instance x with unknown multilabel classification L ⊆ L, it finds the k nearest
neighbors of x in the training data and counts the number of occurrences of λi among
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these neighbors. Considering this number, y, as information in the form of a realization of a
random variable Y , the posterior probability of λi ∈ L is given by

P(λi ∈ L|Y = y) = P(Y = y|λi ∈ L) · P(λi ∈ L)

P(Y = y)
, (1)

which leads to the decision rule

hi(x) =
{

1 if P(Y = y|λi ∈ L)P(λi ∈ L) ≥ P(Y = y|λi �∈ L)P(λi �∈ L)

0 otherwise.

The prior probabilities P(λi ∈ L) and P(λi �∈ L) as well as the conditional probabilities
P(Y = y|λi ∈ L) and P(Y = y|λi �∈ L) are estimated from the training data in terms of
corresponding relative frequencies. As an aside, we note that these estimations come with
a relatively high computational complexity, since they involve the consideration of all k-
neighborhoods of all training instances.

4 Combining IBL and logistic regression

In this section, we introduce a machine learning method whose basic idea is to consider
the information that derives from examples similar to a query instance as a feature of that
instance, thereby blurring the distinction between instance-based and model-based learning
to some extent. This idea is put into practice by means of a learning algorithm that realizes
instance-based classification as logistic regression.

4.1 KNN classification

Suppose an instance x to be described in terms of features φi , i = 1,2 . . . n, where φi(x)

denotes the value of the i-th feature for instance x. The instance space X is endowed with a
distance measure: �(x,x ′) is the distance between instances x and x ′. We shall first focus
on the case of binary classification and hence define the set of class labels by Y = {−1,+1}.
A tuple (x, y) ∈ X × Y is called a labeled instance or example. D denotes a sample that
consists of N labeled instances (xi , yi), 1 ≤ i ≤ N . Finally, a new instance x0 ∈ X (a query)
is given, whose label y0 ∈ {−1,+1} is to be estimated.

The nearest neighbor (NN) principle prescribes to estimate the label of the yet unclassi-
fied query x0 by the label of the nearest (least distant) sample instance. The KNN approach
is a slight generalization, which takes the k ≥ 1 nearest neighbors of x0 into account. That
is, an estimation ŷ0 of y0 is derived from the set Nk(x0) of the k nearest neighbors of x0,
usually by means of a majority vote:

ŷ0 = arg max
y∈Y

#{xi ∈ Nk(x0) |yi = y}. (2)

4.2 IBL as logistic regression

A key idea of our approach is to consider the labels of neighbored instances as “features”
of the query x0 whose label is to be estimated. It is worth mentioning that similar ideas
have recently been exploited in relational learning (Getoor and Taskar 2007) and collective
classification (Lu and Getoor 2003; Ghamrawi and McCallum 2005).
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Denote by p0 the prior probability of y0 = +1 and by π0 the corresponding posterior

probability. Moreover, let δi
df= �(x0,xi ) be the distance between x0 and xi . Taking the

known label yi as information about the unknown label y0, we can consider the posterior
probability

π0
df= P(y0 = +1 |yi).

More specifically, Bayes’ rule yields

π0

1 − π0
= P(yi |y0 = +1)

P(yi |y0 = −1)
· p0

1 − p0

= ρ · p0

1 − p0
,

where ρ is the likelihood ratio. Taking logarithms on both sides, we get

log

(
π0

1 − π0

)
= log(ρ) + ω0 (3)

with ω0 = log(p0) − log(1 − p0).
Model (3) still requires the specification of the likelihood ratio ρ. In order to obey the

basic principle underlying IBL, the latter should be a function of the distance δi . In fact, ρ

should become large for δi → 0 if yi = +1 and small if yi = −1: Observing a very close
instance xi with label yi = +1 (yi = −1) makes y0 = +1 more (un)likely in comparison to
yi = −1. Moreover, ρ should tend to 1 as δi → ∞: If xi is too far away, its label does not
provide any evidence, neither in favor of y0 = +1 nor in favor of y0 = −1. A parameterized
function satisfying these properties is

ρ = ρ(δ)
df= exp

(
yi · α

δ

)
,

where α > 0 is a constant. Note that the choice of a special functional form for ρ is quite
comparable to the specification of the kernel function used in (non-parametric) kernel-based
density estimation, as well as to the choice of the weight function in weighted NN estima-
tion. ρ(δ) actually determines the probability that two instances whose distance is given by
δ = �(x0,xi ) do have the same label.

Now, taking the complete sample neighborhood N (x0) of x0 into account and—as in the
naive Bayes approach—making the simplifying assumption of conditional independence,
we obtain

log

(
π0

1 − π0

)
= ω0 + α

∑
xi∈N (x0)

yi

δi

= ω0 + α · ω+(x0), (4)

where ω+(x0) can be seen as a summary of the evidence in favor of label +1. As can be
seen, the latter is simply given by the sum of neighbors with label +1, weighted by their
distance, minus the weighted sum of neighbors with label −1.

As concerns the classification of the query x0, the decision is determined by the sign of
the right-hand side in (4). From this point of view, (4) does basically realize a weighted NN
estimation, or, stated differently, it is a “model-based” version of instance-based learning.



216 Mach Learn (2009) 76: 211–225

Still, it differs from the simple NN scheme in that it includes a bias term ω0, which plays
the same role as the prior probability in Bayesian inference.

From a statistical point of view, (4) is nothing else than a logistic regression equation.
In other words, taking a “feature-based” view of instance-based learning and applying a
Bayesian approach to inference comes down to realizing IBL as logistic regression.

By introducing a similarity measure κ , inversely related to the distance function �, (4)
can be written in the form

log

(
π0

1 − π0

)
= ω0 + α

∑
xi∈N (x0)

κ(x0,xi ) · yi. (5)

Note that, as a special case, this approach can mimic the standard KNN classifier (2), namely
by setting ω0 = 0 and defining κ in terms of the (data-dependent) “KNN kernel”

κ(x0,xi ) =
{

1 if xi ∈ Nk(x0)

0 otherwise.
(6)

4.3 Estimation and classification

The parameter α in (4) determines the weight of the evidence

ω+(x0) =
∑

xi∈N (x0)

κ(x0,xi ) · yi (7)

and, hence, its influence on the posterior probability estimation π0. In fact, α plays the role of
a smoothing (regularization) parameter. The smaller α is chosen, the smoother an estimated
probability function (obtained by applying (5) to all points x0 ∈ X ) will be. In the extreme
case where α = 0, one obtains a constant function (equal to ω0).

An optimal specification of α can be accomplished by adapting this parameter to the
data D, using the method of maximum likelihood (ML). For each sample point xj denote
by

ω+(xj )
df=

∑
xj �=xi∈N (xj )

κ(xi ,xj ) · yi

the sample evidence in favor of yj = +1. The log-likelihood function is then given by the
mapping

α 
→
∑

j :yj =+1

w0 + αω+(xj ) −
N∑

j=1

log
(
1 + exp(w0 + αω+(xj )

)
, (8)

and the optimal parameter α∗ is the maximizer of (8). The latter can be computed by means
of standard methods from logistic regression. The posterior probability π0 for the query is
then given by

π0 = exp(ω0 + α∗ω+(x0))

1 + exp(ω0 + α∗ω+(x0))
.

To classify x0, one applies the decision rule

ŷ0
df=

{
+1 if π0 ≥ 1/2

−1 if π0 < 1/2.
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Subsequently, we shall refer to the method outlined above as IBLR (Instance-Based Learn-
ing by Logistic Regression).

4.4 Including additional features

In the previous section, instance-based learning has been embedded into logistic regression,
using the information coming from the neighbors of a query x0 as a “feature” of that query.
In this section, we consider a possible generalization of this approach, namely the idea to
extend the model (5) by taking further features of x0 into account:

log

(
π0

1 − π0

)
= αω+(x0) +

∑
ϕs∈F

βsϕs(x0), (9)

where F = {ϕ0, ϕ1 . . . ϕr} is a subset of the available features {φ0, φ1 . . . φn} and ϕ0 = φ0 ≡ 1,
which means that β0 plays the role of ω0. Equation (9) is a common logistic regression
model, except that ω+(x0) is a “non-standard” feature.

The approach (9), that we shall call IBLR+, integrates instance-based and model-based
(attribute-based) learning and, by estimating the regression coefficients in (9), achieves an
optimal balance between both approaches. The extended model (9) can be interpreted as a
logistic regression model of IBL, as outlined in Sect. 4.2, where the bias ω0 is no longer
constant:

log

(
π0

1 − π0

)
= ω0(x0) + αω+(x0), (10)

with ω0(x0)
df= ∑

βsϕs(x0) being an instance-specific bias determined by the model-based
part of (9).

4.5 Extension to multilabel classification

So far, we only considered the case of binary classification. To extend the approach to mul-
tilabel classification with a label set L = {λ1, λ2 . . . λm}, the idea is to train one classifier hi

for each label. For the i-th label λi , this classifier is derived from the model

log

(
π

(i)

0

1 − π
(i)

0

)
= ω

(i)

0 +
m∑

j=1

α
(i)
j · ω(i)

+j (x0), (11)

where π
(i)

0 denotes the (posterior) probability that λi is relevant for x0, and

ω
(i)
+j (x0) =

∑
x∈N (x0)

κ(x0,x) · yj (x) (12)

is a summary of the presence of the j -th label λj in the neighborhood of x0; here, yj (x) =
+1 if λj is present (relevant) for the neighbor x, and yj (x) = −1 in case it is absent (non-
relevant).

Obviously, the approach (11) is able to take interdependencies between class labels into
consideration. More specifically, the estimated coefficient α

(i)
j indicates to what extent the

relevance of label λi is influenced by the relevance of λj . A value α
(i)
j  0 means that the

presence of λj makes the relevance of λi more likely, i.e., there is a positive correlation.
Correspondingly, a negative coefficient would indicate a negative correlation.
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Note that the estimated probabilities π
(i)

0 can naturally be considered as scores for the
labels λi . Therefore, a ranking of the labels is simply obtained by sorting them in decreas-
ing order according to their probabilities. Moreover, a pure multilabel prediction for x0 is
derived from this ranking via thresholding at t = 0.5.

Of course, it is also possible to combine the model (11) with the extension proposed in
Sect. 4.4. This leads to a model

log

(
π

(i)

0

1 − π
(i)

0

)
=

m∑
j=1

α
(i)
j · ω(i)

+j (x0) +
∑
ϕs∈F

β(i)
s ϕr(x0). (13)

We shall refer to the extensions (11) and (13) of IBLR to multilabel classification as IBLR-
ML and IBLR-ML+, respectively.

5 Experimental results

This section is devoted to experimental studies that we conducted to get a concrete idea of
the performance of our method. Before presenting the results of our experiments, we give
some information about the learning algorithms and data sets included in the study, as well
as the criteria used for evaluation.

5.1 Learning algorithms

For the reasons mentioned previously, our main interest is focused on MLKNN, which is
arguably the state-of-the-art in instance-based multilabel ranking; we used its implemen-
tation in the MULAN package (Tsoumakas and Katakis 2007). MLKNN is parameterized
by the size of the neighborhood, for which we adopted the value k = 10. This value is rec-
ommended in Zhang and Zhou (2007), where it was found to yield the best performance.
For the sake of fairness, we use the same neighborhood size for our method, in conjunction
with the KNN kernel (6). In both cases, the simple Euclidean metric (on the complete at-
tribute space) was used as a distance function. For our method, we tried both variants, the
pure instance-based version (11), and the extended model (13) with F including all avail-
able features. Intuitively, one may expect the latter, IBLR-ML+, to be advantageous to the
former, IBLR-ML, as it can use features in a more flexible way. Yet, one should note that,
since we simply included all attributes in F , each attribute will essentially be used twice in
IBLR-ML+, thus producing a kind of redundancy. Besides, model induction will of course
become more difficult, since a larger number of parameters needs to be estimated.

As an additional baseline we used binary relevance learning (BR) with three different
base learners: logistic regression, C4.5 (the WEKA (Witten and Frank 2005) implementation
J48 in its default setting), and KNN (again with k = 10). Finally, we also included label
powerset (LP) with C4.5 as a base learner.

5.2 Data sets

Benchmark data for multilabel classification is not as abundant as for conventional classifi-
cation, and indeed, experiments in this field are often restricted to a very few or even only a
single data set. For our experimental study, we have collected a comparatively large number
of seven data sets from different domains; an overview is given in Table 1.1

1All data sets are public available at http://mlkd.csd.auth.gr/multilabel.html and http://lamda.nju.edu.cn/
data.htm.

http://mlkd.csd.auth.gr/multilabel.html
http://lamda.nju.edu.cn/data.htm
http://lamda.nju.edu.cn/data.htm
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Table 1 Statistics for the multilabel data sets used in the experiments. The symbol * indicates that the data
set contains binary features; cardinality is the average number of labels per instance

Data set Domain #Instances #Attributes #Labels Cardinality

Emotions Music 593 72 6 1.87

Image Vision 2000 135 5 1.24

Genbase Biology 662 1186∗ 27 1.25

Mediamill Multimedia 5000 120 101 4.27

Reuters Text 7119 243 7 1.24

Scene Vision 2407 294 6 1.07

Yeast Biology 2417 103 14 4.24

The emotions data was created from a selection of songs from 233 musical albums (Tro-
hidis et al. 2008). From each song, a sequence of 30 seconds after the initial 30 seconds was
extracted. The resulting sound clips were stored and converted into wave files of 22050 Hz
sampling rate, 16-bit per sample and mono. From each wave file, 72 features have been
extracted, falling into two categories: rhythmic and timbre. Then, in the emotion labeling
process, 6 main emotional clusters are retained corresponding to the Tellegen-Watson-Clark
model of mood: amazed-surprised, happy-pleased, relaxing-clam, quiet-still, sad-lonely and
angry-aggressive.

Image and scene are semantic scene classification data sets proposed, respectively, by
Zhou and Zhang (2007) and Boutell et al. (2004), in which a picture can be categorized into
one or more classes. In the scene data, for example, pictures can have the following classes:
beach, sunset, foliage, field, mountain, and urban. Features of this data set correspond to
spatial color moments in the LUV space. Color as well as spatial information have been
shown to be fairly effective in distinguishing between certain types of outdoor scenes: bright
and warm colors at the top of a picture may correspond to a sunset, while those at the bottom
may correspond to a desert rock. Features of the image data set are generated by the SBN
method (Maron and Ratan 1998) and essentially correspond to attributes in an RGB color
space.

From the biological field, we have chosen the two data sets yeast and genbase. The yeast
data set is about predicting the functional classes of genes in the Yeast Saccharomyces cere-
visiae. Each gene is described by the concatenation of micro-array expression data and a
phylogenetic profile, and is associated with a set of 14 functional classes. The data set con-
tains 2417 genes in total, and each gene is represented by a 103-dimensional feature vector.
In the genbase data, 27 important protein families are considered, including, for example,
PDOC00064 (a class of oxydoreductases) and PDOC00154 (a class of isomerases). During
the preprocessing, a training set was exported, consisting of 662 proteins that belong to one
or more of these 27 classes.

From the text processing field, we have chosen a subset of the widely studied Reuters-
21578 collection (Sebastiani 2002). The seven most frequent categories are considered. Af-
ter removing documents whose label sets or main texts are empty, 8866 documents are
retained where only 3.37% of them are associated with more than one class label. After
randomly removing documents with only one label, a text categorization data set containing
2,000 documents is obtained. Each document is represented as a bag of instances using the
standard sliding window techniques, where each instance corresponds to a text segment en-
closed in one sliding window of size 50 (overlapped with 25 words). “Function words” are
removed from the vocabulary and the remaining words are stemmed. Instances in the bags
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adopt the “bag-of-words” representation based on term frequency. Without loss of effec-
tiveness, dimensionality reduction is performed by retaining the top 2% words with highest
document frequency. Thereafter, each instance is represented as a 243-dimensional feature
vector.

The mediamill data set is from the field of multimedia indexing and originates from
the well-known TREC Video Retrieval Evaluation data (TRECVID 2005/2006) initiated by
American National Institute of Standards and Technology (NIST), which contains 85 hours
of international broadcast news data. The task in this data set is the automated detection of a
lexicon of 101 semantic concepts in videos. Every instance of this data set has 120 numeric
features including visual, textual, as well as fusion information. The trained classifier should
be able to categorize an unseen instance to some of these 101 labels, e.g., face, car, male,
soccer, and so on. More details about this data set can be found at Snoek et al. (2006).

5.3 Evaluation measures

To evaluate the performance of multilabel classification methods, a number of criteria and
metrics have been proposed in the literature. For a classifier h, let h(x) ⊆ L denote its
multilabel prediction for an instance x, and let Lx denote the true set of relevant labels.
Moreover, in case a related scoring function f is also defined, let f (x, λ) denote the score
assigned to label λ for instance x. The most commonly used evaluation measures are defined
as follows:

• Hamming loss computes the percentage of labels whose relevance is predicted incorrectly:

HamLoss(h) = 1

|L|
∣∣h(x)�Lx

∣∣, (14)

where � is the symmetric difference between two sets.
• One error computes how many times the top-ranked label is not relevant:

OneError(f ) =
{

1 if arg maxλ∈L f (x, λ) /∈ Lx

0 otherwise
(15)

• Coverage determines how far one needs to go in the list of labels to cover all the relevant
labels of an instance. This measure is loosely related to the precision at the level of perfect
recall:

Coverage(f ) = max
λ∈Lx

rankf (x, λ) − 1, (16)

where rankf (x, λ) denotes the position of label x in the ordering induced by f .
• Rank loss computes the average fraction of label pairs that are not correctly ordered:

RankLoss(f ) = #{(λ,λ′)|f (x, λ) ≤ f (x, λ′), (λ,λ′) ∈ Lx × Lx}
|Lx ||Lx |

, (17)

where Lx = L \ Lx is the set of irrelevant labels.
• Average precision determines for each relevant label λ ∈ Lx the percentage of relevant

labels among all labels that are ranked above it, and averages these percentages over all
relevant labels:

AvePrec(f ) = 1

|Lx |
∑
λ∈Lx

|{λ′|rankf (x, λ′) ≤ rankf (x, λ), λ′ ∈ Lx}|
rankf (x, λ)

. (18)
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Notice that only Hamming loss evaluates mere multilabel predictions (i.e., the multilabel
classifier h), while the others metrics evaluate the underlying ranking function f . Moreover,
smaller values indicate better performance for all measures except average precision. Fi-
nally, except for coverage, all measures are normalized and assume values between 0 and 1.

5.4 Results and discussion

The results of a cross validation study (10-fold, 5 repeats) are summarized in Table 2. As
can be seen, the baseline methods BR and LP are in general not competitive. Looking at
the average ranks, IBLR-ML consistently outperforms all other methods, regardless of the
evaluation metric, indicating that it is the strongest method overall. The ranking among
the three instance-based methods is IBLR-ML � IBLR-ML+ � MLKNN for all measures
except OneError, for which the latter two change the position.

To analyze the results more thoroughly, we followed the two-step statistical test proce-
dure recommended in Demsar (2006), consisting of a Friedman test of the null hypothesis
that all learners have equal performance and, in case this hypothesis is rejected, a Nemenyi
test to compare learners in a pairwise way. Both tests are based on the average ranks as
shown in the bottom line in Table 2. Even though the Friedman test suggests that there are
significant differences between the methods, most of the pairwise comparisons remain sta-
tistically non-significant (at a significance level of 5%); see Fig. 1. This is not surprising,
however, given that the number of data sets included in the experiments, despite being much
higher than usual, is still quite limited from a statistical point of view. Nevertheless, the
overall picture taken from the experiments is clearly in favor of IBLR-ML.

As to MLKNN, it is interesting to compare this method with the BR-version of KNN.
In fact, since MLKNN is a binary relevance learner, too, the only difference between these

Fig. 1 Comparison of all classifiers against each other with the Nemenyi test. Groups of classifiers that are
not significantly different (at p = 0.05) are connected
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Table 2 Experimental results in terms of different evaluation measures. The number in brackets behind the
performance value is the rank of the method on the corresponding data set (for each data set, the methods are
ranked in decreasing order of performance). The average rank is the average of the ranks across all data sets

iblr-ml+ iblr-ml mlknn lp br-lr br-c4.5 br-knn

Hamming

Emotions 0.213(3) 0.185(1) 0.263(6) 0.265(7) 0.214(4) 0.253(5) 0.191(2)
Genbase 0.002(2) 0.002(3) 0.005(7) 0.002(4) 0.002(5) 0.001(1) 0.004(6)
Image 0.182(1) 0.189(2) 0.195(4) 0.257(7) 0.202(5) 0.245(6) 0.193(3)
Mediamill 0.03(6) 0.028(3) 0.027(2) 0.039(7) 0.029(4) 0.032(5) 0.027(1)
Reuters 0.044(1) 0.084(6) 0.073(5) 0.067(4) 0.049(2) 0.058(3) 0.09(7)
Scene 0.126(4) 0.084(1) 0.087(2) 0.142(7) 0.14(6) 0.133(5) 0.093(3)
Yeast 0.199(4) 0.194(1) 0.194(2) 0.28(7) 0.206(5) 0.25(6) 0.196(3)

Average rank 3 2.43 4 6.14 4.43 4.43 3.57

One Error

Emotions 0.278(3) 0.257(1) 0.393(5) 0.43(7) 0.278(4) 0.422(6) 0.265(2)
Genbase 0.014(5) 0.007(2) 0.009(3) 0.01(4) 0.015(6) 0.003(1) 0.017(7)
Image 0.328(1) 0.367(2) 0.382(4) 0.507(6) 0.37(3) 0.512(7) 0.386(5)
Mediamill 0.356(5) 0.185(3) 0.136(2) 0.367(6) 0.277(4) 0.381(7) 0.133(1)
Reuters 0.076(1) 0.22(6) 0.185(5) 0.162(4) 0.086(2) 0.145(3) 0.233(7)
Scene 0.349(4) 0.224(2) 0.223(1) 0.394(6) 0.364(5) 0.411(7) 0.26(3)
Yeast 0.249(5) 0.227(1) 0.228(2) 0.351(6) 0.241(4) 0.389(7) 0.234(3)

Average rank 3.43 2.43 3.14 5.57 4 5.43 4

Coverage

Emotions 1.844(4) 1.689(1) 2.258(5) 2.576(6) 1.836(3) 2.608(7) 1.771(2)
Genbase 0.356(1) 0.422(4) 0.561(7) 0.529(6) 0.391(3) 0.372(2) 0.436(5)
Image 0.963(1) 1.056(3) 1.129(5) 1.589(6) 1.052(2) 1.615(7) 1.102(4)
Mediamill 16.681(4) 15.161(3) 12.757(1) 49.469(7) 14.323(2) 47.996(6) 21.344(5)
Reuters 0.411(1) 0.758(4) 0.676(3) 0.986(7) 0.44(2) 0.852(6) 0.82(5)
Scene 0.911(5) 0.466(1) 0.472(2) 1.145(6) 0.871(4) 1.288(7) 0.551(3)
Yeast 6.289(3) 6.203(1) 6.273(2) 9.204(6) 6.492(4) 9.353(7) 6.517(5)

Average rank 2.71 2.43 3.57 6.29 2.86 6 4.14

Rank Loss

Emotions 0.168(2) 0.146(1) 0.258(5) 0.499(7) 0.168(3) 0.372(6) 0.183(4)
Genbase 0.002(1) 0.004(2) 0.006(4) 0.017(7) 0.005(3) 0.006(5) 0.01(6)
Image 0.175(1) 0.197(3) 0.214(4) 0.537(7) 0.196(2) 0.409(6) 0.252(5)
Mediamill 0.05(4) 0.043(3) 0.037(1) 0.451(7) 0.041(2) 0.187(6) 0.117(5)
Reuters 0.026(1) 0.083(4) 0.069(3) 0.18(7) 0.03(2) 0.092(5) 0.113(6)
Scene 0.15(4) 0.076(1) 0.077(2) 0.393(7) 0.157(5) 0.299(6) 0.109(3)
Yeast 0.168(3) 0.164(1) 0.167(2) 0.545(7) 0.176(4) 0.362(6) 0.204(5)

Average rank 2.29 2.14 3 7 3 5.71 4.86

Ave. Prec.

Emotions 0.794(3) 0.816(1) 0.71(5) 0.683(6) 0.794(4) 0.683(7) 0.805(2)
Genbase 0.989(3) 0.99(2) 0.989(4) 0.986(6) 0.988(5) 0.993(1) 0.982(7)
Image 0.789(1) 0.763(2) 0.748(5) 0.653(6) 0.763(3) 0.649(7) 0.752(4)
Mediamill 0.694(5) 0.731(3) 0.751(1) 0.498(7) 0.722(4) 0.582(6) 0.739(2)
Reuters 0.951(1) 0.859(6) 0.881(4) 0.871(5) 0.944(2) 0.889(3) 0.848(7)
Scene 0.773(4) 0.867(1) 0.867(2) 0.734(6) 0.769(5) 0.715(7) 0.844(3)
Yeast 0.763(3) 0.769(1) 0.764(2) 0.621(6) 0.754(5) 0.619(7) 0.761(4)

Average rank 2.86 2.29 3.29 6 4 5.43 4.14
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Table 3 Classification error on
binary classification problems.
The number in brackets behind
the performance value is the rank
of the method on the
corresponding data set (for each
data set, the methods are ranked
in decreasing order of
performance). The average rank
is the average of the ranks across
all data sets

Data set IBLR-ML+ IBLR-ML MLKNN BR-KNN

breast-cancer .280(4) .252(1) .259(2) .262(3)

breast-w .037(3.5) .037(3.5) .036(2) .034(1)

colic .195(3) .176(1) .350(4) .182(2)

credit-a .135(2) .132(1) .328(4) .138(3)

credit-g .229(1) .265(3) .306(4) .261(2)

diabetes .233(1) .263(4) .259(3) .256(2)

heart-statlog .170(1) .193(2.5) .363(4) .193(2.5)

hepatitis .175(1) .192(2) .204(4) .199(3)

ionosphere .117(2.5) .117(2.5) .108(1) .171(4)

kr-vs-kp .018(1) .044(2.5) .044(2.5) .046(4)

labor .210(3) .130(1) .270(4) .150(2)

mushroom .000(1.5) .000(1.5) .001(3.5) .001(3.5)

sick .030(1) .039(2) .061(4) .040(3)

sonar .250(2) .245(1) .327(4) .284(3)

tic-tac-toe .125(1) .137(3) .136(2) .317(4)

vote .044(1) .060(2) .074(3) .076(4)

Average rank 1.84 2.09 3.19 2.88

two methods concerns the incorporation of global information in MLKNN, which is accom-
plished through the Bayesian updating (1) of local information about the relevance of labels.
From Table 2, it can be seen that MLKNN is better than BR-KNN in terms of all ranking
measures, but not in terms of the Hamming loss, for which it is even a bit worse. Thus,
in terms of mere relevance prediction, MLKNN does not seem to offer special advantages.
Our explanation for this finding is that the incorporation of global information is indeed not
useful for a simple 0/1 prediction. In a sense, this is perhaps not very surprising, given that
the use of global information is somehow in conflict with the basic principle of local esti-
mation underlying nearest neighbor prediction. Exploiting such information does, however,
offer a reasonable way to break ties between class labels, which in turn explains the positive
effect on ranking performance. In fact, one should note that, when simply scoring labels by
the number of occurrences among the k neighbors of a query, such ties are quite likely; in
particular, all non-relevant labels that never occur will have a score of 0 and will hence be
tied. Resorting to global information about their relevance is then clearly more reasonable
than breaking ties at random.

To validate our conjecture that the incorporation of global information in MLKNN is
actually not very useful for mere relevance prediction, we have conducted an additional
experiments using 16 binary classification problems from the UCI repository. Using this
type of data makes sense, since, for a binary relevance learner, minimizing Hamming loss
is equivalent to minimizing 0/1 loss for m binary classification problems that are solved
independently of each other. The results of a 5 times 10-fold cross validation, summarized
in Table 3, are completely in agreement with our previous study. MLKNN does indeed
show the worst performance and is even outperformed by the simple BR-KNN. Interestingly,
IBLR-ML+ is now a bit better than IBLR-ML. A reasonable explanation for this finding
is that, compared to the multilabel case, the relevance information that comes from the
neighbors of a query in binary classification only concerns a single label and, therefore, is
rather sparse. Correspondingly, information about additional features is revaluated.
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6 Summary and conclusions

We have presented a novel approach to instance-based learning, called IBLR, that can be
used for classification in general and for multilabel classification in particular. Consider-
ing label information of neighbored examples as features of a query instance, the idea of
IBLR is to reduce instance-based learning formally to logistic regression. An optimal bal-
ance between global and local inference, and in the extended version IBLR+ also between
instance-based and model-based (attribute-oriented) learning, can then be achieved by the
estimation of optimal regression coefficients.

For multilabel classification, this idea is especially appealing, as it allows one to take
interdependencies between different labels into consideration. These dependencies are di-
rectly reflected by the sign and magnitude of related regression coefficients. This ability
distinguishes IBLR from hitherto existing instance-based methods for multilabel classifi-
cation, and is probably one of the main factors for its excellent performance. In fact, our
extensive empirical study has clearly shown that IBLR improves upon existing methods, in
particular the MLKNN method that can be considered as the state-of-the-art in instance-
based multilabel classification.

Interestingly, our results also suggest that the basic idea underlying MLKNN, namely
to combine instance-based learning and Bayesian inference, is beneficial for the ranking
performance but not in terms of mere relevance prediction. Investigating the influence on
specific performance measures in more detail, and elaborating on (instance-based) methods
for minimizing specific loss functions, is an interesting topic of future work. Besides, for
IBLR+, we plan to exploit the possibility to combine instance-based and model-based infer-
ence in a more sophisticated way, for example by selecting optimal feature subsets for both
parts instead of simply using all features twice.
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