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ABSTRACT

Retrieving semi-structured entities to answer keyword
queries is an increasingly important feature of many
modern Web applications. The fast-growing Linked Open
Data (LOD) movement makes it possible to crawl and
index very large amounts of structured data describing
hundreds of millions of entities. However, entity retrieval
approaches have yet to find efficient and effective ways
of ranking and navigating through those large data sets.
In this paper, we address the problem of Ad-hoc Object
Retrieval over large-scale LOD data by proposing a
hybrid approach that combines IR and structured search
techniques. Specifically, we propose an architecture that
exploits an inverted index to answer keyword queries as
well as a semi-structured database to improve the search
effectiveness by automatically generating queries over the
LOD graph. Experimental results show that our ranking
algorithms exploiting both IR and graph indices outperform
state-of-the-art entity retrieval techniques by up to 25%
over the BM25 baseline.

Categories and Subject Descriptors

H.3.3 [Information Storage And Retrieval]: Infor-
mation Search and Retrieval—retrieval models; H.3.4
[Information Storage And Retrieval]: Systems
and Software—performance evaluation (efficiency and
effectiveness)

General Terms

Algorithms, Experimentation, Performance

Keywords

Ad-hoc Object Retrieval, Entity Search, LOD

1. INTRODUCTION
Many modern websites, such as Web portals or news ag-

gregators, are today including entity-centric functionalities.
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Common examples include the aggregation of all pieces of
content related to a given person, or the extraction of the
most important entities appearing in a given article. Some
companies, like the New York Times, manually maintain a
directory of entities and ask human experts to create links
between their resources (e.g., news articles) and the corre-
sponding entities (e.g., celebrities appearing in the articles).
Increasingly, however, websites are turning to automated
methods due to the sheer size of the resources they have
to analyze, and the large number of entities they have to
consider.

Recently, the Linked Open Data (LOD) movement1

started an effort to make entity data openly available on
the Web. In this initiative, Uniform Resource Identifiers2

(URIs) are used to identify entities. Each entity can be
looked up (dereferenced) online, where it is described and
linked to further entities using the Resource Description
Framework3 (RDF). The fundamental difference between
LOD and standard entity datasets like, for instance,
Wikipedia, lies in the inherent structure of the data. On
the LOD cloud, the data is provided by uncorrelated parties
and is given as a giant graph of semi-structured data.

In the context of online entity search, the TREC Entity
track [3] has studied two related search tasks: “Related En-
tity Finding” (i.e., finding all entities related to a given en-
tity query) and “Entity List Completion” (i.e., finding en-
tities with common properties given some examples). The
SemSearch challenge4 focused on Ad-hoc Object Retrieval
(AOR), that is, finding the entity identifier of a specific en-
tity described by a user query [20].

This paper focuses on Ad-hoc Object Retrieval over semi-
structured data. We propose a novel search architecture that
exploits both IR and graph data management techniques
to effectively and efficiently answer AOR queries. Specifi-
cally, we propose a hybrid solution that starts by retriev-
ing an initial list of results from an inverted index using
a ranking function, and then re-ranks and extends the re-
sult list by exploiting the underlying graph representation
of the data. Our extended experimental evaluation per-
formed over standard collections shows that our proposed
solution significantly improves the effectiveness (up to 25%
improvement over the chosen baseline) while maintaining
very low query execution times. We consider our results as
especially promising since the LOD test collections that are

1http://linkeddata.org/
2http://tools.ietf.org/html/rfc3986
3http://www.w3.org/RDF/
4http://semsearch.yahoo.com



today available are noisy and incomplete, and since we ex-
pect both the quality and the coverage of LOD datasets to
rapidly improve in the future.

In summary, the main contributions of this paper are:

• A comparison of entity search techniques for AOR
tasks including state-of-the-art IR techniques such as
query extension and pseudo relevance feedback.

• A new hybrid search architecture for AOR that com-
bines IR and graph data management techniques ex-
ploiting the graph structure of the underlying data.

• A new, fairer and continuous evaluation methodology
for relevance assessment based on iterative crowsd-
sourcing.

• An extensive evaluation of our novel search system for
AOR using two standard test collections.

The rest of the paper is structured as follows. We dis-
cuss related work, focussing on Entity Search and AOR ap-
proaches, in Section 2. We briefly introduce the Linked
Open Data movement in Section 3. Section 4 is devoted
to a high-level description of our hybrid system. We de-
scribe several approaches for AOR based on inverted indices
and NLP techniques in Section 5, and describe complemen-
tary techniques based on structured queries and graph data
management techniques in Section 6. In Section 7, we exper-
imentally compare the performance of our hybrid approach
to a series of state-of-the-art AOR approaches on two stan-
dard test collections. Finally, we present our conclusions in
Section 8.

2. RELATED WORK
Searching for entities instead of documents or Web pages

is a recent trend in IR. Early approaches focused on single-
type entity search, for example in the context of the expert
finding task at the TREC Enterprise track [4], where stan-
dard IR approaches such as language modeling [1] have been
applied. Complex entity search tasks have been addressed
more recently. For instance, the INEX Entity Ranking track
[12] studied the problem of finding entities matching a key-
word query (e.g., “Countries where I can pay in Euro”) using
Wikipedia. The Entity track at TREC [3] evaluated the Re-
lated Entity Finding task, which aims at finding entities re-
lated to a given entity (e.g., “Airlines using the Boeing 747”)
using both a collection of Web pages as well as a collection of
RDF triples. Several effective approaches for this task focus
on entity type and co-occurrence information [7, 17]. The
task of ranking entities appearing in one document taking
into account the time dimension has been studied in [13].

2.1 Ad-hoc Object Retrieval
The main goal of the SemSearch Challenge is to create

evaluation collections for the task of Ad-hoc Object Re-
trieval [20] on the Web of data. This task consists in retriev-
ing entity identifiers (i.e., URIs) given a keyword query de-
scribing the single entity the user is looking for (e.g., “harry
potter”). Evaluation collections for this task have been cre-
ated by crowdsourcing relevance judgements [5].

The first approaches for AOR exploited standard IR tech-
niques that had previously been used for other entity search
tasks such as expert finding. The basic idea is to construct

an entity profile by collecting and aggregating all informa-
tion available about an entity and to index the resulting
collections of entity profiles with standard IR techniques in
order to answer entity search queries. Looking back at pre-
vious work from entity search, several techniques can be
applied to improve the effectiveness of the AOR task. For
example, different data types can be used to rank entities
for AOR based on an inverted index and BM25F [21] as a
ranking function [6].

Various methods already proposed for different entity
search tasks can be exploited for AOR as well, such as
approaches exploiting probabilistic models [2]. In [11],
Demartini et al. adopt structured and Natural Language
Processing approaches to improve the effectiveness of entity
search. We suggest further AOR approaches relying on
recent IR techniques in Section 5.

The contribution of this work is a novel hybrid approach
that benefits both from known IR ranking functions as well
as from an analysis of the graph structure of the entities. We
compare below our novel approach against state-of-the-art
entity search techniques.

2.2 Hybrid Search
A number of hybrid search systems have already been

developed. In [14], Elbassuoni and Blanco propose rank-
ing models for keyword queries over RDF data. Their task
is different from AOR as they aim at selecting subgraphs
matching the query and then ranking them by means of sta-
tistical language models. CE2 [23] is a hybrid IR-DBMS sys-
tem that provides ranking schemes for hybrid queries (i.e.,
keyword queries that describe joins and predicates between
entities) over RDF data. Beagle++ [18] is a desktop search
engine that exploits both an inverted index and a struc-
tured repository for file metadata to provide more effective
search functionalities to the desktop user. SIREn [10] is a
hybrid Web search framework that supports keyword as well
as structured queries over RDF data. SIREn focuses on scal-
ability and efficiency through novel indexing schemes that
can index data and answer user queries efficiently by using
an inverted index. Instead, we propose methods to improve
ranking effectiveness for AOR.

3. LOD PRIMER
LOD is an online movement whose origins can be traced

back to a note5 published by Tim Berner-Lee a few years
ago. LOD suggests to publish data on theWeb following four
principles: i) using URIs to identify things ii) using HTTP
URIs such that things can be dereferenced online (using for
example a Web browser) iii) providing useful, structured in-
formation about the things when they are dereferenced, us-
ing for example RDF/XML and iv) including links to other,
related URIs in the exposed data to foster data aggregation
and discovery.

Hence, LOD can be seen as a grassroots effort leverag-
ing on the current architecture of the Web (HTTP, URIs,
Content Negotiation, XML, RDF, webservers and browsers)
to publish data. Figure 1 below includes on the right-hand
side a macroscopic view on the LOD cloud as of September
2011, where each node depicts a separate data set and the
edges symbolize links between the data sets6. As of Septem-

5http://www.w3.org/DesignIssues/LinkedData.html
6Linking Open Data cloud diagram, by Richard Cyganiak
and Anja Jentzsch. http://lod-cloud.net/



ber 2011, the LOD cloud contains approximatively 300 data
sets and more than 30 billion RDF triples7. In our context,
each RDF triple can be seen as a simple sentence, connect-
ing a subject (an entity URI), a property (a predicate URI)
and an object (which can be either a URI or a literal). The
following triple, for instance

(example.net/Alice, foaf:age, ‘‘17’’)

encodes the fact that Alice (as identified by the URI
example.net/Alice) is 17 years old.

Since the same URI can be used as a subject or object in
different triples, RDF naturally forms labelled graphs that
connect entities to values and further entities. In the fol-
lowing, we make a distinction between object properties—
linking entities to other entities—and datatype properties—
associating values to a given entity8.
Large collections of triples are typically stored in a

database system (such as Oracle 11g9, Virtuoso10 or
RDF-3X [19]). LOD data sets are typically referenced
online (e.g., on CKAN11) and can be queried or crawled
over HTTP using the SPARQL12 declarative query
language.

4. SYSTEM ARCHITECTURE
We describe the architecture of our hybrid search system

in the following. Our approach is based on an inverted index
that supports full text search on one hand, and on a struc-
tured repository, which maintains a graph representation of
the original data, on the other hand. The ability to query an
inverted index and to obtain a ranked list of results allows
us to retrieve an initial set of entities that match the user
query. Starting from this set of retrieved entities, we take
advantage of algorithms exploiting the graph structure of
the data thanks to our structured repository: retrieved enti-
ties are nodes in the data graph that can be used as starting
points for graph traversals and neighborhood queries. Thus,
the structured repository is used to refine the original IR-
based results by navigating the data-graph, selecting poten-
tially new entities or reinforcing the relevance of the results
selected through the inverted index.

Figure 1 illustrates the main components of our system
and their interactions. The search process proceeds as fol-
lows. First, a user initiates an entity search through a key-
word query. The query is parsed and extended (see below
Sections 5.2 and 5.3). A first set of results is retrieved us-
ing the expanded query and an inverted index on the LOD
data. Several mechanisms can be used at this stage to im-
prove ranking effectiveness, such as a multi-field index with
BM25F scoring, NLP, or pseudo-relevance techniques (see
below Section 5 for a detailed discussion on that point.)

This first set of results is then enriched using structured
queries on (a subset of) the LOD graph. We take advan-
tage of two types or graph queries in that context: scope
queries following datatype properties (see Section 3), and

7http://www4.wiwiss.fu-berlin.de/lodcloud/state/
8We hence follow the vocabulary introduced by the Web
Ontology Language OWL, see http://www.w3.org/TR/
owl-ref/
9http://www.oracle.com/technetwork/database/
options/semantic-tech/index.html

10http://virtuoso.openlinksw.com/
11http://thedatahub.org/group/lodcloud
12http://www.w3.org/TR/rdf-sparql-query/

graph traversal queries following object properties. Both
types of queries start from the LOD nodes corresponding to
the first set of results, and retrieve additional information
(sets of literals and sets of entities respectively) to refine the
results. As the LOD graph is highly connected (i.e., there
are many properties that connect entities among themselves
or that connect entities to literals), we must at this stage
identify the most effective properties to follow in order to
limit the scope of the graph queries. The details of our
graph approach are given in Section 6.1. At this point, new
entities may be added to the result set and previously iden-
tified entities may change position in the rankings due to
the new information gathered. Finally, the top-k results are
sent back to the querier.

5. INVERTED INDEX AND AD-HOC

OBJECT RETRIEVAL TECHNIQUES
The first approach to index graph-structured datasets

such as those found in the LOD cloud is to aggregate all
information attached to the entities. Thus, we create entity
profiles by building an inverted index on the entity labels.
We consider each entity profile as a document (similarly to
candidate-centric expert finding approaches [1]) containing
all versions of the entity name directly attached to it in the
graph. This index structure considering entity profiles as
bag-of-words combined with a BM25 ranking function will
be our baseline approach. We describe below three further
approaches we propose to improve this baseline. These are
based on a structured inverted index, on NLP techniques
(query expansion), and on pseudo-relevance feedback.

5.1 Structured Inverted Index
First, we consider a structured inverted index approach,

which separately indexes different values attached to the en-
tity. In order to create a structured inverted index, we index
separately different types of information attached to the en-
tity. This is similar to previous work [6]. Specifically, we
create a structured inverted index for the three following
pieces of information:

URI First we tokenize the URI identifying the entity in the
LOD cloud. As the URI often contains the entity name
(e.g., http://dbpedia.org/page/Barack_Obama), this
field often matches the user query well.

Labels We also consider a list of manually selected
datatype properties (i.e., label, title, name, full-name,
family-name, given-name, has-pretty-name, prefLabel,
given-name, nickname, which frequently occur in
various LOD datasets) that point to a label or textual
description of the entity.

Attributes Finally, we consider all the other datatype
properties (i.e., non-label attributes) and attach their
values to the entity.

Once the indices are created, we obtain a ranked list of re-
sults by means of various ranking functions such as BM25F.

5.2 Query Expansion
Natural Language Processing techniques have been ap-

plied to other entity search tasks. In this paper, we exploit
query expansion and relevance feedback techniques on top
of the BM25 baseline for the AOR task.
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Figure 1: Our hybrid search system, where results retrieved from an inverted index are refined through
structured graph queries.

Specifically, given a disjunctive keyword query q we extend
it by adding additional related terms such as synonyms, hy-
pernyms, and hyponyms from Wordnet [15]. This makes the
query (e.g., “New York”) retrieve additional results includ-
ing different ways of referring to the specified entity (e.g.,
“Big Apple”).

In addition, we exploit commercial search engines query
autocompletion features to obtain additional keywords,
given the original user query. Specifically, we send the
original query q to a commercial search engine (Google)
and we expand it by appending the first 5 terms the
autocompletion algorithm suggests for q (e.g., “New York
Times”).

5.3 Pseudo-Relevance Feedback
Finally, we also implement pseudo-relevance feedback

techniques on top of the baseline approach by first running
the original query q and then considering the labels of
the top-3 retrieved entities to expand the user query. For
instance, the query “q=NY” can be expanded to “New
York”, “New York City” and “North Yorkshire” (labels of
the top-3 entities retrieved for the original query q).

We report evaluation results comparing those various
techniques on standard AOR collections in Section 7.

6. GRAPH-BASED ENTITY SEARCH
All the techniques described above neglect two key char-

acteristics of LOD data: i) LOD entities are interlinked,
in the sense that related entities are often connected, and
ii) data values are clustered in the graph, such that many
relevant values can be retrieved by following series of links
iteratively from a given entity. In this section, we describe
how we can leverage structured graph queries to improve
the performance of our system taking advantage of those
two characteristics.

As previously mentioned, our hybrid ranking solution con-
sists of two steps. The first step (described in the preced-
ing section) uses the IR infrastructure to obtain an initial
ranking of entity identifiers. In the second step, the graph
structure is exploited. We use the first set of entities from
the original ranking as seeds in the graph. From those ini-
tial points, we traverse the graph following promising edges,

that is, we follow object property edges potentially leading
to additional results, and datatype properties leading to ad-
ditional values.

Let Retr = {e1, e2, .., en} be the ranked list of entities
resulting from the query to the inverted index. Our goal
is to define a set of functions that use the top-N elements
of Retr to create an improved list of results StructRetr =
{e′1, e

′

2, .., e
′

m
}. This new list of results may contain entities

from Retr as well as new entities discovered when traversing
the LOD graph. To obtain StructRetr, we exploit top LOD
properties that are likely to lead to relevant results13.

Once StructRetr is obtained, we create a final result set
and return it to the user. We adopt a simple model that
linearly combines the two entity rankings:

finalScore(e′) = λ ·BM25(q, e) + (1− λ)(score(q, e, e′))

where q is the user query, score(q, e, e′) is our new ranking
function (see below Section 6.2), and BM25(q, e) is the ini-
tial score of the entity e ∈ Retr (or of the entity in Retr

that lead to e′ ∈ StructRetr by following RDF properties).

6.1 Entity Graph Traversals Using SPARQL
Queries

We describe below how we take advantage of SPARQL
queries to retrieve additional results by following object
property links in the LOD graph.

Structured Queries at Scope One.
Our simplest graph traversal approach looks for

candidate entities directly attached to entities that have
already been identified as relevant (i.e., entities in Retr).
First, we need to ensure that only meaningful edges are
followed. The object property <dbpedia:wikilink>, for
instance, represents links between entities in Wikipedia.
As an example, the entity ‘dbpedia:Stevie Wonder’ has a
<dbpedia:wikilink> pointing to ‘dbpedia:Jimi Hendrix’.
Since the AOR task aims at finding all the identifiers of
one specific entity, this kind of links is not very promising.

13It is possible to obtain such a list of properties by means
of a training test collection. In this paper, we perform cross
validation across the two different AOR test collections in
order to identify the most promising properties.



On the other hand, the <owl:sameAs> object property is
used to connect identifiers that refer to the same real world
entity. For instance, the entity ‘<dbpedia:Barack Obama>’
links via <owl:sameAs> to the corresponding Freebase entity
‘<fbase:Barack Obama>’. This object property is hence
most probably valuable for improving the effectiveness of
AOR in a LOD context.

To obtain a list of object properties worth following, we
rank all properties in the dataset by their observed likelihood
of leading to a relevant results14. Table 1 gives the top object
property scores for the SemSearch collections. Using such
a ranked list of properties as a reference, we define a series
of result extension mechanisms exploiting structured queries
over the data graph to identify new results. At this stage,
we focus on recall rather than precision in order to preserve
all candidate entities. Then, we rank candidate entities by
means of a scoring function.

The first and simplest approach (SAMEAS) we consider
is to follow exclusively the <owl:sameAs> links. Specifically,
for each entity <e> in the top-N retrieved results, we issue
the following query:

SELECT ?x

WHERE { { <e> <owl:sameAs> ?x }

UNION

{ ?x <owl:sameAs> <e> }

}

which returns all entities that are directly linked to <e> via
a <owl:sameAs> object property.

Our second approach is based on the property scores de-
fined above and exploits information from DBPedia. As DB-
Pedia originates from Wikipedia, it contains disambiguation
and redirect links to other entities. For example, ‘dbpe-
dia:Jaguar’ links via <dbpedia:disambiguates> to ‘dbpe-
dia:Jaguar Cars’ as well as to ‘dbpedia:Jaguar (computer)’
and others. Our second approach (S1 1) also follows such
links to reach additional relevant entities. Thus, we define
the following structured query:

SELECT ?x

WHERE { { <e> <owl:sameAs> ?x } UNION

{ ?x <owl:sameAs> <e> } UNION

{ <e> <dbpedia:disambiguates> ?x } UNION

{ ?x <dbpedia:redirect> <e> }

}

which extends SAMEAS queries with two additional triple
patterns.

Our third scope one approach (S1 2) includes properties
that are more specific to the user queries. In addition to
the generic properties of the previous two approaches,
we add to the list of links to follow object properties like
<dbpedia:artist>, <skos:subject>, <dbpedia:title>,
and <foaf:homepage>, that appear in Table 1 and which
lead to more general (albeit still related) entities.

The final scope one approach we propose (S1 3) extends
S1 2 by adding matching patterns using the <skos:broader>
property that links to more general entities. In addition
to those four approaches, we additionally evaluated more
complex query patterns based on the property scores defined

14We compute the property scores by counting the number
of times a property represents a path from a retrieved to a
relevant entity (or the other way around) and dividing the
result by the total number of such paths.

above but did not obtain significant improvements over our
simpler approaches.

Structured Queries at Scope Two.
An obvious extension of the above approach is two look

for related entities further in the graph by following object
property links iteratively. In the following, we describe a
few scope two approaches following pairs of links.

The number of potential paths to follow is increasing expo-
nentially with the scope of the queries. To reduce the search
space, we rank object property pairs by their likelihoods of
leading to relevant entities15.

The first strategy (S2 1) to retrieve potentially interest-
ing entities at scope two is based on structured join queries
containing top-two property pairs. The query issued to the
structured repository looks as follows:

SELECT ?y

WHERE { { <e> <dbpedia:wikilink> ?x .

?x <skos:subject> ?y } UNION

{ <e> <dbpedia:wikilink> ?w .

?w <owl:sameAs> ?y } UNION

[...]

}

The second approach (S2 2) uses a selection of the top-
two property pairs considering the starting entity e both as
a subject as well as an object of the join queries. Finally,
the third scope two approach (S2 3) applies a join query
with the most frequent property pairs that do not include
a <dbpedia:wikilink> property. The assumption is that
due to the high frequency of this type of links16 too many
entities are retrieved, which produces a noisy result set. On
the other hand, by focusing on non-frequent properties we
aim at reaching few high-quality entities.

We note that it would be straightforward to generalize our
graph traversal approach by considering scopes greater than
two, or by considering transitive closures of object proper-
ties. Such approaches impose however a higher overhead
and only marginally improve on scope one and scope two
techniques from our experience.

6.2 Neighborhood Queries and Scoring
Once a new set of entities (StructRetr) has been reached,

there is the need to 1) rank them by means of a scoring
function and 2) merge the original ranking Retr with
StructRetr. Given an entity e′ ∈ StructRetr and the
entity e ∈ Retr from which e′ originated, we compute the
e′ ranking score by defining a function score(q, e, e′) that is
used to rank all entities in StructRetr.

Our scoring function exploits a text similarity metric ap-
plied to the query and the literals directly or indirectly at-
tached to the entity by means of datatype properties. As
noted above, related literals are implicitly clustered around
entities in the LOD cloud. While many literals are directly
attached to their entities (e.g., age, label), some are at-
tached indirectly, either through RDF blank nodes (e.g.,
name-> firstname, address->zip code), or are attached to
related entities.

15Due to space limitations, we do not report here the list of
such property pairs which was computed in the same way
as for scope one queries.

16As described at http://vmlion25.deri.ie/ this is the
most frequent property in the test collection.



Table 1: Top object properties in the SemSearch collections by estimated likelihood (Recall) of connecting
retrieved and relevant entities.

From retrieved (x) to relevant entities (y) From relevant (y) to retrieved entities (x)
Object Property Recall Prec Object Property Recall Prec

S
em

S
ea

rc
h
2
0
1
0

<http://dbpedia.org/property/wikilink> 82.10% 0.81% <http://dbpedia.org/property/wikilink> 67.73% 0.52%
<skos:subject> 11.75% 0.7% <http://dbpedia.org/property/redirect> 7.47% 0.44%

<http://www.w3.org/2002/07/owl#sameAs> 1.60% 1.54% <http://www.w3.org/2002/07/owl#sameAs> 2.93% 0.76%
<http://dbpedia.org/ontology/artist> 0.98% 15.42% <http://dbpedia.org/property/disambiguates> 1.60% 3.85%

<http://dbpedia.org/property/disambiguates> 0.68% 1.98% <skos:subject> 1.33% 1.87%
<http://dbpedia.org/property/title> 0.55% 1.81% <http://xmlns.com/foaf/0.1/homepage> 1.33% 2.95%

<http://dbpedia.org/ontology/producer> 0.43% 2.87% <http://dbpedia.org/ontology/artist> 0.80% 1.97%
<http://dbpedia.org/property/region> 0.43% 8.37% . . .
<http://dbpedia.org/property/first> 0.37% 7.32%

<http://dbpedia.org/property/redirect> 0.25% 3.91%

S
em

S
ea

rc
h
2
0
1
1

<http://dbpedia.org/property/wikilink> 89.50% 0.44% <http://dbpedia.org/property/wikilink> 37.50% 0.41%
<skos:subject> 4.42% 0.22% <skos:subject> 37.50% 0.32%

<http://www.w3.org/2002/07/owl#sameAs> 1.66% 1.66% <http://www.w3.org/2002/07/owl#sameAs> 10.71% 0.7%
<http://dbpedia.org/property/disambiguates> 1.10% 0.89% <skos:broader> 7.14% 0.93%

<skos:broader> 1.10% 0.67% <http://xmlns.com/foaf/0.1/homepage> 1.79% 2.08%
<http://swat[...]/nsfaward.owl#piOrg> 1.10% 67.44% <http://dbpedia.org/property/reference> 1.79% 1.75%
<http://xmlns.com/foaf/0.1/page> 0.55% 0.13% <http://rdfs.org/sioc/ns#links to> 1.79% 0.04%

. . . <http://dbpedia.org/property/redirect> 1.79% 0.24%

We use neighborhood queries to retrieve all literals at-
tached to a given entity through datatype properties, either
at scope one or at scope two, e.g.,

SELECT ?S

WHERE { { <e> <datatypeproperty> ?S } UNION

{ <e> ?x ?y .

?y <datatypeproperty> ?S }

}.

To minimize the overhead of such queries, we only retrieve
the most promising literals. Table 2 lists the datatype prop-
erties whose values are most similar to the user queries. We
adopt here the Jaro-Winkler (JW) similarity metric, which
fits the problem of matching entity names well [9].

Additionally, we adopt a modified version of this scoring
function by applying a threshold τ on the value of JW (e′, q)
to filter entities that do not match well. Thus, only entities
e′ for which JW (e′, q) > τ are included in the result set.
Also, we check the number of outgoing links of each entity in
StructRetr and only keep those entities having at least one
outgoing link. The assumption (which was also made by the
creators of the AOR evaluation collections) is that entities
with no literals attached and that are not the subject of any
statement are not relevant.

The final results are then constructed by linearly combin-
ing the Jaro-Winkler scores with the original entity score as
noted above. The following section gives more information
about this combination and compares the performance of
several ranking methods.

7. EXPERIMENTAL EVALUATION
We present below the results of a performance evaluation

of our hybrid approaches for AOR. Our aim was to evaluate
the overall effectiveness and efficiency of our approach as
well as the impact of the various parameters involved. More
specifically, we investigated the impact of the following pa-
rameters:

• N , the number of top entities from the IR method
which are used as a seed for the structured queries;

• score(), the scoring function used to rank entities from
the structured repository;

• τ , the threshold on the text similarity measure to con-
sider an entity description a match to the query;

• λ, the weight used to linearly combine the results from
the IR and the structured query approaches.

In addition, we report results for different IR methods
using BM25 scoring, structured IR indices using BM25F
scoring, and graph traversals using scope one and two ap-
proaches over the structured repository combined with the
IR baseline. We conclude this section with a few efficiency
remarks on the overhead generated by our two-phase hybrid
approach.

7.1 Experimental Setting
In order to evaluate and compare the proposed

approaches, we adopt standard collections for the AOR
task. We use the testsets created in the context of the
SemSearch challenge for the 2010 and 2011 editions17. This
allows us to compare the different variants we proposed
with previous work that has been evaluated on the same
collections.

The underlying dataset used in the testset is the Billion
Triple Challenge 2009 dataset which consists of 1.3 billions
RDF triples crawled from different domains of the LOD
cloud. The two test collections contain 50 and 92 queries
respectively, together with relevance judgements on a 3-level
scale obtained by crowdsourcing the assessment task.

We adopt the official evaluation metrics from the Sem-
Search initiative and from previous work: Mean Average
Precision (MAP), Normalized Discounted Cumulative Gain
(NDCG), and early Precision (P10). Statistical significance
is measured against the BM25 baseline by means of a two-
tailed paired t-test by considering a difference significant
when p < 0.05.

7.2 Evaluation Collections Based on Crowd-
sourcing

The AOR evaluation collections created in the context of
the SemSearch initiative used crowdsourcing techniques to
create relevance judgements for the entities by asking anony-

17http://km.aifb.kit.edu/ws/semsearch10/ for 2010 and
http://km.aifb.kit.edu/ws/semsearch11/ for 2011.



Table 2: Top datatype properties with 10+ occurrences ranked by JW (e′, q) text similarity on the 2010
collection.

Datatype Property JW(e’,q) Occurrences
<http://www.w3.org/2006/03/wn/wn20/schema/lexicalForm> 0.8449 19

<http://dbpedia.org/property/county> 0.8005 17
<http://www.daml.org/2003/02/fips55/fips-55-ont#name> 0.7674 27

<http://www.geonames.org/ontology#name> 0.7444 78
<http://www.aktors.org/ontology/portal#full-name> 0.7360 55
<http://dbpedia.org/property/wikiquoteProperty> 0.7096 10
<http://www.w3.org/2004/02/skos/core#prefLabel> 0.6911 158

<http://purl.org/dc/elements/1.1/title> 0.6711 236
<http://sw.opencyc.org/concept/Mx4rwLSVCpwpEbGdrcN5Y29ycA> 0.6680 48

<http://dbpedia.org/property/officialName> 0.6623 54

mous Web users to judge entity relevance for a small eco-
nomic reward. Such a novel approach to relevance judge-
ment triggers obvious questions about the reliability of the
results. In [5], Blanco et al. experimentally show how such
an approach is reliable and, most importantly, repeatable.

Traditional effectiveness evaluation methods (e.g.,
based on the Cranfield paradigm) have been largely
used in TREC initiatives. Document collections, queries,
and relevance judgements form test collections, which
are typically made available to foster repeatable and
comparable experiments. Because of the increasing size of
the corpora and the impossibility of manually judging all
documents, a pooling methodology is typically used: top
retrieved results from each run submitted to the evaluation
initiative are judged; non-judged results are assumed to
be not relevant. Such an approach has been shown to be
fair for comparing participants but unfair with respect to
any following systems evaluated on the same collection
“because the non-contributors will have highly ranked
unjudged documents that are assumed to be not relevant”
[22]. Zobel [25] showed that TREC collections can still be
used to provide an unbiased comparison. To overcome the
limitations of pooling, novel measures taking judgement
incompleteness into account (e.g., bpref [8]) or adopting
sampling to delve deeper into the ranked list (e.g., infAP
[24]) have been proposed. Such refinements are also needed
because the coverage of the judgement pools gets smaller
over time as the size of the collection grows (e.g., 300,000
documents with a pool depth of 100 in TREC-5 and 1
billion documents with a pool depth of 20 in TREC 2011).

The recent trend of crowdsourcing relevance judgments
enables an alternative approach. As shown in [5], the re-
sults obtained by crowdsourcing relevance judgements for
the same collection at different points in time empirically
demonstrates the repeatability of such experiments. Based
on this important result and on the vision of “evaluation
campaigns that run continuously” [5], we propose an ap-
proach to fair comparison of different IR systems running
on the same evaluation collection.

Assuming systems A, B, and C participated in an evalua-
tion initiative and, therefore, contributed to the assessment
pool with their top-10 results, then each result of A in the
top-10 will be judged while results beyond rank 10 may be
judged or not (they will only be judge if retrieved by B or C
in their top-10). On the other hand, a new system D appear-
ing after the evaluation initiative may retrieve in its top-10
results many unjudged results that are typically considered
as not relevant. This strongly penalizes runs which retrieve

results that are very different from the original results that
were part of the evaluation initiative. Instead, new systems
should exploit crowdsourcing to obtain the missing judge-
ments by running the same micro-tasks that provided the
original (crowdsourced) relevance judgements.

One key advantage of this approach is that subsequent
runs created after the initial evaluation campaign can be
judged on a fair basis as if they were part of the original
results. One drawback however is that the number of rele-
vant results changes (i.e., increases) in this way, thus making
measures that take this into account (e.g., MAP) incompa-
rable with the ones computed originally by the evaluation
initiative. Anyhow, the availability of the original retrieved
results (i.e., the submitted runs which are available for all
tasks at TREC) allows the authors of later approaches to re-
compute the measures and compare them against previous
approaches.

As the approach proposed in this paper substantially dif-
fers from the approaches run during the evaluation cam-
paign, both in terms of system architecture and retrieved
results (see Table 3), we decided to adopt this new ap-
proach to obtain fair relevance judgements for the top-10
results of our various approaches. Thus, in the remainder
of this paper, we report evaluation measures computed over
relevance judgements complemented with additional crowd-
sourced judgements.

7.3 Completing Relevance Judgement
through Crowdsourcing

In order to obtain additional relevance judgements for un-
judged entities in the top-10 results of our runs, we pub-
lished micro-tasks (HITs) on Amazon MTurk. We followed
the same task design and setting as the ones used to cre-
ate the test collections for the AOR task at SemSearch (as
described in [5, 16]). We asked the crowd to judge a total
of 1583 additional query-entity pairs for the 2010 collection
and 1183 for the 2011 collection.

We split the tasks in batches of 10 entities per HIT, which
were rewarded 0.20$ each and assigned to 3 different work-
ers. The overall number of relevant entities increased by
+8% (passing from 2028 to 2193) for the 2010 collection
and by 17% (from 470 to 551) for the 2011 collection18.
As a consequence, Precision@10 for our approach is com-

parable to the original SemSearch submissions as it is com-

18The extended assessment files we created together with the
script to generate them from MTurk output are available at
http://diuf.unifr.ch/xi/HybridAOR



Table 3: New retrieved results that were not re-
trieved by the BM25 baseline for top-10 results of
IR and graph-based approaches in both collections.

Approach New Retr. New Rel. New Not-judged

S
em

S
ea

rc
h
2
0
1
0

Extension 266 1 262
Query Autoc. 308 2 303

PRF3 220 0 218
SAMEAS 92 11 76

S1 1 211 29 162
S1 2 312 19 281
S1 3 312 19 281
S2 1 15 3 12
S2 2 16 3 13
S2 3 16 3 13

S
em

S
ea

rc
h
2
0
1
1

Extension 179 0 175
Query Autoc. 216 2 212

PRF3 153 0 152
SAMEAS 20 8 12

S1 1 56 14 39
S1 2 103 9 97
S1 3 103 9 92
S2 1 2 1 1
S2 2 2 1 1
S2 3 4 4 0

puted on fully judged results. On the other hand, abso-
lute values of MAP will be lower when computed with the
extended relevance judgements as the number of relevant
results has increased. In any case, the baseline we adopted
closely matches the approaches used so far for the AOR task
evaluated in SemSearch. Moreover, we compare below our
proposed hybrid solution against a plethora of standard IR
approaches like query extension and pseudo-relevance feed-
back.

7.4 Evaluation of Entity Ranking Techniques
Table 4 gives the results obtained by using BM25 scor-

ing19 on the inverted index built on all the literals attached
to the entity (entity profile). We compare this baseline ap-
proach against standard IR techniques such as query exten-
sion using related words (Extension), query autocompletion
as provided by commercial Web search engines (Query Au-
toc.), and Pseudo Relevance Feedback using top-3 retrieved
entities (PRF3). We experimented with various approaches
to handle the terms in the query and in the end opted for
a disjunctive approach (i.e., we take each term in the query
separately and ‘OR’ the results) since it performed best. The
only exception is for the approaches based on a structured
index and BM25F scoring for which we adopt a conjunctive
approach. As we can see, the BM25 baseline performs best
on both test collections. This indicates that methods work-
ing well for other entity search tasks may not be directly ap-
plicable to the AOR task due to the specific semantics of the
user query, meant to uniquely describe one specific entity.
Anyhow, we observe that the query autocompletion method
obtains an Average Precision of 1.0 for a query (q16 of 2011),
for which all other methods performed poorly (0.02). This
originates from a misspelling in the original query, which
was corrected by the external autocompletion functionality.

Table 5 gives results for the structured inverted index ap-

19The parameter b in BM25 has been selected by cross-
validation on the 2010 and 2011 testsets.
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Figure 2: Effectiveness values varying the number
of top-N entities retrieved by IR approaches.

proach (see Section 5.1). The table lists results for indices
built on entity profiles constructed using different types of
literals. When compared to the baseline index (which ag-
gregates all literals directly attached to the entities in a sin-
gle document), we observe that structured indices perform
better. Specifically, when a conjunctive query and BM25F
ranking is used over a structured inverted index, effective-
ness increases. The best results are obtained by the index
encompassing all three fields, that is, URI, Label, and At-
tributes (ULA).

7.5 Evaluation of Graph Query Techniques

Parameter Analysis.
Figure 2 shows how effectiveness (MAP) varies when vary-

ing the parameter N indicating the number of entities con-
sidered as input for the structured queries, both for the 2010
and 2011 collections. We observe that the best number of
entities to consider lies between 3 and 4 in most cases, there-
fore we fix this parameter to 3 for the following experiments.

Moreover, we observe that high values (i.e., 0.8− 0.9) for
the threshold τ used to discard entities lead to higher MAP
in all cases. The optimal value for λ varies for scope one
and two approaches. Interestingly, for the best performing
method S1 1, the optimal value for λ is 0.5 for both the
2010 and 2011 collections: for such an approach, our hybrid
system reaches an optimal tradeoff between IR and graph
data management techniques.

Table 6 gives the performance of different functions used
to compute score(q, e, e′). As we can see, the most effective
method is the one that exploits the original BM25 score of e
to score e′. This is the scoring function we use to compute
the final results of the hybrid system as reported in Table 8.

Table 6: MAP values for S1 1 and S2 3 obtained by
means of different instantiation of score(q, e, e′) using
λ = 0.5 on the 2010 collection.

score(q,e,e’) S1 1 S2 3
Count JW (e′, q) > τ 0.2585 0.2076

Avg count JW (e′, q) > τ 0.2509 0.2075
Sum JW(e’,q) 0.2558 0.2074
Avg JW(e’,q) 0.2571 0.2075

Sum BM25(e, q)− ǫ 0.2586 0.2113



Table 4: Standard ER approaches over the inverted index.
2010 Collection 2011 Collection

MAP P10 NDCG MAP P10 NDCG
BM25 0.2070 0.3348 0.5920 0.1484 0.2020 0.4267

Extension 0.1417 0.2152 0.4912 0.1131 0.16 0.3953
Query Autoc. 0.085 0.1717 0.4301 0.1298 0.1640 0.4136

PRF3 0.13 0.2152 0.5078 0.0998 0.1720 0.3642

Table 5: Approaches based on a structured inverted index with BM25 and BM25F scoring.
2010 Collection 2011 Collection

MAP P10 NDCG MAP P10 NDCG

B
M
2
5 URI only 0.2113 0.3120 0.5904 0.1141 0.1600 0.3562

Label only 0.1156 0.2130 0.4911 0.1018 0.1660 0.3575
Attrib. only 0.2070 0.3348 0.5920 0.1487 0.2020 0.4274

B
M
2
5
F URI-Label 0.2209 0.3239 0.6083 0.1502 0.2120 0.4277

Label-Attrib. 0.2011 0.3033 0.5411 0.1431 0.1980 0.3966
URI-Attrib. 0.2238 0.3130 0.5445 0.1538 0.2080 0.3988

ULA 0.2307 0.3326 0.5450 0.1628 0.2140 0.3973

Table 7: Average query execution time (ms) on the
2011 dataset.

Approach IR time RDF time Total time
BM25 Baseline 285 - 285

Extension 580 - 580 (+104%)
Query Autoc. 1447 - 1447 (+408%)

PRF3 2670 - 2670 (+837%)
SAMEAS 285 30 315 (+11%)

S1 1 285 48 333 (+17%)
S1 2 285 84 369 (+29%)
S1 3 285 86 371 (+30%)
S2 1 285 1746 2031 (+613%)
S2 2 285 2192 2477 (+769%)
S2 3 285 105 390 (+37%)

Evaluation of Hybrid Approaches.
Table 8 gives results for the graph-based extension of the

baseline ranking. We observe that most approaches based
on scope one queries significantly improve over the baseline
BM25 ranking. The simple S1 1 approach, which exploits
<owl:sameAs> links plus Wikipedia redirect and disambigua-
tion information, performs best obtaining a 25% improve-
ment of MAP over the baseline on the 2010 dataset. Figure
3 shows Precision/Recall curves for the baseline BM25 rank-
ing and for graph-based approaches. Again, we can see how
S1 1 outperforms other approaches. The S1 2 approach per-
forms best in terms of MAP on the 2011 dataset, although
not significantly better than the baseline.

7.6 Efficiency Considerations
Table 7 shows execution times for the different

components of our system and for various approaches20.
Quite naturally, the IR baseline is faster than more complex
approaches. Interestingly, we observe that structured
approaches based on scope one queries perform very well,
only adding a very limited overhead to the inverted index
approach. The S1 1 approach, which is the best in terms of
effectiveness, adds a cost of only 17% in terms of execution

20We did not put any emphasis on improving the efficiency of
our system. Experiments were run on a single machine with
a cold cache and disk-resident indices for both the inverted
indices and the structured repository.
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Figure 3: Precision/Recall curves for graph-based
approaches on the 2010 collection.

time to the BM25 baseline. The approaches based on scope
two queries that use <dbpedia:wikilink> are more costly
and would require a specific effort to make them scalable
over large datasets. The scope two approach S2 6, which
uses less frequent object properties, has still a reasonable
overhead (37%).

In terms of storage consumption, the original collection
containing 1.3 billions statements occupies 253GB. The
baseline inverted index created with MG4J21 is 8.9GB,
the structured index used with BM25F scoring is 5GB,
while the graph index created with RDF-3X22 is 87GB.
We note that the graph index could easily be optimized
by discarding all the properties that are not used by
the graph traversals and neighborhood queries (we could
save considerable space this way, from 50% to 95%
approximatively depending on the graph approaches used).

8. CONCLUSIONS
As more datasets become available on the Web, novel ap-

plications can exploit semi-structured data to build entity-
centric functionalities. In this paper, we present a hybrid
system for effectively and efficiently solving Ad-hoc Object
Retrieval tasks. Our approach is based on the combination
of results from an inverted index storing entity profiles and
from a structured database storing graph data.

21http://mg4j.dsi.unimi.it/
22http://code.google.com/p/rdf3x/



2010 Collection 2011 Collection
MAP P10 NDCG MAP P10 NDCG

BM25 0.2070 0.3348 0.5920 0.1484 0.2020 0.4267
SAMEAS 0.2293* (+11%) 0.363* (+8%) 0.5932 (+0%) 0.1612 (+9%) 0.2200 (+9%) 0.4433 (+4%)

S1 1 0.2586* (+25%) 0.3848* (+15%) 0.5965 (+1%) 0.1657 (+12%) 0.2140 (+6%) 0.4426 (+4%)
S1 2 0.2305* (+11%) 0.3217 (-4%) 0.5724* (-3%) 0.1731 (+17%) 0.2180 (+8%) 0.4532 (+6%)
S1 3 0.2306* (+11%) 0.3217 (-4%) 0.5721* (-4%) 0.1716 (+16%) 0.2140 (+6%) 0.4501 (+5%)
S2 1 0.2118 (+2%) 0.3370 (+1%) 0.5971 (+1%) 0.1550 (+4%) 0.2060 (+2%) 0.4376 (+3%)
S2 2 0.2118 (+2%) 0.3370 (+1%) 0.5965 (+1%) 0.1555 (+5%) 0.2080 (+3%) 0.4379 (+3%)
S2 3 0.2113 (+2%) 0.3402 (+2%) 0.5978 (+1%) 0.1589 (+7%) 0.2120 (+5%) 0.4385 (+3%)

Table 8: Graph-based approaches with scope one and two queries compared to the IR baseline. * indicates
statistically significant difference against the BM25 baseline.

Our extensive experimental evaluation over two different
evaluation collections shows that the use of structured search
on top of standard IR approaches can lead to significantly
better results (up to 25% improvement over the BM25 base-
line in terms of Mean Average Precision). This comes at the
cost of incorporating additional components in the system
architecture and of implementing additional merging and
ranking functions in the processing pipeline. In any case,
our measurements show that the overhead caused by the
graph data management components is surprisingly limited
and only represents 17% for the most effective approach.

We consider our initial hybrid results as very promising,
especially given that the LOD sample data sets used in the
test collections were extremely noisy and incomplete (auto-
mated data cleaning and entity linking are two prominent
research topics in the LOD community, which should hope-
fully alleviates those issues on the medium term). As future
work, we plan to focus on further user queries (e.g, Entity
List Completion queries and queries specifying the category
of the entity sought) and on improving the efficiency of our
proposed hybrid system in distributed and cloud settings.
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