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Abstract

Search engines, question answering systems and classification systems alike can

greatly profit from formalized world knowledge. Unfortunately, manually com-

piled collections of world knowledge (such as WordNet or the Suggested Upper

Merged Ontology SUMO) often suffer from low coverage, high assembling costs

and fast aging. In contrast, the World Wide Web provides an endless source of

knowledge, assembled by millions of people, updated constantly and available for

free. In this paper, we propose a novel method for learning arbitrary binary re-

lations from natural language Web documents, without human interaction. Our

system, LEILA, combines linguistic analysis and machine learning techniques to

find robust patterns in the text and to generalize them. For initialization, we only

require a set of examples of the target relation and a set of counterexamples (e.g.

from WordNet). The architecture consists of 3 stages: Finding patterns in the

corpus based on the given examples, assessing the patterns based on probabilistic

confidence, and applying the generalized patterns to propose pairs for the target

relation. We prove the benefits and practical viability of our approach by extensive

experiments, showing that LEILA achieves consistent improvements over existing

comparable techniques (e.g. Snowball, TextToOnto).

Keywords

Ontology Learning, Relation Extraction, Information Extraction, Linguistic
Analysis
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1 Introduction

1.1 Motivation

Many data mining tasks such as classification, ranking, recommendation, or data

cleaning could be boosted by explicit background knowledge in the form of on-

tologies (e.g., SUMO [29]), thesauri (e.g., WordNet [15]), or lexicons. Unfortu-

nately, the manual construction and maintenance of such knowledge bases is a

limiting factor in our modern world of “exploding information”. Recently, vari-

ous projects have pursued ways of utilizing the World Wide Web and other poorly

structured information sources for automatically creating ontological relations in

an almost unsupervised manner. These projects include early, small-scale ap-

proaches like Dipre [4], Snowball [1], and TextToOnto [11] as well as very recent

projects like KnowItAll [14] and KnowItNow [7] that aim at large-scale knowl-

edge discovery and harvesting on the Web. In this context, knowledge acquisition

amounts to finding as many instances as possible for unary or binary semantic re-

lations such as Cities(x), Scientists(x), Headquarters(company,
city), BirthDates(person, date), or Plays(person, instrument),

including generic relations like InstanceOf(entity, class).

At the heart of such knowledge acquisition projects are NLP (Natural Lan-

guage Processing) and text mining techniques. Prior approaches have limited the

NLP part to part-of-speech tagging [26] and focused mostly on matching textual

surface patterns such as ”x such as y” (one of the Hearst patterns [19]), in com-

bination with machine learning techniques and statistical inferences for assessing

the validity of newly discovered patterns and relation instances. The actual NLP

and text analysis parts have been restricted in their expressiveness to regular ex-

pression matching on text sequences. To our knowledge, none of the prior work

considered utilizing deeper linguistic analysis such as constructing NLP parse

trees or even graph structures and running matching and learning methods on

these richer representations. Deeper linguistic analysis seems to be the key for

improving both precision and recall of unsupervised knowledge acquisition from
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corpora like the Web or textual lexicons such as Wikipedia or Encarta.

1.2 Related Work

There are numerous Information Extraction (IE) approaches, which differ in vari-

ous features:

• Type of the extracted relation: The extracted relations can be either unary

or binary. In the unary case, the relations are just lists of entities (e.g. all

cities in a given text, [16, 8]). In this paper we focus on binary rela-

tions (e.g. the birthdate-relation, which holds between a person and

her birthdate). Some systems are designed to discover new binary rela-

tions ([25]). However, we assume that the user gives the system the target

relation he is interested in. Some systems are restricted to learning a sin-

gle relation, mostly the instanceOf-relation ([12, 5]). In this paper, we

are interested in extracting arbitrary relations. This not only includes the

instanceOf-relation, but also relations like the birthdate-relation or

the headquarters-relation between a company and the city of its head-

quarters.

• Human interaction: There are systems that require human input for the IE

process ([31]). Our work aims at a completely automated system.

• Type of corpora: There exist systems that can extract information effi-

ciently from formatted data, such as HTML-tables or structured text ([18,

17]). However, since a large part of the Web consists of natural language

text, we consider in this paper only systems that accept also unstructured

corpora.

• Initialization: As initial input, some systems require a hand-tagged cor-

pus ([20, 36]), i.e. a corpus in which the relevant items have been marked

manually. Other systems require text patterns ([39]) or templates ([37]),

i.e. phrases that indicate a pair of the target relation. Again other systems

require seed tuples ([1]), i.e. a list of pairs of the target relation. There

is also a class of systems that require just tables of target concepts ([11]).

Since hand-labeled data and manually assembled text patterns require huge

human effort, we consider only systems that use seed pairs or tables of con-

cepts.

Furthermore, we differentiate between closed systems that are bound to a cor-

pus and open systems that use the Web as a corpus. KnowItAll [14] is an example

of an open system. It is instantiated with a set of extraction rules that are used to
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generate keyword queries to search engines. Another system that makes use of

the Web is [10]. We observe that in both open and closed systems, the techniques

used to extract the entities from the documents are essential. We concentrate in

this paper on this type of techniques; to study them in a controlled environment,

we restrict ourselves to closed systems for this paper.

There are many different techniques for extracting entities from documents.

One school concentrates on detecting the boundary of interesting entities in the

text, [8, 16, 40]). This usually goes along with the restriction to unary target re-

lations. Other approaches make use of the context in which an entity appears

([11, 6]). This school is mostly restricted to the instanceOf-relation. The only

group that can learn arbitrary binary relations is the group of pattern matching

systems ([14, 1, 30, 4, 35, 38]). Surprisingly, none of these systems uses deep lin-

guistic analysis of the corpus. Consequently, most of them are extremely volatile

to small variations in the patterns – even if the variation does not have any seman-

tic effect. For example, the simple subordinate clause in the following example

(taken from [30]) can already prevent a surface pattern matcher from discover-

ing the relation between ”London” and the ”river Thames”: ”London, which
has one of the busiest airports in the world, lies on the banks of the river
Thames.”

1.3 Contribution

This paper presents LEILA (Learning to Extract Information by Linguistic Analy-

sis), a system with novel techniques for richer acquisition of binary relations from

Web and text documents. LEILA uses a link-grammar representation [34] for

natural-language sentences as well as other advanced NLP methods like anaphora

resolution, and combines them with statistical learning for robust and high-yield

information extraction. Our experimental studies on a variety of corpora demon-

strate that LEILA achieves very good results in terms of precision and recall and

clearly outperforms the prior state-of-the-art methods. The paper’s novel contri-

butions are:

• We show how advanced NLP techniques like link grammars and anaphora

resolution can be harnessed for richer representation of natural-language

sentences and more expressive detection of semantic relations.

• We develop a feature model for the link-grammar-based graph representa-

tion of a sentence that is expressive enough to capture patterns beyond the

previous state of the art but, at the same time is robust to avoid overfitting

and efficiently tractable.
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• Based on this feature model we design statistical learners, using SVM or

kNN classifiers, that can discriminate good versus bad patterns for a given

target relation.

• All our techniques are carefully integrated into a full-fledged system archi-

tecture and implemented in our LEILA system.
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2 System Model

2.1 Link Grammars

There are different approaches for parsing natural language sentences. It is pos-

sible to use just regular expressions to discover chunks of related words or to

assign part-of-speech tags, but we already argued for a more detailed analysis.

Often, context-free grammars are used and a number of parsers are available to

construct context-free parse-trees for natural language sentences ([23]). More ad-

vanced techniques use non-context-free feature structures instead of simple parse

trees. These include Lexical Functional Grammar parsers ([27]) or Head-Driven

Phrase Structure Grammar parsers ([2]). These techniques have been extended by

stochastic models, resulting in ever more robust, but also more complex parsers

([26, 13]).

For our implementation, we chose the Link Grammar Parser [34]. It is based

on a context-free grammar and hence it is simpler to handle than the advanced

parsing techniques. At the same time, it provides a much deeper semantic struc-

ture than the standard context-free parsers1. Figure 2.1 shows a simplified exam-

ple of a linguistic structure produced by the link parser:

Chopin was.v     great  among the composers of   his  time.n

subj compl mod
prepObj

mod

prepObj

detdet

Figure 2.1: A simple linkage

We call these structures linkages. Formally speaking, a linkage is a connected

planar undirected graph, the nodes of which are the words of the sentence. The

edges are called links. They are labeled with connectors, taken from a finite set

1[24] and [41] use the same parsing technique, albeit for different purposes.
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of symbols. For example, the connector subj marks the link between the subject

and the verb of the sentence. The linkage must fulfill certain linguistic constraints.

These are given by a link grammar. A link grammar is a set of rules that spec-

ify which word may be linked by which connector to preceding and following

words. For example, the link grammar may specify that the word ”was” has to

have a subj-link to a preceding word and a compl-link to a following word.

The parser also assigns part-of-speech tags to the words, i.e. symbols identifying

the grammatical function of the words. In the example shown in Figure 2.1, the

letter ”n” following the word ”composers” identifies ”composers” as a noun.

Figure 2.2 shows how the Link Parser copes with a more complex example.

The relationship between the subject ”London” and the verb ”lies” is not dis-

rupted by the subordinate clause: For ambiguous sentences, the Link Parser gen-

London, which has one of the busiest airports, lies on the banks of the river Thames. 

subj

mod subj obj prep

prepObj

det

sup
mod

prepObj

det mod

prepObj

det grp

Figure 2.2: A complex linkage

erates multiple linkages. When faced with an erroneous sentence, the Link Parser

tries to ignore some grammatical constraints in order to find a linkage anyway.

Such a linkage is assigned a heuristic cost based on the number of constraints that

have been violated. In the end, the parser outputs the linkages in ascending order

of their cost.

We say that a linkage expresses a relation r, if the underlying sentence implies

that a pair of entities is in r. For example, the linkage in Figure 2.2 expresses the

possession-relation, because it states that ”London” has an ”airport”. Note

that the deep grammatical analysis of the sentence would allow us to define the

meaning of the sentence in a theoretically well-founded way ([28]). For this pa-

per, however, we limit ourselves to an intuitive understanding of the notion of

meaning.

We define a pattern as a linkage in which two words have been replaced by

placeholders. Figure 2.3 shows a pattern derived from the linkage in Figure 2.1 by

replacing ”Chopin” and ”composers” by the placeholders ”X” and ”Y”. We call

the (unique) shortest path from one placeholder to the other the bridge, marked in

bold in the figure. A pattern matches a linkage if the bridge of the pattern appears

in the linkage, although nouns and adjectives are allowed to differ. For example,

the above pattern matches the linkage in Figure 2.4, because the bridge of the

pattern occurs in the linkage, apart from a substitution of ”great” by ”mediocre”.
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    X       was.v       great  among the       Y        of  his    time.n

subj compl mod
prepObj

mod

prepObj

detdet

Figure 2.3: A pattern

If a pattern matches a linkage, we say that the pattern produces the pair of words

Mozart was.v clearly mediocre  among the composers.n.

subj

compl

mod
prepObj

detmod

Figure 2.4: A matching linkage

that the linkage contains in the position of the placeholders. In the example in

Figure 2.4, the pair ”Mozart” / ”composers” is produced.

2.2 Algorithm

As a definition of the target relation, our algorithm requires a function (given by a

Java method) that decides into which of the following categories a word pair falls:

• The pair can be an example for the target relation. E.g., for thebirthdate-

relation, a list of persons with their birth dates can serve as examples.

• The pair can be a counterexample for the target relation. E.g., if the pair

”Chopin” / ”1810” is in the example list, then the pair ”Chopin” / ”2000”

must be a counterexample.

• The pair can be a candidate for the target relation. For the birthdate-

relation, only pairs of a proper name and a date are candidates.

• None of the above.

The corpus should be a sequence of natural language sentences. These sen-

tences are parsed, producing a deep grammatical structure [26] for each of them.

In principle, our algorithm does not depend on a specific parsing technique. For
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example, the parse-trees produced by a context-free grammar can serve as gram-

matical structures. For our implementation, however, we used the Link Grammar

structures introduced above.

Our algorithm proceeds in three phases:

1. In the Discovery Phase, it seeks sentences in which an example appears.

In the corresponding linkage, the two words are replaced by placeholders,

resulting in a pattern. The patterns collected this way are called positive
patterns.

2. In the second phase, the Assessment Phase, the algorithm finds all link-

ages that match a positive pattern, but produce counterexamples. The corre-

sponding patterns are collected as negative patterns. Now, statistical learn-

ing is applied to learn the concept of positive patterns from the positive and

the negative patterns. The result of this process is a classifier, i.e. a function

from patterns to boolean values.

3. In the last phase, the Harvesting Phase, the algorithm considers again all

sentences in the corpus. For each linkage, it generates all possible patterns

by replacing two words by placeholders. If the two words are a candidate

and the pattern is classified as positive, the produced pair is proposed as a

new element of the target relation. These new pairs are called the output
pairs of the algorithm.

For testing purposes, it is possible to run the Harvesting Phase on a differ-

ent corpus. In this case, we refer to the Discovering Phase and the Assessment

Phase collectively as Training, whereas the Harvesting Phase is also referred to as

Testing.

2.3 Statistical Model

The central task of the Discovery Phase is determining patterns that express the

target relation. Since the linguistic meaning of the patterns is not apparent to the

system, it relies on the following hypothesis: Whenever an example pair appears

in a sentence, the linkage and the corresponding pattern express the target relation.

This hypothesis may fail if a sentence contains an example pair merely by chance,

i.e. without expressing the target relation. In this case we would use the pattern

as a positive sample for the generalization process, although it is a negative one.

Analogously, a pattern that does express the target relation may occasionally pro-

duce counterexamples. In this case, the pattern is used as a negative sample in the

generalization process. We call these patterns false samples.
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Our approach is not bound to a certain machine learning algorithm, but virtu-

ally any learning algorithm that can deal with a limited number of false samples

is suitable. For Support Vector Machines (SVM), the effect of false samples has

been analyzed thoroughly [9]. In general, SVM is highly tolerant to noise. There

are also detailed theoretical studies [3] on how the proportion of false samples

influences a PAC-learner. In essence, the number of required samples increases,

but the classification is still learnable. It is also possible to understand the concept

of positive patterns as a probabilistic concept [22]. In this setting, the pattern is

not either positive or negative, but it may produce pairs of the target relation with

a certain fixed probability. The task of the learner is to learn the function from the

pattern to its probability. [33] shows that probabilistic concepts can be learned and

gives bounds on the number of required samples. The following subsection con-

siders a particularly simple class of learners, the k-Nearest-Neighbor-classifiers.

2.3.1 k-Nearest-Neighbor Classifiers

A k-Nearest-Neighbors (kNN) classifier requires a distance function on the pat-

terns. During training, positive and negative patterns are collected. In the testing

phase, a pattern is classified as positive iff the (distance-weighted) majority of

its k nearest neighbors is positive. We consider a simple variant of an adaptive

kNN classifier. Based on the distance function, we cluster the sample patterns

into classes. We show in Section 3.2 how to establish a distance function on pat-

terns for this clustering. With our distance function, the clusters are equivalence

classes, i.e. all patterns in the class match the same linkages and we may assume

that they all have the same probability of producing an example or a counterexam-

ple. When a new pattern needs to be classified, we first determine its equivalence

class. If the majority of the patterns in the class is positive, we classify the new

pattern as positive, else as negative.

We now consider the problem of false samples. We concentrate on false pos-

itives, as the problem of false negatives is dual. We analyze the probability that

one given equivalence class E classifies a new pattern as positive, although the

patterns in E do not express the target relation. Since all patterns in E share the

same properties, we occasionally refer to E as one single pattern.

We first concentrate on the probability of E containing more positive patterns

than negative patterns, although E does not express the target relation. We model

the sentences as a sequence of N random events. For each sentence, we can

have three types of events: (1) E matches the linkage and produces an example,

(2) E matches and produces a counterexample or (3) neither. We describe these

three events by Bernoulli random variables A, B, C, captured by a multinomial

distribution: A = 1 with probability pA iff an example is produced, B = 1 with

probability pB iff a counterexample is produced and C = 1 − A − B with proba-
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bility pC = 1 − pA − pB. The key assumption is that pA < pB , since E does not

express the target relation. Let #A stand for the number of produced examples

and #B for the number of counterexamples. We are interested in the probability

of E being a false positive, namely P (#A > #B), given that pA < pB (pC > 0).
In the appendix, we prove the upper bound (using Chernoff-Hoeffding bounds)

P (#A > #B) ≤ 2e−N
(1−pC )2

2 + 2e−(N(1−pC )+2)( 1
2
−p̃A)2

where p̃A = pA

pA+pB
. Now, we concentrate on the probability that a new pattern

falls into E, P (E). We estimate this probability as a multiple of 1 − pC : P (E) =
β(1 − pC) for some β ≥ 1. The better the examples and counterexamples are

chosen, the smaller β will be (in our experiments, β ≈ 1.69). Then the probability

that E classifies a new pattern wrongly is bounded by

2β(1 − pC)(e−N
(1−pC )2

2 + e−(N(1−pC)+2)( 1
2
−p̃A)2)

This estimation mirrors the intuition that either a negative equivalence class is

rare (pC is large) and then it rarely matches in the Harvesting Phase or the class

is frequent (pC is small) and then the probability of containing too many positive

patterns is small.
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3 Implementation

3.1 Document Preprocessing

In order to allow our system LEILA to learn relations involving dates and numbers,

we normalize date and number expressions by regular expression matching. For

example, the expression ”November 23rd to 24th 1998” becomes ”1998-11-23
to 1998-11-24” and the expression ”0.8107 acre-feet” becomes ”1000 cubic-
meters”.

LEILA accepts, but is not restricted to, HTML documents. Our preprocess-

ing produces two files from the original document: The first file contains the

proper sentences with the HTML-tags removed. The second file contains the non-

grammatical parts, such as lists and expressions using parentheses. For example,

the character sequence ”Chopin (born 1810) was a great composer” is split

into the sentence ”Chopin was a great composer” and the non-grammatical

information ”Chopin (born 1810)”. A list like ”Some well-known composers
are: <UL><LI> Chopin <LI> Mozart. . . </UL>” produces the following

output for the non-grammatical file:

”Some well-known composers are: # Chopin”

”Some well-known composers are: # Mozart”
. . .

We give the files with the proper sentences to the Link Grammar parser. As it

comes with no additional computational cost, we have the parser produce its three

most likely linkages for each sentence. For the non-grammatical files, we provide

a pseudo-parsing, which simply links each two adjacent words by an artificial

connector. As a result, the uniform output of the preprocessing is a sequence of

linkages.

We use a very basic form of named entity recognition. First, we concatenate

all words that are joined by ”<A> . . . </A>” tags. Next, we use the fact that

the Link Parser links noun groups like ”Frederic Chopin” or ”United States
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of America” by designated connectors. We join words that are linked by these

connectors. For our goal, it is essential to normalize nouns to their singular form.

This task is non-trivial, because there are numerous words with irregular plural

forms and there exist even word forms that can be either the singular form of one

word or the plural form of another. By collecting these exceptions systematically

from WordNet, we were able to stem most of them correctly with our Plural-to-

Singular Stemmer (PlingStemmer1).

Anaphora resolution increases the number of sentences that LEILA can use.

Although the linkages would allow for quite sophisticated techniques, we restrict

ourselves to a conservative approach for the time being: We replace a third person

pronoun by the subject of the preceding sentence, if the singular-vs-plural forms

match. Furthermore, the system uses a simple form of regular expression match-

ing to detect possible person names and company names. This allows to resolve

company references (like ”the company”) to the corresponding company name.

3.2 Feature Model

This section discusses how patterns can be represented and generalized. It would

obviously not be too difficult to somehow encode the full linkages of patterns

into feature vectors. However, such an approach would not generalize well, for it

would capture all details of the specific sentences that led to the patterns and thus

tend to cause overfitting. So the problem that we tackle is to identify the charac-

teristic but generalized features within linkages as training input for the statistical

learner. The most important component of a pattern is its bridge. In the Discovery

Phase, we collect the bridges of the patterns in a list. Each bridge is given an

identification number, the bridge id. Furthermore, each pattern is given a label:
Positive patterns are given the label +1 and negative patterns −1. The context of

a word in a linkage is the set of all its links together with their direction in the

sentence (left or right) and their target words. For example, the context of the

placeholder ”Y” in the pattern of Figure 2.3 is the set of triples {(det, left,

”the”), (prepObj, left, ”among”), (mod, right, ”of”)}. We distinguish the

following types of words: Nouns, adjectives, prepositions, verbs, numbers, dates,

names, person names, company names and abbreviations. A word can have a set

of corresponding types. The parser already assigns the grammatical types by its

part-of-speech tagging. We assign the other types by regular expression matching.

For example, any word matching ”[A-Z][a-z]+ Inc” is given the type company.

Furthermore, we maintain a list of stopwords. To accommodate the considerable

role that stopwords play in the understanding of a sentence, we make each stop-

1http://www.mpii.mpg.de/∼ suchanek/personal/programs/javaexport
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word a type of its own. We represent a pattern by a quadruple of its bridge id,

the context of the first placeholder, the context of the second placeholder, and its

label. For example, supposing that the bridge id of the pattern in Figure 2.3 is 42

and supposing that the pattern is positive, we represent the pattern as

(42,

{(subj,right,”was”)},

{(det, left, ”the”),

(prepObj, left, ”among”),

(ofComp, right, ”of”)

},+1)

To show that our approach does not depend on a specific learning algorithm,

we implemented two machine learning algorithms for LEILA: One is the simple

adaptive kNN classifier discussed in 2.3.1 and the other one uses SVM.

3.2.1 kNN

For kNN, we need a similarity function on patterns. By x ∼ y we denote the

auxiliary function

x ∼ y =

{
1 if x = y
0 else

Let τ(w) be the set of types of a word w. We define the following similarity

functions for words w1, w2, contexts C1, C2 and patterns

(b1, C11, C12, l1), (b2, C21, C22, l2):

sim(w1, w2) =
|τ(w1) ∩ τ(w2)|

|τ(w1) ∪ τ(w2)|

sim(C1, C2) =
∑

(con1,dir1,w1)∈C1

(con2,dir2,w2)∈C2

α1(con1 ∼ con2) + α2(dir1 ∼ dir2) + α3sim(w1, w2)

|C1| · |C2|

sim((b1, C11, C12, l1), (b2, C21, C22, l2)) =
1
2
(b1 ∼ b2)(sim(C11, C21) + sim(C12, C22))

where α1, α2, α3 are weighting factors that sum up to 1. We chose α1 =
0.4, α2 = 0.2, α3 = 0.4. We consider all patterns p1, p2 with sim(p1, p2) > θ
to be in the same equivalence class for some real value θ. If θ is large, mem-

ory consumption increases and precision becomes better, but the generalization

suffers. We chose θ = 0.5. We store an equivalence class simply by storing a
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prototype pattern. If we see a new pattern that does not fall into an existing equiv-

alence class, it becomes the prototype for a new equivalence class. At the end of

the Assessment Phase, the label of an equivalence class c with its prototype cp is

computed as the average value of the labels of the patterns in the class, weighted

with their respective similarities to the prototype:

label(c) =
∑

p=(b,C1,C2,l)∈c

l · sim(p, cp)

|c|

To classify a previously unseen pattern, we first determine its equivalence class.

Then we calculate its label as the product of its similarity to the prototype and the

label of the equivalence class.

3.2.2 SVM

To generalize patterns by an SVM, the patterns have to be translated to real-valued

feature vectors. For this purpose, we first group the patterns by their bridge ids.

Each group will be treated separately so that it is not necessary to store the bridge

id in the feature vector. If n is the number of connector symbols, then a feature

vector can be depicted as follows:

label
︷︸︸︷

R

context 1
︷ ︸︸ ︷

X . . .X
︸ ︷︷ ︸

connector1

. . . X . . .X
︸ ︷︷ ︸

connectorn

context 2
︷ ︸︸ ︷

X . . .X
︸ ︷︷ ︸

connector1

. . . X . . . X
︸ ︷︷ ︸

connectorn

The vector consists of three parts. The first part is the label (+1 or −1), which

occupies one dimension in the vector as a real value (denoted by R in the scheme

above). The second part and the third part store the context of the first and sec-

ond placeholder, respectively. Each context contains a sub-part for each possible

connector symbol. Each of these subparts contains one bit (denoted by X in the

above scheme) for each possible word type. So if there are t word types, the over-

all length of the vector is 1 + n× t + n× t. We encode a context as follows in the

vector: If there is a link of connector con that points to a word w, we first select

the sub-part that corresponds to the connector symbol con. Within this sub-part,

we set all bits to 1 that correspond to a type that w has.

The vectors are still grouped according to the bridges. After the Discovery

Phase and the Assessment Phase, we pass each group separately to an SVM. We

used Thorsten Joachims’ SVMLight [21] with its default parameters. The SVM

produces a model for each group, which allows it to classify previously unseen

vectors. To classify a new pattern as positive or negative, we first identify the

group it belongs to. We translate the pattern to a vector. Then we use the model
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corresponding to the group to classify the vector. Both the kNN and SVM classi-

fiers output a real value that can be interpreted as the confidence of classifying a

test sample and can be used for computing precision at different levels of recall.
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4 Experiments

4.1 Setup

We ran LEILA on different corpora:

• Wikicomposers. This is the set of all Wikipedia articles1 about composers.

We use it to see how LEILA performs on a document collection with a strong

structural and thematic homogeneity. We downloaded all documents that

are listed in Wikipedia’s list of composers. The set consists of 872 HTML

documents.

• Wikigeneral. The set of all Wikipedia articles starting with ”G” or ”M”.

We chose it to assess LEILA’s performance on structurally homogenous,

but thematically random documents. The set contains 78141 HTML docu-

ments.

• Wikigeography. The set of all Wikipedia pages about the geography of

countries. This set contains 313 HTML documents.

• Googlecomposers. This is a set of web pages about composers obtained

by querying the search engine Google. We use it to see how LEILA per-

forms on a corpus with a high structural heterogeneity. We queried Google

for each composer name that appeared in Wikipedia’s composer list. We

restricted ourselves to the baroque, classical, and romantic composers. For

each composer name, we downloaded the HTML page that ranked high-

est in the query result. If the highest ranked page was a Wikipedia article,

we chose the second page. The set contains 492 HTML documents. Since

the querying was done automatically, a downloaded page is not necessarily

1http://www.wikipedia.org
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about the composer we queried for. The pages include spurious advertise-

ments as well as pages with no proper sentences at all.

We tested LEILA with different target relations. These include

• The birthdate relation, which holds between a person and his birthdate

(for example ”Chopin”/”1810”). This relation is easy to learn, because it is

bound to strong surface clues (the first element is always a name, the second

is a date). Furthermore, the likelihood of false positives is small, because it

is extremely unlikely that a person and her birthdate appear by chance in a

sentence.

• The synonymy relation, which holds between two names that refer to the

same entity (for example ”UN”/”United Nations”). This relation is more

sophisticated, since there are no surface clues.

• The instanceOf relation, which holds between an entity and its concept

(for example ”Chopin”/”composer”). This relation is even more sophisti-

cated, because the sentences often express it only implicitly.

We compared LEILA to different competitors. We only considered competi-

tors that, like LEILA, extract the information from a corpus without using other

Internet sources. We wanted to avoid running the competitors on our own cor-

pora or on our own target relations, because we could not ensure a fair tuning of

the competitors. Hence we ran LEILA on the corpora and the target relations that

our competitors have been tested on by their authors. We compare the results of

LEILA with the results reported by the authors. The following list enumerates our

competitors, together with their respective corpora and relations:

• TextToOnto. This is a representative of methods that use surface patterns.

This approach has been perfected especially for the instanceOf relation.

Hence we chose as competitor a state-of-the-art pattern matcher for this

relation, TextToOnto2. For completeness, we also consider its successor

Text2Onto [11], although it contains only default methods in its current

state of development.

• Snowball. To compare our system with the classical slot-extraction paradigm,

we chose Snowball [1] as a recent competitor. In the original paper, Snow-

ball has been tested on the company/headquarters relation. It holds

between a company and the city of its headquarters. Snowball was trained

on a collection of some thousand documents and then applied to a test col-

lection. For copyright reasons, we only had access to the test collection. It

consists of 150 text documents.

2http://www.sourceforge.net/projects/texttoonto
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• There is a class of competitors that use context to assign a concept to an

entity. These systems are restricted to the instanceOf-relation, but they

can classify instances even if the corpus does not contain explicit defini-

tions. We examined one of the newest systems in this field: The system

designed by Cimiano and Völker [12], which we will refer to as the CV-

system. In the original paper, the system was tested on a collection of 1880

files from the Lonely Planet Internet site3.

For the evaluation, the output pairs of the system have to be compared to

a table of ideal pairs. There are two different ways of defining the ideal pairs:

Ground-truth based or document-based.

For the ground-truth evaluation technique, the ideal pairs are a set of ground

truth pairs that are independent of the corpus. This method seems inadequate for

our purpose for two reasons: First, the ground truth table may be neither a subset

or a superset of the facts expressed in the documents. Second, the technique does

not allow us to measure the yield of the system with respect to the document

content. We are interested in how good the system performs at extracting pairs as

compared to a human reader.

The latter question is answered by the document-based evaluation tech-

nique. For this technique, the ideal pairs are extracted manually from the doc-

uments. In our methodology, the ideal pairs comprise all pairs that a human

would understand to be elements of the target relation. This involves full anaphora

resolution, the solving of reference ambiguities, and the choice of truly defining

concepts. For example, we accept Chopin as instance of composer but not as

instance of member, even if the text says that he was a member of some club. Of

course, we expect neither the competitors nor LEILA to achieve the results in the

ideal table.

There is a variation of the document-based evaluation technique called the

Ideal Metric [1]. We use the Ideal Metric only to compare LEILA to Snowball,

which has been optimized for this metric. The Ideal Metric assumes the target

relation to be right-unique (i.e. a many-to-one relation). Hence the ideal pairs

are right-unique. The output pairs can be made right-unique by selecting the pair

with the highest confidence for each first component. Next, duplicates have to be

removed from the ideal pairs and also from the output pairs. Also, one removes

all output pairs that have a first component that is not in the ideal set. Intuitively,

the Ideal Metric understands the results of the system as a function from the first

pair component to the second. It compares the function calculated by the system

to the ideal function. Once the ideal pairs are defined, precision, recall, and their

harmonic mean F1 can be computed as follows, where Output denotes the multi-

3http://www.lonelyplanet.com/
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set of the output pairs and Ideal denotes the multi-set of the ideal pairs:

recall =
|Output∩ Ideal|

|Ideal|
precision =

|Output∩ Ideal|

|Output|

F1 =
2 × recall × precision

recall + precision

There is one special case for the CV-system, which uses the Ideal Metric for the

non-right-unique instanceOf relation. To allow for a fair comparison, we used

the Relaxed Ideal Metric, which does not make the ideal pairs right-unique. The

calculation of recall is relaxed as follows:

recall =
|Output ∩ Ideal|

|{x|∃y : (x, y) ∈ Ideal}|

All document-based evaluation techniques require the manual extraction of ideal

pairs. Due to the effort, we processed only a small proportion of the documents

by hand. To ensure significance in spite of this, we compute confidence inter-

vals for our estimates: We interpret the sequence of output pairs as a repetition

of a Bernoulli-experiment, where the output pair can be either correct (i.e. con-

tained in the ideal pairs) or not. The parameter of this Bernoulli-distribution is the

precision. We estimate the precision by drawing a sample (on the hand-labeled

documents). By assuming that the output pairs are identically independently dis-

tributed, we can calculate a confidence interval for our estimation. We report

confidence intervals for precision and recall for a confidence level of α = 95%.

For the evaluation, we used approximate string matching techniques to ac-

count for different writings of the same entity. For example, we count the output

pair ”Chopin” / ”composer” as correct, even if the ideal pairs contain

”Frederic Chopin” / ”composer”. We measured precision at different levels of

recall and report the values for the best F1 value. To find out whether LEILA just

reproduces the given examples, we also report the number of examples among

the output pairs. During our evaluation, we found that the Link Grammar parser

does not finish parsing on roughly 1% of the files (for major grammatical erros or

indigestable input).

4.2 Results

4.2.1 Results on different relations

We tested LEILA on the following target relations: birthdate, synonymy and

instanceOf. Table 4.1 summarizes our experimental results.
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For the birthdate relation, we used Edward Morykwas’ list of famous birth-

days4 as examples, and we chose all pairs of person and incorrect birthdate as

counterexamples. All pairs with of a proper name and a date are candidates.

We ran LEILA on the Wikicomposer corpus. LEILA performed quite well on this

task. The patterns found were of the form ”X was born in Y ” and ”X (Y )”.

The quality of the results decreases as the system starts to consider any number

in brackets a birthdate. For example, at the lower end of the confidence scale, the

system also reports operas with the date of their first performance.

As examples on synonymy we used all pairs of proper names that share the

same synset in WordNet. As counterexamples, we chose all pairs of nouns that

are not synonymous in WordNet. For instance, ”UN”/”United Nations” is an ex-

ample and ”rabbit”/”composer” is a counterexample. All pairs of proper names

are candidates.

We ran LEILA on the Wikigeography corpus, because this set is particularly rich

in synonyms. LEILA performed reasonably well. The patterns found include ”X
was known as Y ” as well as several non-grammatical constructions such as ”X
(formerly Y )”.

The most interesting relation is the instanceOf relation. If an entity be-

longs to a concept, it also belongs to all super-concepts. However, admitting each

pair of an entity and one of its super-concepts as an example would have resulted

in far too many false positives. In contrast, restricting oneself to the lowest con-

cept might make the system miss useful patterns. The problem is to determine

for each entity the (super-)concept that is most likely to be used in a natural lan-

guage definition of that entity. Psychological evidence [32] suggests that humans

prefer a certain layer of concepts in the taxonomy to classify entities. The set of

these concepts is called the Basic Level. Heuristically, we found that the lowest

super-concept in WordNet that is not a compound word is a good approximation

of the basic level concept for a given entity. We used all pairs of a proper name

and the corresponding basic level concept of WordNet as examples. We could

not use pairs of proper names and incorrect super-concepts as counterexamples,

because our corpus Wikipedia knows more meanings of proper names than Word-

Net. Therefore, we used all pairs of common nouns and incorrect super-concepts

from WordNet as counterexamples. All pairs of a proper name and a WordNet

concept are candidates.

We ran LEILA on the Wikicomposers corpus. The performance on this task

was acceptable, but not impressive. However, the chances to obtain a high recall

and a high precision were significantly decreased by our tough evaluation pol-

icy: The ideal pairs include tuples deduced by resolving syntactic and semantic

ambiguities and anaphoras. Furthermore, our evaluation policy demands that non-

4http://www.famousbirthdates.com
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defining concepts like member not be chosen as instance concepts. In fact, a high

proportion of the incorrect assignments were friend, member, successor
and predecessor, decreasing the precision of LEILA. Thus, compared to the

gold standard of humans, the performance of LEILA can be considered reasonably

good.

The patterns found include the Hearst patterns [19] ”Y such as X”, but also

more interesting patterns like ”X was known as a Y ”, ”X [. . . ] as Y ”, ”X can
be regarded as Y ” and ”X is unusual among Y ”.

To test whether thematic heterogeneity influences LEILA, we ran it on the

Wikigeneral corpus. Finally, to try the limits of our system, we ran it on the

Googlecomposers corpus. As shown in Table 4.1, the performance of LEILAdropped

in these increasingly challenging tasks, but LEILAcould still produce useful re-

sults.

The different learning methods (kNN and SVM) performed similarly for all re-

lations. Of course, in each of the cases, it is possible to achieve a higher precision

at the price of a lower recall. Parsing the files with the Link Parser constitutes

the largest part of the run-time (approx. 42 seconds per file, e.g 3:45h for the

Wikigeography corpus). Training and testing on all corpora except Wikigeneral

is in the range of 2-15 minutes, with the SVM being a bit faster than kNN. The

Wikigeneral corpus with its roughly 80, 000 documents takes about 5h for training

and testing with the SVM. We did not employ kNN for this corpus.

Table 4.1: Results with different relations
Corpus Relation System #O #C #I Precision Recall F1 #E %E

Wikicomposers birthdate LEILA(SVM) 95 70 101 73.68% ± 8.86% 69.31% ± 9.00% 71.43% 3 4.29%

Wikicomposers birthdate LEILA(kNN) 90 70 101 78.89% ± 8.43% 70.30% ± 8.91% 74.35% 3 4.23%

Wikigeography synonymy LEILA(SVM) 92 74 164 80.43% ± 8.11% 45.12% ± 7.62% 57.81% 4 5.41%

Wikigeography synonymy LEILA(kNN) 143 105 164 73.43% ± 7.24% 64.02% ± 7.35% 68.40% 5 4.76%

Wikicomposers instanceOf LEILA(SVM) 685 408 1127 59.56% ± 3.68% 36.20% ± 2.81% 45.03% 27 6.62%

Wikicomposers instanceOf LEILA(kNN) 790 463 1127 58.61% ± 3.43% 41.08% ± 2.87% 48.30% 34 7.34%

Wikigeneral instanceOf LEILA(SVM) 921 304 912 33.01% ± 3.04% 33.33% ± 3.06% 33.17% 11 3.62%

Googlecomposers instanceOf LEILA(SVM) 787 210 1334 26.68% ± 3.09% 15.74% ± 1.95% 19.80% 10 4.76%

Googlecomposers instanceOf LEILA(kNN) 840 237 1334 28.21% ± 3.04% 17.77% ± 2.05% 21.80% 20 8.44%

Googlec.+Wikic. instanceOf LEILA(SVM) 563 203 1334 36.06% ± 3.97% 15.22% ± 1.93% 21.40% 11 5.42%

Googlec.+Wikic. instanceOf LEILA(kNN) 826 246 1334 29.78% ± 3.12% 18.44% ± 2.08% 22.78% 19 7.72%

#O – number of output pairs #E – number of examples among #C

#C – number of correct output pairs %E – proportion of examples among #C

#I – number of ideal pairs Recall and Precision with confidence interval at α = 95%

4.2.2 Results with different competitors

Table 2 shows the results for comparing LEILAagainst various competitors (with

LEILAperformance in boldface). The numbers show that LEILAclearly outper-

formed the other approaches in almost all cases. We compared LEILAto Text-

ToOnto and Text2Onto for the instanceOf relation on the Wikicomposers

corpus. TextToOnto requires an ontology as source of possible concepts. We

gave it the WordNet ontology, so that it had the same preconditions as LEILA.
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TextToOnto does not have any tuning parameters. Text2Onto allows the choice

of certain sub-algorithms. The reported results were the best we could achieve.

Text2Onto seems to have a precision comparable to ours, although the small num-

ber of found pairs does not allow a significant conclusion. Both systems have

drastically lower recall than LEILA.

Next, we compared LEILA to Snowball. As described above, we used the

company/headquarters-relation and the corpus that came with Snowball.

Since we only had access to the test corpus, we trained LEILA on a small portion

(3%) of the test documents and tested on the remaining ones. Since the original

5 seed pairs that Snowball used did not appear in the collection at our disposal,

we chose 5 other seed pairs as examples. We used no counterexamples and hence

omitted the learning step of our algorithm.

LEILA quickly finds the pattern ”Y -based X”. This led to very high precision

and good recall, compared to Snowball – even though Snowball was trained on

a much larger training collection of some thousand documents. In the original

paper [1], Snowball is evaluated using the Ideal Metric. Consequently, we report

precision and recall with respect to the Ideal Metric. By the nature of this metric,

the precision increases and the recall decreases, although the relative performance

of the systems does not change.

Finally, we compared LEILA to the CV-system. In the gold standard for this

approach, the ideal pairs are given as a table, in which each entity is assigned to

its most likely concept according to a human understanding of the text, indepen-

dently of whether there are explicit definitions for the entity in the text or not.

Some caution is necessary in a comparison. For example, the text might state

that Leonardo Da Vinci was a painter, but that he also invented new machines.

Then our system will classify him as a painter, whereas the competitor might say

he is an inventor. We demonstrate the difference of the two approaches by our

experiments.

We conducted two experiments: First, we used the document set used in Cimi-

ano and Völker’s original paper [11], the Lonely Planet corpus. To ensure a fair

comparison, we trained LEILA separately on the Wikicomposers corpus, so that

LEILA cannot have example pairs in its output. For the evaluation, we calculated

precision and recall with respect to an ideal table provided by the authors. Since

our competitor uses a different ontology, we allowed a distance of 4 edges in the

WordNet hierarchy to count as a match (for both systems). Since the explicit

definitions that our system relies on were sparse in the corpus, LEILA performed

worse than the competitor.

In a second experiment, we had the competitor run on the Wikicomposers

corpus. As the CV-system requires a set of target concepts, we gave it the set of all

concepts in our ideal pairs. Furthermore, the system requires an ontology on these

concepts. We gave it the WordNet ontology, pruned to the target concepts with
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their super-concepts. We evaluated by the Relaxed Ideal Metric, again allowing

a distance of 4 edges in the WordNet hierarchy to count as a match (for both

systems). This time, our competitor performed worse. This is because our ideal

table is constructed from the definitions in the text, which our competitor is not

designed to follow. These experiments show the different philosophies of the CV-

system and LEILA.

Table 4.2: Results with different competitors
Corpus M Relation System #O #C #I Precision Recall F1

Snowball corp. S headquarters LEILA(SVM) 92 82 165 89.13% ± 6.36% 49.70% ± 7.63% 63.81%

Snowball corp. S headquarters LEILA(kNN) 91 82 165 90.11% ± 6.13% 49.70% ± 7.63% 64.06%

Snowball corp. S headquarters Snowball 144 49 165 34.03% ± 7.74% 29.70% ± 6.97% 31.72%

Snowball corp. I headquarters LEILA(SVM) 50 48 126 96.00% ± 5.43% 38.10% ± 8.48% 54.55%

Snowball corp. I headquarters LEILA(kNN) 49 48 126 97.96% ± 3.96% 38.10% ± 8.48% 54.86%

Snowball corp. I headquarters Snowball 64 31 126 48.44% ±12.24% 24.60% ± 7.52% 32.63%

Wikicomposers S instanceOf LEILA(SVM) 685 408 1127 59.56% ± 3.68% 36.20% ± 2.81% 45.03%

Wikicomposers S instanceOf LEILA(kNN) 790 463 1127 58.61% ± 3.43% 41.08% ± 2.87% 48.30%

Wikicomposers S instanceOf Text2Onto 36 18 1127 50.00% 1.60% ± 0.73% 3.10%

Wikicomposers S instanceOf TextToOnto 121 47 1127 38.84% ± 8.68% 4.17% ± 1.17% 7.53%

Wikicomposers R instanceOf LEILA(SVM) 336 257 744 76.49% ± 4.53% 34.54% ± 3.42% 47.59%

Wikicomposers R instanceOf LEILA(kNN) 367 276 744 75.20% ± 4.42% 37.10% ± 3.47% 49.68%

Wikicomposers R instanceOf CV-system 134 30 744 22.39% 4.03% ± 1.41% 6.83%

Lonely Planet R instanceOf LEILA(SVM) 159 42 289 26.42% ± 6.85% 14.53% ± 4.06% 18.75%

Lonely Planet R instanceOf LEILA(kNN) 168 44 289 26.19% ± 6.65% 15.22% ± 4.14% 19.26%

Lonely Planet R instanceOf CV-system 289 92 289 31.83% ± 5.37% 31.83% ± 5.37% 31.83%

M – Metric (S: Standard document-based, I: Ideal Matric, R: Relaxed Ideal Metric)

Other abbreviations as in Table 4.1
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5 Conclusion and Outlook

We have presented a novel approach for extracting binary relations from natural

language text. The linguistic and statistical techniques we employ provide us

with patterns that are robust to variations in the text. We have implemented our

approach and showed that our system LEILA outperforms existing competitors.

Our current implementation leaves room for future work. First, the linkages

allow for more sophisticated ways of resolving anaphoras and other references

as compared to what we have currently implemented. Better methods could be

used to detect named entities. Furthermore, patterns could be matched in a more

flexible way, for example by allowing matches of semantically similar words in

the bridge (like ”to recognize as” and ”to know as”). Also, the patterns could

be learned and optimized only once and then be applied to different corpora.

The system could learn numerous interesting relations, including for example

country/president,partOf, belongsTo, isAuthorOf or isMarriedTo.

If only the results with a high confidence are taken, the system could be used for

building an ontology automatically. The system could acquire and exploit new

corpora on its own (for example, it could read newspapers). Once it has built up

sufficient background knowledge, it could use this knowledge to analyze corpora

more efficiently. For example, once it knows that ”Rita” was a hurricane, it will

conclude that ”Rita (2005)” does not mean that Rita was born in 2005, but rather

that Rita occurred in 2005. The system could make more sophisticated use of the

semantic relations, e.g. by concluding that multiple inheritance in the taxonomy

might indicate polysemy. We plan to exploit these possibilities in our future work.
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Appendix A Proof for the bound in

section 2.3.1

With the definitions given in section 2.3.1, we prove an upper bound for the prob-

ability P (#A > #B). Let #C = N − #A − #B.

P (#A > #B) = P (#A > #B|#C ≥ k) · P (#C ≥ k)

+P (#A > #B|#C < k) · P (#C < k) for any k

≤ P (#C ≥ k) + P (#A > #B|#C < k) · P (#C < k)

= P (#C ≥ k) +

k−1∑

i=0

P (#A >
N − i

2
|#C = i) · P (#C = i)

≤ P (#C ≥ k) + max
i=0...k−1

P (#A >
N − i

2
|#C = i) ·

k−1∑

i=0

P (#C = i)

≤ P (#C ≥ k) + max
i=0...k−1

P (#A >
N − i

2
|#C = i)

Now, we make use of the Chernoff-Hoeffding bound. This bound can be general-

ized for any x > pn:

P (
n∑

i=0

Xi ≥ x) ≤ 2e−2n( x
n
−p)2

If we choose k = (1 + ε)pCN , we may write:

P (#C ≥ k) ≤ 2 · exp−2N ·( k
N
−pC)2 .

We observe that the moment we fix the #C, we obtain a Binomial distribution for

A and B with the parameter
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p̃A = pA/(pA + pB). Since pA < pB , p̃A < 1
2

and (N − i)/2 > p̃A(N − i).
Therefore

P (#A >
N − i

2
|#C = i) ≤ 2e−2(N−i)( 1

2
−p̃A)2

Using these two bounds yields:

P (#A > #B) ≤ 2e−2N( k
N
−pC)2 + max

i=0...k−1
2e−2(N−i)( 1

2
−p̃A)2

= 2e−2N( k
N
−pC)2 + 2e−2(N−(k−1))( 1

2
−p̃A)2

= 2e−2Nε2p2
C + 2e−2[N(1−pC−εpC)+1]( 1

2
−p̃A)2

We choose ε = 1−pC

2pC
. Then

P (#A > #B) ≤ 2e
−2N(

1−pC
2pC

)2p2
C + 2e

−2[N(1−pC−
1−pC
2pC

pC)+1]( 1
2
−p̃A)2

= 2e−2N
(1−pC )2

4 + 2e−2[N(1−pC−
1−pC

2
)+1]( 1

2
−p̃A)2

= 2e−N
(1−pC )2

2 + 2e−2[N(
1−pC

2
)+1]( 1

2
−p̃A)2

= 2e−N
(1−pC )2

2 + 2e−(N(1−pC)+2)( 1
2
−p̃A)2
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