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Abstract
A huge amount of important biomedical information is hidden in the bulk of research articles in biomedical fields.

At the same time, the publication of databases of biological information and of experimental datasets generated by

high-throughput methods is in great expansion, and a wealth of annotated gene databases, chemical, genomic

(including microarray datasets), clinical and other types of data repositories are now available on the Web. Thus

a current challenge of bioinformatics is to develop targeted methods and tools that integrate scientific literature,

biological databases and experimental data for reducing the time of database curation and for accessing evidence,

either in the literature or in the datasets, useful for the analysis at hand. Under this scenario, this article reviews

the knowledge discovery systems that fuse information from the literature, gathered by text mining, with micro-

array data for enriching the lists of down and upregulated genes with elements for biological understanding and for

generating and validating new biological hypothesis. Finally, an easy to use and freely accessible tool, GeneWizard,

that exploits text mining and microarray data fusion for supporting researchers in discovering gene^disease rela-

tionships is described.
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INTRODUCTION
A huge amount of biomedical information is hidden

in millions of research articles published in the last

20 years and this quantity is bound to increase

exponentially [1]. Similarly, the publication biologi-

cal databases is in great expansion, and a wealth of

annotated gene databases, chemical, genomic, clinic-

al and other types of data repositories, including

drugs and microarray experiments are available on

the Web. Thus a topical challenge of bioinformatics

is to leverage on the combination of multi-type

information sources, for a more effective system biol-

ogy modeling and knowledge discovery [2, 3]. A first

important step towards the organization and integra-

tion of multi-type biomedical information is the

National Center for Biotechnology Information’s

(NCBI) Entrez Cross-Database [4] that interconnects

PubMed abstracts with NCBI’s databases on DNA

sequence and chemical structure, thus speeding up

the research of data related to a given disease.

However, this system does not include disease–

gene or disease–protein compendia and it is not
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capable to link its results to external databases, e.g.

drugs databases. This linkage is essential to support

the cross-linking of textual information with the

relevant biological databases and to reinforce the

connection between annotations in biological data-

bases. Moreover, given the fast development of

high-throughput methods with consequent release

of experimental data, the need of developing tar-

geted bioinformatics tools and methods that combine

literature, biological databases and experimental data

for reducing the time of database curation and for

knowledge discovery in literature is heavily

demanded [5]. Under this scenario, a first aim of

this article is reviewing the knowledge discovery sys-

tems that integrate literature information, gathered

by text mining, with microarray data. Usually, this

is performed either with the goal of enriching the

lists of down and up-regulated genes with elements

for biological understanding or for generating and

validating new biological hypothesis. To illustrate

how text mining and microarray data integration

may be achieved, we first provide, in the next sec-

tion, an overview of the methods and tools that are

used to perform text mining, i.e. information

retrieval (IR), named entity recognition (NER), in-

formation extraction (IE) and knowledge discovery

(KD), using as a starting point previous reviews

[6–9], and focusing on the aspects of the integration

between biological data and text data that have been

recently investigated. This overview allows us, in

‘Combining text and microarray data’ section, to

point out the differences among the current attempts

at integrating experimental data in the mining loop.

Finally, in ‘GeneWizard’ section we illustrate a

new tool, GeneWizard that uses microarray data to

evaluate and validate biological hypothesis mined

from text. GeneWizard, based on the methods pro-

posed by Faro et al. [10, 11], proposes novel relation-

ships between genes and diseases by integrating

literature discoveries and gene sets gathered from

microarray data analysis. In detail, starting from a

gene–disease relationship, it extracts a set of genes

(related to the gene of the derived association)

involved in the disease. Biological functions,

namely, biological processes, cellular components

and molecular functions, are then associated to the

validated set of genes by using Gene Ontology

(http://www.geneontology.org/) (GO). Finally, in

the conclusions we outline the key challenges to

advancing this type of integrated knowledge discov-

ery systems.

TOOLSANDMETHODS FOR
LITERATURETEXTMINING
The primary goal of literature text mining [12] is to

distill knowledge that is hidden in text of published

papers and to present it to the users in a coherent and

concise form. More formally, the ultimate goal of

text mining concerns the discovery of new, previ-

ously unknown information, by automatic text re-

sources processing. Generally, systems for literature

text mining include four main modules [13]: (i) IR

to gather relevant text by querying databases of bio-

medical papers; (ii) NER to find the biological enti-

ties (e.g. genes, proteins) within text; (iii) IE to

identify predefined relationships among biological

entities from explicit statements in text; and

(iv) KD to elicit relationships hidden in the informa-

tion derived by the previous module. Recent

text-mining systems have started taking into consid-

eration the integration between literature and bio-

logical, chemical, medical and drugs databases. In the

next sections each module of a text-mining system is

reviewed, focusing on how the integration aspect is

taken into account.

IR
Information retrieval is the first step of any literature

text-mining system and aims at finding documents

related to the user’s query [9] or at identifying

the text segments (articles, abstracts, etc.) pertaining

to a specific topic. The most famous IR tool for

biomedical papers is PubMed, that is mainly based

on two search models: (i) a model that uses Boolean

operators to retrieve documents by performing

queries in the form of <DiseaseX> and <GeneY>

and (ii) a vector space model [14] that represents each

document by a vector of index terms, in which each

term is characterized by a value according to a fre-

quency-based weighting system. The space vector

model is used to train machine learning methods

for discriminating relevant papers and irrelevant

papers with respect to the queries issued by the

user. However, in order to exploit the full potential

of IR systems for making scientific knowledge more

accessible and enabling automatic knowledge discov-

ery, some systems have extended text-based search-

ing to operate on other sources of data (biological,

chemical, medical, drugs annotated databases).

Examples of these tools are: (i) Query Chem [15]

that combines text-based IR on biochemical data-

bases and WebAPI to retrieve the information and

relationships between compound structures and
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(ii) EBIMed [16] that retrieves sentences based on

co-occurrences between biological entities and iden-

tifies relationships between protein/gene names and

drugs.

Of course, IR should not rely only on methods for

query terms matching, because term ambiguity may

cause low precision and low recall. To address this

issue, a number of IR tools that exploits established

domain ontologies, to support semantic search in

biomedical repositories and to guarantee more pre-

cision with respect to the Boolean search systems,

have been proposed. For instance, GoPubMed

(http://www.gopubmed.org/) [17] classifies abstracts

using GO terms, GoWeb (http://www.gopubmed

.org/goweb) [18] combines keyword-based Web

search with text mining and ontologies to organize

and navigate the results and facilitate question an-

swering, whereas Textpresso (http://www.text

presso.org/) [19] uses a custom ontology to query a

collection of documents for information on specific

classes of biological concepts (gene, cell, etc.) and

their relations.

IR systems are currently focusing on how to pre-

sent and distill the search results and how to

cross-link these results with the biological databases

used in the retrieval process [17, 20]; in fact, long lists

of retrieved papers provide a scarce overview of the

problem and may create confusion in the users on

which sources of data have been used. For example,

iHOP [21] converts the information in PubMed into

a navigable multi-sources network of genes and pro-

teins (that also includes phenotypes, pathologies and

gene function), thus providing an intuitive alterna-

tive way of accessing the ten million of abstracts in

PubMed.

NER
Biological entities are the backbone of any

text-mining system, but often the naming of the

entities is inconsistent and imprecise [22] since they

are cited with a variety of terms. Therefore, the main

goal of a NER system is to find the biological entities

(mainly genes and proteins) that are mentioned

within a text and to associate them with known

names or identifiers (IDs). Usually, this task is per-

formed in two steps: first, the recognition of the

words that refer to entities and then, the unique

identification of such entities.

The earliest NER systems relied on rule-based

approaches (e.g. in [23]), i.e. they were based on

manually crafted rules that described common

naming structures for certain term classes, based on

morphological, orthographic and syntactic character-

istics [24]. As annotated corpora (in which gene and

protein names are categorized) have become

available, the newer systems have relied on

machine-learning algorithms [25, 26], to recognize

the names on the basis of their peculiar features.

Differently, methods relying on dictionaries

[27, 28] depend on lists of synonyms of entities

names that are matched in documents using algo-

rithms that recognize variations in how the names

appear (e.g. gene ‘BRCA1’ may be written as

‘Brca1’, ‘BRCA 1’, ‘brca1’, etc.). However, the

most effective and recent NER systems are based

on the curation of entities name lists to reduce the

aliases [6,29], even though their main difficulty is the

lack of standardization of names (e.g. each gene has

many names and abbreviations). Under this scenario,

ontologies, taxonomies and controlled vocabularies

are of strategic importance for NER systems since

they provide semantic interpretation of bio-entities

[30–32].

A relevant example of controlled vocabulary that

can be used for NER is Medical Subject Headings

(MeSH) containing about 30 000 terms and mainly

used for indexing articles in MEDLINE (MEDLINE

is one of the component of Pubmed that indexes the

records using MESH controlled vocabularies.) (i.e.

each article is summarized by a set of controlled

terms). MeSH covers protein functions in cellular

systems, but it is not exhaustive.

Currently, the tendency for NER systems is to

integrate different vocabularies or ontologies in

order to provide a structured, accurate and complete

list of the biological entities that can overcome the

aforementioned drawback. In this direction, one

valuable approach, based on integration of several

controlled vocabularies, is SemCat [33] consisting

of a large number of semantically categorized terms

coming from different biomedical knowledge re-

sources (e.g. Unified Medical Language System

(UMLS) [34], Gene Ontology (GO) [35], Entrez

Gene [36], ProtScan [37] and ChemID [38]) and

open-domain corpora [39]. An example of NER

system based on SemCat was developed by Tanabe

et al. [40]. This approach builds a priority model for

entity recognition based on the position of the words

in a sentence, i.e. a word on the right side of a sen-

tence is more likely an entity with respect to a word

on the left side. Similarly, knowledge-based NER

approaches using platforms that integrate different
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types of ontologies from gene terms to genetic path-

ways (A genetic pathway is a linear sequence of gene

activities resulting from the functional interactions

between different genes.), to proteins, to clinical

trials], such as BioPortal (http://www.bioontology.

org/ncbo/faces/index.xhtml) and Open Biological

Ontologies (http://www.obofoundry.org/), have

been investigated [41].

A recent approach based on web-services is

Whatitiz [42] that implements a NER based on mor-

phological variability of terms. In particular, it is pro-

vided with numerous modules for annotating

different entities: chemical entities (whatizit

Chemical), diseases (whatizitDiseaseUMLS for ac-

cessing the UMLS Metathesaurus using the tool

MetaMap (http://metamap.nlm.nih.gov/), drugs

(whatizitDrugs maps drugs in the text with terms

of a controlled vocabulary built using Drugbank

(http://redpoll.pharmacy.ualberta.ca/drugbank/),

and genes (whatizitGO searches for gene ontology

terms).

Most recently, algorithms able to identify and dis-

ambiguate acronyms automatically, even if these are

not mapped in any standard nomenclature, have

been investigated to improve NER systems perform-

ance [43, 44].

IE
IE from literature aims at extracting pre defined types

of facts in the form of relationships between bio-

logical entities from the retrieved documents. The

inputs to this step are sentences, whereas the outputs

are relationships among biological entities.

Generally, two main approaches exist:

� Co-occurrences processing: these approaches

identify entities that co-occur within the text,

i.e. terms that appear in the same texts tend to

be related. Often these methods are able to

detect co-occurrences to extract single relation-

ships of a certain type: gene–gene, gene–disease,

protein–protein, etc. Several works have used

co-occurrence frequencies for extracting known

single relationships [45]. For example,

Al-Mubaid and Singh in [46] proposed a text

mining approach based on co-occurrence and

term frequency analysis, by which they found

and validated six significant genes for Alzheimer’s

disease.

Co-occurrences approaches have been investi-

gated also for extracting facts that involve

multi-type data, in line with the current research’s

trend of text and biological data integration. For

instance, Mukhopadhyay et al. [47] identifies

multi-way relationships involving more than two

biological entities, i.e. genes, proteins, diseases,

drugs and chemicals, etc. An example of identified

relationship is ‘gene A activates protein B in dis-

ease C for organ D under influence of chemical E’.

Co-occurrence approaches tend to provide better

recall than precision and errors arise in complex

sentences containing multiple relationships.

These approaches are unable to extract directional

relationships (i.e. A involves B but B does not

involve A) and to distinguish different types of

relationships, e.g. they cannot identify relation-

ships in the form ‘A is not connected to B’.

Precision can be improved by integrating

co-occurrence methods with rule or pattern-based

approaches. However, these approaches tend to be

dataset dependent, i.e. the rule or pattern sets are

derived from training data often not applicable to

other data different from the ones used during

the training [48].

� Patterns parsing by Natural Language Processing

(NLP): all the above mentioned issues are ad-

dressed by NLP approaches, which combine the

analysis of syntax and semantics in a text for ob-

taining relationships between facts. The workflow

of these approaches is: first, the text is tokenized to

identify the boundaries of the words and sen-

tences, then a part-of-speech tagging (e.g.

[49, 50]) system assigns labels such as noun, verb,

adjective to each word. Afterwards, a syntax tree is

computed for each sentence to detect noun

phrases and represent their relationships [6].

NER is then used to tag the relevant biological

entities in these relationships. Finally, in order to

identify the evidences for entities relationships, a

rule set based on the syntax tree and on the

semantic labels [51, 52] is used. For example

Fundel’s et al. [53] developed RelEx to obtain de-

pendency trees from MEDLINE abstracts by using

Stanford Lexicalized Parser (http://nlp.stanford.

edu/downloads/lex-parser.shtml). These trees are

then enriched with genes and proteins by using

ProMiner [54], a dictionary-based NER. Finally,

a set of three simple rules (e.g. ‘A activates B’,

‘Activation of A by B’ and ‘Interaction between

A and B’) is applied to obtain candidate relation-

ships that are then submitted to a filtering module

that uses negation check, enumeration resolution
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and restriction to the domain of interest for

screening the candidate relationships. Often partial

language-parsing approaches are unable to detect

relationships that span multiple sentences [6], and

full parsing, providing more elaborate syntactic in-

formation, is adopted to achieve potentially better

results [55]. A typical full grammar parsing ex-

ample is the Pro3Gres dependency parser [56]

that integrates hand-written grammar with a stat-

istical language model for parsing unrestricted text

by using deep knowledge of the English language.

Full parsing approaches have been recently inte-

grated with multi-type data for extracting facts

involving more concepts: InfoPubMed [57] rec-

ognizes different types of interaction between

gene and proteins on MEDLINE abstracts by

combining full parsing, machine learning tech-

niques and ontologies for NER; Pharmspresso

[58], identifies important pharmacogenomics

facts in articles referenced to human genes, poly-

morphisms, drugs and diseases by full text parsing

and by exploring biological, chemical and drugs

databases.

An approach based on full-text processing that also

uses the ‘not’ concept in proteins relationships, i.e.

protein A binds protein B but not protein C, was

developed by Kim [59]. They found 41 471 protein–

protein contrasts available at the web-address http://

biocontrasts.biopathways.org/.

The current trend is to favor full texts over ab-

stracts since biological entities identified from mining

only abstracts can be strongly underestimated be-

cause of abstracts’ concise nature. Methods for

mining full biomedical texts need to be improved

substantially, especially in converting PDF or

HTML documents to plain text and in handling

grammatical errors [60]. Another shortcoming of

current methods is that they do not consider infor-

mation hidden in tables and figures. Recently,

approaches that integrate text data, biological data-

bases and non-textual data (e.g. images, graphics,

etc.) have been proposed and a comparative list is

provided in [7]. An example is SLIF [61] that com-

bines figure’s caption mining, image processing and

specific domain ontologies to extract biomedical in-

formation from fluorescence microscopy images.

A biological entity recognition system finds protein

and cell type names in the mined captions and these

entities are associated with the patterns extracted

from the related images. Finally, a web-interface

and a XML-based web-service allow users to inves-

tigate and query the derived information.

KD
Trying to discover hidden or implicit biomedical

links and to propose them as potential scientific

hypotheses is the main goal of knowledge discovery

systems. In fact, the previously described IE systems

extract only pre identified or explicit relationships.

Swanson, pioneer of the research in knowledge dis-

covery from text, in [62] demonstrated, by using the

semi-automated Arrowsmith system [63], how new

knowledge can be inferred from existing literature.

Inferring indirect relationships implies to use facts in

the form A leads to B and B leads to C, then a

relationships may be inferred between A and C. In

detail, the user provides a hypothesis between two

biological entities (A is related to C) that is further

proved by searching for related terms (B) supporting

the given hypothesis. An example of inferred rela-

tionships is the one ‘fish oil - Raynaud’s disease’ dis-

covered by Swanson [64] or the relationship

between magnesium deficiency and migraine head-

ache [65]. These two discoveries were confirmed

experimentally [66, 67]. Several methods relying

on natural language processing exist to discover

knowledge about gene regulation [68], protein phos-

phorylation [69, 70], gene–disease or gene–gene

interaction [71–73].

One of the most complete systems that uses NLP

is GeneWays [74] that examines entire articles to

extract the physical interactions among disease and

genes hidden in the literature. Differently, many

other systems are based on co-occurrence, i.e. the

idea that two concepts (biological entities) are

related if they occur in the same contexts in the lit-

erature. They can be based either on (i) first order

co-occurrences, e.g. entity A co-occurs with entity B

[73], [10] or (ii) second-order co-occurrences

[75, 76], i.e. entity A co-occurs with entity B

which co-occurs with entity C, therefore there is a

relationship between entities A and C. These

approaches share the assumption that hidden and

valid relationships may be found by suitably screen-

ing the huge number of facts retrieved by the

co-occurrence approaches. For instance, Jelier et al.

[76] propose the associative concept space (ACS) to

filter the irrelevant relationships and terms obtained

by applying a second order co-occurrence approach.

In detail, ACS reflects not only the co-occurrence of
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two entities, but also indirect, multi-step relation-

ships between entities.

Very few systems have been designed to extract

complex and multiple types of relationships (e.g. find

all the genes involved in a disease and all the related

proteins) that necessarily require different types of

data to be integrated. Anni 2.0 [77] uses an

ontology-based interface to MEDLINE to identify

different types of associations between biomedical

concepts, including genes, proteins and diseases. It

resorts to the idea of concept profiling, i.e. a list of

concepts is presented where each concept is asso-

ciated to the analyzed text together with a score

describing its importance. An example of association

derived with Anni 2.0. is: ‘Gene KLK3 is bound to

the prostate cancer, more specifically with malignant

neoplasm of prostate’. Polysearch [78] is a recently

developed web-tool able to identify associations

from published abstracts and many well-annotated

databases. It enables users to perform queries in the

form: ‘Find all genes associated with a prostate

cancer’. Up to date it supports more than 50 classes

of queries mining more than a dozen of text, ab-

stracts and bioinformatics databases. A key function-

ality of PolySearch is that it extracts and analyzes text

data not only from PubMed but also from other

databases such as DrugBank [79] and Human Gene

Mutation Database (HGMD) [80]. Gendoo [81]

identifies disease relevant genes and aims at under-

standing their mechanisms by interpreting data pro-

vided by genome sequences and transcriptomics. In

detail, in Gendoo the On-line Mendelian

Inheritance in Man (OMIM) (http://www.ncbi

.nlm.nih.gov/omim/) knowledge-based system,

that contains about 20 000 entries for human genes

and for genetic diseases, is re-organized by using

MeSH, thus improving OMIM’s exploitability by

computer automation.

In summary, several KD methods have been pro-

posed in the last years where integration between

biological data and unstructured/structured text has

been achieved in at least one of the IR, NER and IE

sub-systems. However, to realize the full potential of

text mining, new methods that integrate complex

texts, biological and also raw experimental data are

needed, with a focus on enabling biologists to exploit

biological knowledge more effectively. This is neces-

sary because any knowledge discovery method gen-

erates hypotheses about relationships to be validated

empirically, and reusing available experimental data

is an effective strategy to speed up scientific progress.

COMBININGTEXTAND
MICROARRAYDATA
Literature text-mining methods are useful to dis-

cover hidden or indirect relationships, however

their integration with high-throughput methods

(e.g. microarray) is heavily demanded. To fulfill

this need, in the last years bioinformatics efforts

have been directed toward the implementation of

tools supporting the integration of biological and ex-

perimental data with literature information in order

to infer biological hypothesis that can assume the

form of pathways, gene regulatory networks, or,

more in general, biological networks involving dif-

ferent entities such as genes, proteins, diseases, drugs

from experimental data gathered from high-

throughput methods.

DNA microarray technology, one of the most

common high-throughput methods, allows research-

ers to come across biological functions on a genomic

scale. However, the list of the produced down

and upregulated genes is very cryptic, thus

requiring a huge effort in data interpretation [13,

82]. Moreover, the selection of such lists of genes

(i.e. the clusters to be analyzed) is demanded to the

researchers that, given the amount of data involved,

might not pursue the best selection since it is difficult

to catch the correlation between the cluster and the

biological aspect to be investigated.

Therefore, in the last 10 years, the attention of the

bioinformatics community has been directed mainly

to eliciting such correlations to understand the bio-

logical meaning of the produced lists of genes, in-

stead of investigating novel clustering and statistics

methodologies. Understanding the biological mean-

ing of a set of up and downregulated genes derived

from microarray experiments is one aspect of current

bioinformatics efforts in data integration; the other

one foresees text mining combined with microarray

data targeted to the generation and to the evaluation

of biological hypotheses, which can be obtained

either by mining microarray data that involves data

clustering and manual selection of the clusters to be

analyzed or by mining the literature using the know-

ledge discovery systems before described or by ex-

ploiting the knowledge of the biomedical

researchers.

Understanding biological meaning
The most natural way to assign a biological meaning

to a set of genes that has been obtained by mining

microarray data is to project it onto biological
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processes that can be represented in the form, in

order of increasing complexity, of GO terms, path-

ways and gene regulatory networks (A gene regula-

tory network represents a collection of segments of

DNA that maps gene regulations in living cells.)

previously identified or manually compiled by

researchers [82] (see Figure 1).

The most common (and simple) approach for

gene list projection is to use GO for interrelating a

list of genes with a biological process and/or a mo-

lecular function and/or a cellular component. GO is

also used to rank significant genes (produced in the

microarray experiment) in relationship to the GO

categories. A list of about 70 methods and

tools that carry out GO-based microarray analysis

is reviewed in [83]. An approach that goes

beyond simple GO classification is Onto-Express

[84], since it associates lists of up and down

regulated genes with functional profiles built by

correlating GO terms (biological processes, chemical

components, molecular functions) with expression

profiles.

However, the GO classification does not provide

exhaustive information about the biological context

of a given set of up and downregulated genes. This

can be achieved by pathway analysis and/or by regu-

latory network analysis. Pathway analysis mainly in-

vestigates the functional and physical interaction

among genes instead of using the gene-centered

view as GO-based approaches. These systems try

to map genes derived from microarray experiments

onto precompiled pathways derived by manually

analyzing the literature. Most non-commercial sys-

tems for pathway analysis rely on the KEGG database

(http://www.genome.jp/kegg/) that contains a

collection of pathways representing the current

knowledge on gene and molecular interaction.

A comprehensive list of tools for pathways

analysis can be found at the weblink http://

www.geneontology.org/GO.tools.microarray.shtml.

Pathway mapping of microarray data, usually, gen-

erates more than one pathway, therefore, it is neces-

sary to rank them according to their relevance to the

dataset. Pathways ranking is provided in GenMAPP

Figure 1: Understanding biological meaning of a set of regulated genes.The most common ways for understanding

the biological meaning of a set of genes are: (i) to project it onto biological processes represented in the form of

GO terms, pathways and gene regulatory networks (blue rectangle) and/or (ii) to annotate the lists of regulated

genes based on literature profiling (red rectangle). Pathways and gene regulatory networks are usually derived by

manual literature analysis.
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2 [85], where the users can rank, and at the same

time, customize the pathways; an extension of

GenMAPP2 [85] proposes the Fisher’s exact test

for ranking the relationships between genes and

pathways. PathExpress [86, 87], instead, identifies

the most relevant metabolic pathways associated

with a subset of genes using P-values. The

KEGG-based web-tool KOBAS [88] proposes a

controlled vocabulary for gene pathways mapping

and the relevance of the discovered pathways is esti-

mated using binomial, Chi-square and hypergeo-

metric distribution test. Although pathway-based

approaches provide deeper information on biological

processes possibly relevant to a set of genes, their

main shortcoming is that biological processes usually

depend on more than one pathway and the connec-

tions between such pathways is related to the bio-

logical context. The interconnection of pathways is

defined as gene regulatory network. This network

cannot be easily derived by simply combining pre

compiled pathway because the networks’ morph-

ology changes with the biological context. The

earliest attempts for building gene regulatory net-

works have been successful only for lower

eukaryotes with simple genomes [89, 90]. Current

approaches (both stand alone and also combined

with GO classification and pathways), instead, are

directed toward more complex mammalian systems.

For instance, ARACNe [91] builds regulatory net-

works in mammalian cells by identifying transcrip-

tional interactions among genes from microarray

expression profiles. An interesting effort is repre-

sented by MONET [92] a method based on

Bayesian networks for inferring gene regulatory

networks. It mainly consists of two steps: the first

aims at splitting the whole gene set into overlapped

groups that contain genes whose GO annotations or

microarray expression patterns are highly correlated.

Finally, the second step infers Bayesian networks

over each group and integrates such groups into

global regulatory networks. BioCAD [93] integrates

both the above inference tools (ARACNe and

MONET) for building gene regulatory networks.

The tool also supports validation of the inferred net-

works by integrating gene and protein regulatory

networks derived from MEDLINE abstracts using a

text-mining system based on STRING-IE [94].

The described approaches provide as outcomes

precomputed relationships between genes and bio-

logical processes. However, the literature may enrich

the information about relationships regulated

genes-biological processes much more than struc-

tured ontologies or precompiled pathways can do.

To extract the additional information hidden in the

literature, several methods that annotate the lists of

regulated genes based on literature profiling have

been proposed [95, 96]. Most of these approaches

are based on keywords over-representation of a set

of genes, similarly to GO-based microarray analysis,

but where the keywords to be associated to the gene

set are gathered by mining directly MEDLINE and

they are used to interpret genes in domains scarcely

covered by GO. In detail, such methods retrieve a

subset of MEDLINE abstracts associated with one or

more genes, e.g. a cluster of genes derived by gene

set analysis methods [97, 98]. Then, these abstracts

are used to identify relevant keywords in the text or

annotated MeSH terms (medical subject heading

terms), thus helping the gene sets characterization.

For example, GenClip [99], one of the most recent

tools, builds functional clusters of genes related to

disease pathogenesis starting from a list of genes

from microarray. The tool first identifies keywords

as terms that co-occur in at least two of the analyzed

genes by mining literature abstracts and then clusters

the list of genes based on keyword occurrences, thus

obtaining functional clusters. Differently, Chagoyen

etal. [100] proposes a system for literature profiling of

large sets of genes or proteins that can be used to find

similarities among genes. The method starts from

creating a pool of documents related to a specific

gene. Afterwards, the pool of documents is con-

verted into a vector space representation and finally,

the non-negative matrix factorization [101] is applied

to the vector space, thus obtaining for each gene a

literature profile (A literature profile can be seen as a

picture of the functional relationships, derived from

scientific papers, between set of genes). CoPub

[102], provides an insight into the biological mech-

anisms related to a set of regulated genes for liver

pathologies by calculating statistics for gene-keyword

co-occurrences using the entire MEDLINE abstracts,

instead of only a subset, as the previous approaches

do. The inputs of the tool are a subset of genes ob-

tained by microarray data processing and a set of

keywords, whereas a navigable network of

MEDLINE abstracts where the genes and the key-

words co-occur is provided as output. The text

mining method extracts networks of abstracts by

analyzing the co-occurrences of human, mouse and

rat genes with keywords describing liver pathologies,

pathways, GO terms, diseases, drugs and tissues. An
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approach that exploits literature for supporting gene

list interpretation is the one proposed by Jelier et al.

[103], which uses associations derived from literature

(using the Anni 2.0 tool) to provide an interpretation

of gene expression changes. In detail, they propose

the literature-weighted global test to compute the

correlation between associations (in the form

gene-biomedical concept) obtained by mining the

literature and list of genes extracted from microarray

and they provide as output the scores reflecting the

importance of a gene for a concept of an association.

Table 1 shows some of the web available tools for

understanding biological meaning of a set of regu-

lated genes derived from experimental data.

Hypothesis generation
Hypothesis generation has the objective to suggest

undiscovered associations between biomedical con-

cepts; this is different from the attempts at providing

a biological meaning to a set of facts (e.g. lists of

genes) extracted from experimental data. The most

explored venue for hypothesis generation concerns

the discovery of genes and other biological entities

(together with their role) involved in a specific dis-

ease (disease-centric analysis). In fact, predicting bio-

logical entities (and their role) involved in a disease

before experimental analysis may save time and effort

by indicating where the research should look into.

Text mining and microarray data have been com-

bined in two main ways to achieve this

goal: (i) starting from a microarray related to a specific

disease, a list of genes (the hypothesis) is extracted

(e.g. one or more cluster) and then the role of such

genes (i.e. the prioritization) in the given disease is

explored using information extracted from literature

and (ii) the hypothesis is generated from literature

mining in the form of associations between genes

and a given disease and then these associations are

filtered and validated by resorting to microarray data.

The first approaches follow this workflow: given a

set of genes (the hypothesis) either gathered directly

from microarray data analysis or previously stored in

public databases (such as Gene Expression Omnibus),

the literature (mainly MEDLINE) is mined, starting

from this set of genes, in order to elicit a gene pri-

oritization for the given disease or to find out other

biological concepts involved in the same disease

(Disease modeling) (see Figure 2). The workflow is

similar to the biological understanding approach’s

one with the difference that in this case the outcome

is a refinement and a close examination of the input

hypothesis regarding concepts and their role in the

given disease, whereas in the context of biological

understanding the output is the association of a

meaning to a list of genes (facts).

One of the most complete tools for hypothesis

generation from microarray is G2D [104, 105]. It

performs genes prioritization related to inherited dis-

eases by combining Mesh annotations in MEDLINE

and a set of genes with the GO annotations of entries

Table 1: List of the web available tools for understanding biological meaning of a set of regulated genes derived

from experimental data

Description Used Resources Available at

GenMAPP2 Visualize gene expression data

biological pathways

GO, KEGG http://www.genmapp.org/

PathExpress Mapping of a set of Genes onto

Pathways.

KEGG Swiss-Prot databasea Blastxb http://bioinfoserver.rsbs.anu.edu

.au/utils/PathExpress/

KOBAS Identify statistically enriched

pathways for a set of genes or

proteins

Pathways Database: KEGG, PID

Curatedc BioCycd and Panthere
http://kobas.cbi.pku.edu.cn/home.do

ARACNe Estimate gene regulatory networks

in mammalian cells using

microarray expression profiles

Expression profile dataset of human

B lymphocyte cells built by the

authors

http://wiki.c2b2.columbia.edu/

califanolab/index.

php/Software/ARACNE

GenCLIP Clustering of gene lists by literature

profiling

NCBI EUtilities forText Mining

Gene List: HUGOf Entrez Gene,

or Unigeneg

http://www.genclip.com

CoPub Find biomedical concepts from

Medline linked to a gene set

(Affymetrix identifiers)

NCBI E-Utilities forText Mining http://services.nbic.

nl/cgi-bin/copub/CoPub.pl

ahttp://expasy.org/sprot/; bhttp://blast.ncbi.nlm.nih.gov/; chttp://pid.nci.nih.gov/; dhttp://biocyc.org/; ehttp://www.pantherdb.org/pathway/;
fhttp://www.genenames.org/; ghttp://www.ncbi.nlm.nih.gov/unigene.

Combining literature text mining with microarray data 69
D

o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

3
/1

/6
1
/2

1
9
4
6
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



in NCBI RefSeq [106] (collection of annotated se-

quences, including genomic DNA, transcripts and

proteins). More specifically, it receives as input a

genomic region and an OMIM disease identifier

and provides as output the genes potentially involved

in the given disease. In detail, for the disease under

analysis the MESH terms from the ‘Disease

Category’ associated to publications in OMIM are

retrieved. These terms are then associated with

chemical, drugs and molecular functions by using

GO. The detected molecular functions are used to

identify a sequence of DNA by querying the RefSeq

protein database. This sequence is integrated with a

chromosomal location for the given disease provided

by the OMIM database in order to obtain a list of

genes related to the analyzed disease. G2D was ori-

ginally developed only for Mendelian diseases; cur-

rently, it also works for complex genetic diseases

[107]. Likewise, Tiffin et al. [108] propose genes pri-

oritization according to the relationship disease-

affected tissue. The method integrates literature

discoveries (co-occurring disease and tissue names

in MEDLINE) and human gene expression data

from the Ensemble database [109] to link gene

expressions to diseases by using an anatomical ontol-

ogy. First, the tool associates anatomical terms from

an ontology for human anatomical systems and cell

types (eVOC [110]) to diseases names, based on the

co-occurrence in Pubmed abstracts. Each term of the

eVOC ontology is then ranked according to the fre-

quency of annotation. The top-scoring terms are

compared with the terms already annotated to can-

didate disease genes using the Ensemble database.

The genes that mismatch with the already annotated

genes represent the list of genes to be explored.

The second approaches (Figure 3) generate

hypotheses (in the form of associations gene-disease)

by mining literature, then they validate such hypoth-

eses by checking if there is any evidence of the dis-

covered relationships in the experimental data. To

the best of our knowledge, few methods use know-

ledge gathered from the literature for hypotheses

generation and validate these sets using

high-throughput methods, thus allowing the identi-

fication of novel biological entities relationships.

An approach in this direction is the one proposed

by Faro et al. [11], where hypothesis generation

about gene–diseases relationships is made by

mining specialized literature using the co-occurrence

processing approach described in [10] and the

inferred relationships are selected and then validated

by means of microarray data analysis. The used

text-mining algorithm tends to provide better recall

than precision, i.e. it provides more relationships

Figure 2: Hypothesis generation by microarray data analysis.The first approach follows this workflow: given a set

of genes (the hypothesis) either gathered directly from microarray data analysis or previously stored in public data-

bases, the literature is mined, starting from this set of genes, in order to elicit a gene prioritization for the given dis-

ease or to find out other biological concepts involved in the same disease (Disease modeling).
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than the ones obtained with other existing methods.

The first selection from the pool of obtained rela-

tionships is performed on the basis of the availability

of relevant raw experimental data. Resorting to

microarray data, of course, serves both as a verifica-

tion of the derived relationships and as a discovery of

novel lists of genes related to a specific disease. This

latter, in particular, is achieved by exploring down

regulated and upregulated genes through a gene

relevance network (A GRN is a group of genes

whose expression levels in a microarray dataset are

highly predictive of others genes in the group.)

(GRN) related to the gene of the discovered rela-

tionship. In order to understand the biological mean-

ing behind the obtained genes, molecular, biological

processes, cellular components and molecular func-

tions are pointed out by querying the GO database.

The approach is implemented in ‘GeneWizard’, a

tool that will be discussed in detail in the next

section.

Another tool for biological discovery that validates

hypothesis by integrating multiple types of data is

ENDEAVOUR [111], which filters a set of candi-

date genes indirectly connected to a given disease

according to chromosomal-mapping data about the

disease. In detail, the method takes as input a list of

genes (possibly extracted by literature text mining)

potentially involved in the given disease and pro-

vides as output the prioritized genes list. This list

includes all the genes involved in the disease

ranked according to a score for a specific data

source. For example, with ontology-based data

sources, the genes are ranked according to the sig-

nificance of the related terms (the ones over repre-

sented in the input gene lists), whereas with a

microarray data source the genes are ranked accord-

ing to the probability of being involved in a disease.

Currently, the data sources supported by

ENDEAVOUR are ontologies, interactions, gene

expressions, regulatory information, sequence-based

data and literature data.

The above approaches (GeneWizard and

ENDEAVOUR) can be differentiated on the basis

of how they combine experimental and literature

data. In fact, ENDEAVOUR performs gene priori-

tization by integrating heterogeneous and multiple

data sources, whereas GeneWizard integrates litera-

ture facts in the microarray mining loop, i.e. the se-

lection and the analysis of the microarray data

clustering is ‘literature-driven’. In detail, the selection

of the cluster to be explored is based on the presence

of the gene of the mined association. This is a

Figure 3: Hypothesis generation by literature text mining. These approaches generate biological hypothesis by

mining literature, then they check if there is any evidence of the discovered relationships in the experimental data.

If the found relationship is validated, then they investigate the other biological entities (mainly genes) involved in

this relationship. They also use the methods described in previous section to provide a biological insight of the

achieved findings.
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novelty in bioinformatics tools and it is one the

major strengths of GeneWizard, because it uses ex-

perimental data-evidence for knowledge discovery,

whereas ENDEAVOUR uses what already exists in

form of annotations. An approach that performs lit-

erature-driven gene clustering for biological under-

standing of regulated genes is GenClip (already

mentioned in the previous section), where genes

are clustered according to their literature profiles.

This way of proceeding is different from the

GeneWizard’s one; in fact, GenClip creates func-

tional clusters of genes according to their

co-occurrences in literature abstracts thus leading to

discoveries in the form: ‘the genes G1, G2, G3 are

involved in diseases D1, D2 and are related to the

Biological Processes P1 and P2’, but it is not possible

to elicit all the concepts related to only one disease

and, moreover, there is no evidence that the genes

are really involved in the extracted diseases (not ex-

perimental data driven). Differently, GeneWizard

creates cluster of genes involved in the disease D of

the inferred relationship D�G1 (obtained through

text mining) starting from the data-driven evidence

that the gene G1 is possibly involved in the given

disease D (i.e. in the microarray data the gene G1 is

differentially expressed). Moreover, the derived list

of genes (due to the clustering) is then associated

with GO terms in order to explore the terms

involved in the disease D. Therefore GeneWizard

leads to discoveries in the form: ‘the genes G1, G2,

G3 are surely involved in disease D and possibly are

responsible of the biological processes P1 and P2 in

the disease D’.

Table 2 lists the web available tools analyzed in

this review that combine literature data with

experimental data for biological hypothesis gener-

ation. The comparison among these tools is only

functional (what they achieve and which resources

they use), and it is not based on performance, since

the performance’s evaluation of knowledge discov-

ery tools is still challenging, especially because the

definition of ‘discovery’ is controversial [112, 113].

In the next section a description of the tool pro-

posed by the authors, GeneWizard, is given.

GENEWIZARD
GeneWizard is a user-centered application that

allows the users to produce easily new biological

hypotheses through an intuitive and guided interface

without requiring knowledge of text-mining and

data-mining methods. It retrieves automatically

gene–disease relationships by mining Pubmed ab-

stracts and validates them with microarray experi-

ments, gathered from the public GEO database

(http://www.ncbi.nlm.nih.gov/geo/). Moreover, it

is able to build a GRN by microarray data analysis

and, finally, to provide biological insights by map-

ping the obtained gene relevance network onto GO.

GeneWizard is a five-step wizard system that leads

the user during the experiments and its workflow

(shown in Figure 4) is as follows:

(1) retrieval of the information needed to search and

discovery biological relationships starting from

any disease as query term. A set of genes

(Entrez Gene), a set of diseases (MeSH), and a

set of biomedical scientific abstracts (PubMed)

are identified for a specific disease by querying,

Table 2: List of the web-available tools for knowledge discovery based on integration between literature data and

experimental data

Description Used Resources Available at

GeneSeeker Gene Prioritization located on a

specified human genetic location

and expressed in a specified tissue

Expression Data: MEDLINE, OMIM,

SwissProt Cytogenetic data:

MIMMAP,GDB Cytogenetic data:

MIMMAP,GDB

http://www.cmbi.ru.nl/GeneSeeker/

G2D Gene Prioritization related to an

inherited disease

NCBI RefSeq for annotated DNA

sequences and MESH,OMIM

http://www.ogic.ca/projects/g2d_2/

GeneWizard Discovery of gene^disease

associations and biological

understanding

NCBI E-Utilities forText Mining

GEO for expression data profiles

GO for genes annotation

http://i3s-lab.ing.unict

.it/GeneWizard

ENDEAVOUR Prioritization of genes list underlying

biological disease using several

sources of data

GO, SwissProt, Blast CisRegModule

and SonEtAl for expression data

http://www.esat.kuleuven

.be/endeavour
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respectively, Entrez Gene, MeSH and PubMed.

For each dataset a suitable dictionary is built;

(2) text mining of the retrieved scientific abstracts to

build the relationships based on co-occurrences,

according to the methodology proposed by Faro

et al. [10];

(3) scrutiny and validation of each relationship

through the analysis of specific microarray data-

sets available in public repositories of gene profile

expressions (GEO database);

(4) analysis of selected gene expression data to gen-

erate GRNs for each gene–disease relationship;

and

(5) finally, the genes involved in the relevance

networks are mapped onto specific biological

processes, molecular functions and cellular com-

ponents using GO.

The above five steps are mapped into three main

sections of the tool, namely, Text Mining, Expression

Data Integration and Results Generation that will be

described in the next subsections. Table 3 lists the

resources used by each module shown in Figure 4.

Text mining
The text-mining approach implemented in

GeneWizard builds gene–diseases relationships

following the co-occurrences method proposed by

Faro et al. [10]. It consists of four steps: (i) Pubmed

abstracts querying and retrieval; (ii) parsing and

indexing using term identification; (iii) abstract clus-

tering based on document similarity; and (iv) rela-

tionships discovery between meaningful entities. In

particular, the retrieved abstracts are first converted

into a sequence of words (parsing), then each abstract

is represented by vectors (Vector Space Model) con-

taining how many times each gene and each disease

appear in it (indexing). Gene and disease identifica-

tion is carried out using a dictionary-based approach,

i.e. dictionaries for genes and disease are built by

accessing available external web data sources. In

detail, the Entrez web services (http://eutils.ncbi

.nlm.nih.gov/entrez/eutils/efetch.fcgi) are used to

query the biological, chemical and medical databases

available through MeSH and Entrez Gene. MeSH is

used as the dictionary for diseases, whereas Entrez

Gene to build the gene dictionary. The abstracts

are retrieved by querying MEDLINE (see Figure 5).

After dictionary building, three subsets are created:

(i) vectors indexed on gene terms with null compo-

nents on the disease space, (ii) vectors indexed on

diseases terms with null components on the gene

space, and (iii) vectors with non null components

on both the gene and disease spaces. Finally, vector

similarity matrices are built for the first and second

Figure 4: GeneWizard’s workflow.
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subset, whereas for the third set two similarity matri-

ces are computed, i.e. respectively, the genes com-

ponents and the diseases components. Each of the

four similarity matrices can be clustered by either

the k-means or the hierarchical clustering. For each

cluster the set of its positive features, i.e. the terms

occurring in a cluster with a frequency above a pre-

fixed threshold, is evaluated; then the relationships

between genes and diseases are inferred by

intersecting the clusters of the two similarity matrices

derived from the third set of similarity matrices.

Figure 6 shows an example of such clusters, obtained

by querying the system using the term ‘Breast

Cancer’.

The mining approach implemented in

GeneWizard is based on terms co-occurrences, but

it differs substantially from the ones described in

‘KD’ section. In fact, generally, these approaches

Table 3: List of the resources used by GeneWizard

Section Functionality Used Resource Available at

Text mining Disease dictionary building MESH http://www.ncbi.nlm.nih.gov/mesh

Gene dictionary building Gene Entrez http://www.ncbi.nlm.nih.gov/gene

Abstracts retrieval Pubmed http://www.ncbi.nlm.nih.gov/pubmed

Expression data integration Microarray data retrieval GEO datasets http://www.ncbi.nlm.nih.gov/gds

Data clustering MeV Java classes http://www.tm4.org

Results generation GRN MeV Java classes http://www.tm4.org

Gene ontology mapping Gene DAVID http://david.abcc.ncifcrf.gov

Figure 5: Dictionary building sections.The text mining approach developed in GeneWizard is based on theVector

Space Model (VSM) representing the retrieved MEDLINE abstracts as vectors whose elements are the frequency

of the gene/disease, retrieved from the gene and the disease dictionaries, in the document.To do that, gene and dis-

ease dictionaries must be built.This is achieved by means of Entrez web services: namely, MeSH for disease diction-

ary, Entrez Gene for gene dictionary and Pubmed for retrieving the abstracts to be mined.
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rely on the fact that a relationship T1$T2 between

two biomedical terms T1 and T2 can be derived by

using these inferences: T1$Tx, Tx$T2, and the

relationships T1$Tx, and Tx$T2 are explicitly

derived from a text. An example is the relationship

‘migraine – magnesium’ discovered by Swanson [65]

by identifying the intermediate medical term (the

one we called Tx) ‘calcium channel blockers’ that

occurs frequently in the magnesium literature and

the migraine literature. Differently, GeneWizard’s

approach infers a relationship T1$T2 by finding

two relationships T1$Tx and Ty$T2 with Tx

and Ty belonging to the same cluster. For example,

the association ‘migraine – magnesium’ is derived if

GeneWizard finds a term related to migraine (Tx)

and a term related to magnesium (Ty) and ifTx and

Ty are clustered together. This, of course, produces

numerous relationships (high recall), and the screen-

ing of the most promising ones is achieved by

exploring experimental data.

Expression data integration
The relationship selected by the user from the set of

relevant relationships proposed by the tool is then

evaluated/validated by resorting to the microarray

data available from the GEO database using the dis-

ease of the given relationship as query term.

Once a microarray dataset has been selected, the

tool starts the analysis to obtain a GRN (see the left

side of Figure 7) (a list of relevant genes for the given

disease) that contains the gene of the selected rela-

tionship. The microarray analysis modules are based

on the Java classes from the MEV (MultiExperiment

Viewer) software [114]. The first step is to cluster, by

Figure 6: Inferred gene^disease relationships.This section allows users to visualize all the discovered relationships

(in the figure related to ‘Breast Cancer’). In particular, by clicking on the disease on the left window the tool

shows all the related genes (extracted by the text-mining algorithm) on the right window (if Mesh representation

is selected, otherwise the opposite). Class inspector section allows users to explore each of the computed cluster

in terms both of diseases and of genes. In figure the relationship between the disease ‘Breast cancer’ and the gene

BRCA1 is discovered and will be further investigated by integrating microarray data.
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K-means or Hierarchical Clustering (KMC Section),

the microarray data to obtain homogeneous gene

sets. If the number of genes of the selected dataset

is still large, a filtering may be applied using the vari-

ance of the gene expression levels. Then the cluster

that contains the gene under examination (i.e. the

one of the chosen relationship) is automatically se-

lected with the assistance of another call to the GEO

Profiles to match the gene identifier (AFF-ID) in the

microarray experiment with the real gene name.

Therefore, the outcome of this step is a cluster con-

taining the gene of the selected relationship. Starting

from it, in the next step the list of genes (see the right

side of Figure 7) (and its biological meaning) related

to the given disease will be explored.

Results generation
Starting from the selected gene set (the cluster)

GeneWizard provides Cluster Affinity Search

Technique (CAST) [115] to compute gene relevance

networks (Figure 8). Affinity is a similarity measure

between a gene and all the genes in a cluster, based

on the expression profile. Therefore, starting from a

relationship between a gene and a disease,

GeneWizard is able to extract a list of genes involved

in the given disease. As stated in the previous section,

GeneWizard differs from other approaches that com-

bine experimental and literature data since it follows

a ‘literature-driven’ microarray data analysis. Usually,

microarray data analysis applies the CAST algorithm

[115] in a blind manner to the entire gene set (each

microarray may contain more than 100 000 of rows

and columns) obtaining a large set of gene relevance

networks (GRN) difficult to be understood. Instead,

in GeneWizard’s approach, after a simple KMC clus-

tering, the selection of the cluster is performed by

taking into account the discovered gene–disease re-

lationship. After the application of the CAST

Figure 7: Microarray data analysis: microarray data retrieval and data clustering. GeneWizard allows the users to

retrieve microarray datasets for the disease of the discovered relationship (in our example Breast Neoplasms ^

BRCA1). For example, in this figure the microarray data is related to the disease Breast Neoplasms (left part of

the image), whereas the screenshot on the right side shows the clustering results after the application of KMC.

The cluster highlighted is the one that includes gene BRCA1 (whose AFFY-ID is 204531_s_at) and is analyzed by the

next step in order to find a gene relevance network that may be involved in the given disease.
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algorithm to the selected cluster, only one GRN is

obtained. This GRN represents a particular aspect to

be investigated, i.e. it indicates from which angle the

disease should be analyzed.

The final step is to resort to the GO database

to investigate the biological meanings associated

to the genes belonging to the identified GRN.

Accordingly, GeneWizard allows to define ‘rules’

to link functionally the transcriptional profile of the

discovered list of genes with respect to molecular

functions, biological processes and cellular compo-

nents. These rules assume the form of ‘All the

genes that share the expression profile with the

gene G (of the discovered relationship G�D) for

the given disease D are related to the molecular func-

tion MF, the chemical component CC and the bio-

logical process BP’.

Implementation notes
The application has been developed using Sun

Wizard API, since the overall model of the analysis

is a predefined workflow. Some Java classes have

been reused from MEV: i.e. TMEV, Multiple

ArrayViewer, IslideData, Experiment, IViewer,

AbstractAlgorithm, AlgorithmFactory, Algorithm

Data and GEOSeriesMatrixLoader. Other important

resources were the Entrez Programming Utilities and

their SOAP interface. GeneWizard runs on any

operating system (Windows, Linux and Mac OS)

provided with a Java Virtual Machine version

above of 1.6.0 and it is freely available at the link

http://i3s-lab.ing.unict.it/GeneWizard.

CONCLUSIONS
Text mining of the scientific literature has been

widely researched and the current availability of

tools is satisfying, although there is no evident

reason to prefer methods based on co-occurrences

(higher recall) or methods based on natural language

processing (better precision) when the researcher’s

goal is knowledge discovery to formulate novel

Figure 8: Result generation. Starting from the selected gene set (BRCA1 whose AFFY-ID is 204531_s_at),

GeneWizard provides CAST to compute a GRNs involved in the analyzed disease (in this example, Breast

Neoplasm). Finally, the list of the genes belonging to the computed GRN is automatically mapped onto GO for bio-

logical insights.
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hypotheses about the relationships of biological enti-

ties. However, the full potential of text-mining

approaches can be realized only through integration

with other data sources, such as ontologies, regula-

tory information and high-throughput methods out-

puts. This review mainly focused on the integration

between literature text-mining tools/methods and

microarray data. In this direction, a major challenge

in bioinformatics to support discoveries in biology is

to include in the tools functionalities to carry out a

contextualized analysis of all the available experi-

mental data (i.e. several microarrays relating to the

same relationship) in order to derive biological net-

works that are compatible with all the available ex-

perimental evidence. Another line of development

would be the inclusion of functionalities that support

explicitly the definition of strategies for exploring the

identified relationships according to their probability

of being biologically valid. A promising approach to

achieve this goal is to modify onset the algorithms

that perform the clustering to work not only on the

basis of mathematical criteria but also on the basis of

what is known on the biological entities that are

gradually aggregated, to improve on the overall bio-

logical plausibility of the final clusters [116].

We expect to assist in the near future to the de-

velopment of such approaches, and a desirable con-

tribution from the bioinformatics community would

be the development of easy-to-use and freely access-

ible tools such as GeneWizard. To date, the viability

of general-purpose approaches and tools, as compared

to domain-specific tools such as CoPub for liver

pathologies, that integrate all the information related

to the different biological aspects (genes, drugs, path-

ways, tissues, etc.) of a specific disease, is still unclear.

Still, it seems important that if generalization

across domains is sought, it is not achieved at the

expenses of tool usability and of a clear representa-

tion of the workflow underlying the mining run. In

fact, one of the major barriers to the use of such tools

is the required technical knowledge about the choice

of algorithms, the setting of parameters and the stra-

tegies for composing the steps of the mining run, and

how all of the above do impact on the obtained

results. Clearly, this problem is further complicated

when adding the complexity of dealing with several,

heterogeneous sources. Thus a well-designed,

user-center tool should address the challenges of

making clear and explicit the methodological ap-

proach supported by the tool, leaving to the users

flexibility in exploring the results, and yet providing

assistance in managing the complexity of the analysis.

This implies that bioinformatics tools should be pro-

vided with interactive interfaces for handling anno-

tations, linking across resources or highlighting

relevant portions of text, to make the process of

data analysis and knowledge discovery more targeted

to the users’ goals. If these criteria are satisfied, these

tools could also provide interesting opportunities to

be used as teaching tools and sources to generate

compelling teaching case, and be conveniently inte-

grated even in an undergraduate curriculum. This

would be in line with current pedagogical models

[117] that favor problem-based learning in authentic

contexts. The development of such tools will depend

on how much close the collaboration between

biologists and bioinformaticians will be.

DESCRIPTIONOF THE
ORGANISATION
The University of Catania, Italy (http://www.unict

.it) was founded in 1434. Today more than 55 000

students attend lessons given by over 1500 professors

in the 12 faculties, which in turn are staffed by over

1500 administrative employees. The authors are

with the Dipartimento di Ingegneria Elettrica,

Elettronica ed Informatica (DIEEI) of the

Engineering Faculty. The Department aggregates

two main ICT areas: computer engineering and tele-

communications. Nowadays the Department’s ICT

research activities are widely differentiated and

address subjects such as medical informatics, bio-

informatics, multimedia systems, distributed comput-

ing, industrial informatics, embedded systems,

human-computer interaction, pattern recognition

and knowledge management.

Key Points

� The current state of art of text-mining approaches is satisfying

and the current trend is to integrate text with multi-type data

(biological, chemical, etc.).

� Anumber of tools supporting the integration ofmicroarraydata

and literature information have been proposed both to under-

stand the lists of down and upregulated genes and to generate

novel biological hypotheses.

� Bioinformatics tools shouldbe intuitive to use and shouldnotre-

quire technical knowledge of underlying technology; rather

they should assist the user in the process of data integration

and results interpretation.

� GeneWizard is an easily usable and freely accessible tool that

supports researchers in discovering gene^disease relationships

by fusing data resulting from text mining and microarray data

analysis.
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