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with Co-Evolution

Abstract- We explore a new general-purpose heuristic
for finding high-quality solutions to hard optimization
problenm The method, called extremal optimization, is
inspired by “self-organized criticality”, a concept intro-
duced to describe emergent complexity in physical sys-
tems. In contrast to genetic algorit~ which operate on
an entire “gene-pool” of possible solutions, extremal opti-
mization successively replaces extremely undesirable ele-
ments of a single sub-optimal solution with new, random
ones. Large fluctuations, or “avalanches”, ensue that ef-
ficiently explore many local optima. Drawing upon mod-
els used to simulate far-from-equilibrium dynami~ ex-
tremal optimization complements heuristics inspired by
equilibrium statistical physics, such as simulated anneal-
ing. With only one adjustable parameter, its performance
has proved competitive with more elaborate methods, es-
pecially near phase transitions. Phase transitions are
found in many combinatorial optimization problems, and
have been conjectured to occur in the region of param-
eter space containing the hardest instances. We demon-
strate how extremal optimization can be implemented for
a variety of hard optimization problems. We believe that
this will be a useful tool in the investigation of phase tran-
sitions in combinatorial optimization, thereby helping to
elucidate the origin of computational complexity.

1 Emergence of Optimized Configurations

Natural systems are complex structures, and often opt.hnk
efficiency in surprisingly sophisticated ways. Biological evo-
lution has resulted in a plethora of interdepen&nt species,
collectively competing for resources in such a way that these
resources rarely go to waste &ak96]. Geographic landscapes,
in their minute intricacy, can serve a valuable purpose such as
efficient drainage of water [R097]. Yet in spite of the com-
plexity of the outcome, nature’s mechanisms are in general
exccedngly simple. Evolution is driven merely by sunlight.
Amazing as it may seem from an engineering standpoin~ na-
ture employs no form of central organization or intelligent
design,

In an effort to understand these self-organizing qualities it
is helpful to note, by way of abstraction from the concept of
species, a feature common to many natural systems: the pres-
ence of a large number of strongly coupled entities with simi-
lar propertied,,.At a coarse level, these maybe modeled using
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a statistical description. One might consider evolution, or the
development of l&dsc@es, to be a stochastic process driven
by an external force (the sun, flowing water, etc.). The pre-
cise elements that appear in nature are subject to the whims of
chance, but the coupling of the elements insures that only the
well-adapted ones can survive. The phenomenon of flexible
adaptation thus emerges naturally, through the dynamics of
adverse selection. “Good” species are not engineered. “Bad”
ones are simply extinguished.

In recent years, statistical physicists have proposed mod-
els to describe this phenomenon [PacMB96]. One of the
most successful has been the Bak-Sneppen model of bio-
logical evolution, based on precisely the extremal princi-
ple of eliminating the worst adapted elements in an ecosys-
tem p3akS93, BoePa96]. Like nature’s own generic mech-
anism, it is devoid of any specificity as to the precise inter-
actions between species. Nevertheless, it produces salient
nontrivial features of palecmtologicd data such as broadly
distributed lifetimes of species, large extinction events, and
punctuated equilibrium [GouE77].

In the Bak-Sneppen model, species are located on the sites
of a lattice, and have an associated “fitness” value between O
and 1. At each time step, the one species with the smallest
value (poorest degree of adaptation) is selected for a random
update, having its fitness replaced by a new value drawn ran-
domly from a flat dktribution on [0, 1]. But the change in fit-
ness of one species impacts the fitness of interrelated species.
Therefore, not only is the least-fit species updated, but all of
the species at its neighboring lattice sites have their fitness
replaced with new random numbers as well. No explicit def-
inition is ever given of the mechanism by which these neigh-
boring species are related. Yet after a sufficient number of
steps, the system reaches a highly correlated state known as
self-organized criticality (SOC) @3akTW87].In that state, al-
most all species have reached a fitness above a certain thresh-
old. These species possess punctuated equilibrium one’s
weakened neighbor can undermine one’s own fitness. This
co-evolutionary activity gives rise to chain reactions called
“avalanches”, large fluctuations that rearrange major parts of
the system, potentially making any configuration accessible.

Although co-evolution does not have optimi?zdion as its
exclusive goal, it serves as a powerful paradigm. We have
used SOC as motivation for a new approach to optimiza-
tion @oePeOOa]. The heuristic that we have introduced,
called Extremal Optimization (EO), follows the spirit of the
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Bak-Sneppen model in that it merely replaces the variables
with the “wont” values in a solution by random ones, elim-
inating bad variables without ever explicitly creating good
ones. In what follows, we show how this method maybe im-
plemented on a number of classic combinatorial optimization
problems, and discuss key aspects of its performance.

2 Extremal Optimization

Extremal Optimization (EO) is inspired by previous attempts
at using physical intuition to optimize. In much the same
manner that simulated annealing (SA) [KiGV83] applies
equilibrium statistical mechanics to optimization problems,
EO opens the door to the systematic application of rzon-
equilibrium pmces,se.s, such as SOC. The result is a general
method that appears to be a powerful addition to the canon of
meta-heuristics [OK96J. In particular, the large fluctuations
in EO provide significant hill-climblng @ity, which enables
it to perform well at the phase transitions “where the really
hard problems are” [CKT91, A196].

One popular hard optimization problem, to which we have
applied EO successfully (see below and BoePeOO~ Boc99]),
is the graph bl-partitioning problem (GBP) [GaJ79, KiGV83,
JAMS89, MezP87]. In the GBP, we are given a set of n ver-
tices, where n is even, and “edges” connecting certain pairs
of vertices. The problem is to partition the vertices into two
equal subsets, each of size n/2, with a minimal number of
edges cutting across the partition. The size of the configura-. .
tion space Q grows exponentially with n, 10] = ( ~~2), since

all unordered divisions of then vertices into two equal-sized
sets are’feasible configurations S. The cost function C(S),
called “cutsize”, counts the number of “bad” edges that cut
across the partition. A typical neighborhood IV(S) for a lo-
cal search [AaL97, V98], mapping S + S’ E IV(S) c Q,
is a “1-ezchange” of one randomly chosen vertex from each
subset.

EO performs a search starting from a single configuration
S E f?. S usually consists of a large number n of variables
Zi. The cost C’(S) is assumed to consist of ‘the individual
cost contributions Ai for each variable xi, which correspond
to (the inverse of) the “fitness” values in the Bak-Sneppen
model above. Typically, Ai depends on variable Zi’s state in
relation to the other variables that it is connected to. Ideally,

(1)
i=l

For example, in the GBP the variables Zi are the vertices,
each being resigned to a set “O”or “l”. Each ve~ex has edges
connecting it to a certain number of other vertices. Eq. (1) for
the cutsize C(S) is satisfied if we attribute to each vertex Zi a
local cost Ai = hi/2, where bi is the number of “bad” edges,
whose cost is equally shared with the vertex on the other end
of that edge.

For minimization problems in general, EO proc~ m fol-
lows:

1. hh.kh a configUrahn ~ atwilt setSbest=s.
2. For the “current” configuration S,

(a) evaluate ~; for each variable xi,

(b) find j with .Xj 2 A; for all i, i.e., Sj has the
“worst fitness”,

(c) choose at random a S’ E IV(S) such that the
“worst” xj must change its state,

(d) if C(S’) < C(sbest) then set St.e,t = S’,

(e) accept S + S’ always, regardless of
whether C(S”) < C(S).

3. Repeat at step (2) as long as desired.

4. Return Sb@ and c(sb~,t).

The algorithm operates on a single configuration S at each
step. All variables z~ in S have a fimess, of which the “worst”
is identified. Thk ranking of the variables according to indi-
vidual costs — unique to EO — provides the only measure
of quality for S. It implies that all other variables are “better”
in the current S. Those “beuer” variables only possess punc-
tuated equilibrium their memory gets erased when they hap-
pen to be connected to one of the variables forced to change.
There is no pammeter to be adjusted. The memory encapsu-
lated in the ranking alone directs EO into the neighborhood
of increasingly better solutions. Furthermore, in the choice
of move to S, EO gives no consideration to the move’s out-
come. Large fluctuations in the cost accumulate over many
updates !3MlcS93],with merely the bias against “bad” fit-
nesses guiding EO back towards improved solutions. A typ-
ical “run” of t.hk implementation of EO for the GBP on an
n = 500 random graph is shown in Fig. 1.

A disadvantage of EO is that a reasonable definition of
fitness for individual variables may be ambiguous or even
impossible. Also, variables may be sufficiently connected
that each update destroys more well-adapted variables than
it could ever hope to improve ~oePeOOa]. In highly con-
nected systems, EO is slowed down consi&rably by reeval-
uating fimesses [step (2a)]. For many problems, however,
these disadvantages do not apply or are surmountable. In par-
ticular, problems in the important optimization class MAX-
SNP [PapY91] fit naturally into the EO framework, MAX-
SNP problems have boolean variables and a collection of
bounded-arity boolean terms and we seek an assignment sat-
isfying as many (or as few) terms as possible. Such prob-
lems have a natural choice of fimess functions, and typically
have low variable connectivity. Indeed, some problems for
the class have bounded connectivity in the worst case. MAX-
SNP complete problems include MAX-2-SAT, MAX-3-SAT,
K-COL, and MAXCUT (similar to the GBP), discussed be-
low.
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Figure 1: Evolution of the cutsize C(S) during a run of (a) Extremal Optimization and (b) Simulated Annealing, for the
random graph G500 (size n = 500, connectivity cs 5) from [JAMS89]. The best cutsize ever found is 206 (see Fig. 2). Unlike
Simulated Annealing, which has large fluctuations in early stages of the mn and converges much later, Extremal Optimization
quickly approaches a stage where broadly distributed fluctuations allow it to scale barriers and probe many local optima.

3 Comparison with other Heuristics

The most apparent distinction between EO and other methods
is the need to define local cost contributions for each variable,
instead of merely a global cost. EO’Scapability appears to de-
rive from its direct access to t.hk local information. Superfi-
cially, EO’Sranking of fitnesses appears to resemble the rank-
ings of candklate moves in some versions of SA [GreeS86,
Re93] and in Tabu search [G186, Re93, AaL97]. But these
moves are evaluated by their arzticipatedoutcorne, while EO’S
fitnesses reflect the cur-r-en;configuration S without biasing
the outcome.

3.1 Simulated Annealing (SA)

SA [KiGV83] emulates the behavior of frustrated systems in
thermal equilibrium: if one couples such a system to a heat
bath of adjustable temperature, by cooling the system slowly
one may come close to attaining a state of minimal energy,
i.e., cost. SA accepts or rejects local changes to a configura-
tion according to the Metropolis algorithm, requiring equilib-
rium conditions (“detailed balance”) along with a well-tuned
“temperature schedule”.

In contrastj EO drives the system far from equilibrium:
aside from ranking, it applies no decision criteri% and all new
configurations are accepted indiscriminately. Instead of tun-
ing a whole schedule of parameters, EO often requires few
choices. It may appear that EO’S results should resemble an
ineffective random search, similar to SA at a fixed but finite
temperature. But in fact, by persistent selection against the
worst fitnesses, one quickly approaches near-optimal solu-
tions. Significant. fluctuations still remain at late run-times
(unlike in SA, see Fig. 1), crossing sizable barriers to access
new regions in configuration space.

3.2 Genetic Algorithms (GA)

While similarly motivated GA [H075, Goldb89] and EO
algorithms have litte in common. GAs, mimicking evolu-
tion on the genotype level, keep track of entire “gene pools”
of configurations from which to select and “breed” an im-
proved generation of solutions. By comparison, EO, based
on evolutionary competition at the phenomenological level
of “species”, operates only on a single configuration, with
improvements achieved merely by elimination of bad vari-
ables. EO, SA, and most other meta-heuristics perform a local
search, whereas in GA cross-over operators perform global
exchanges.

4 Applications of Extremal Optimization

4.1 Ground States of Spin Glasses

A simple version of a spin glass MezPV87] consists of a
d-dimensional hyper-cubic lattice with a spin variable ai E
{-1, 1} placed on each site i, 1< i < n = Ld. Every
spin is connected to each of its nearest neighbors j via a bond
variable Ji,i drawn from some distribution P(J) with zero
mean and unit variance. Spins may be coupled to an arbitrary
external field hi. We try to find. “ground states”, i.e., lowest
energy configurations Smin Of

(2)

Arranging. the spins into an optimal configuration is hard due
to “frustration” [T77]. To implement EO, we define fimess in
terms of the local energy for each spin

Ai = –cl~ (~?J’ljoj+(3)

and Eq. (2) turns into Eq. (l). Our implementation suggests
that EO maybe well suited for problems representable by a
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F@re 2: Comparison of 1000-run triats using various optimization methods, for the random graph G500 (size n = 500,
connectivity c = 5) from [JAMS89]. The histograms give the frequency with which a particular cutsize has been obtained
during the trial runs for (A) SA (B) basic EO, and (C) for I--EO with T = 1.5. The best cutsize ever found is 206. This rtxwlt
appeared only once over the 1000 SA runs, but occurred 80 times for T-EO.

spin Hamiltonian (cost function) with a connectivity matrix
Ji,j mezPV87].

42 Satisfiability (MAX-K-SAT)

Instances of the satisfiability problem MAX-K-SAT consist
of a formula composed of Ikf clause% Each clause contains
K literals, i.e., xi or =Zi, drawn randomly from a pool of n
boolean variables xi. A clause is verified if at least one of
its K literals is true (logical “OR”), and the entire formula is
verified only if every clause is true (logical “AND’). Here, we
try to find a configuration of the variables that maximizes the
number of true clauses.

MAX-K-SAT has an obvious EO implementation: For
each variable we set Ai = l/K x {# of false clauses con-
taining Zi}. Again, Eq. (1) holds. ~pically, K = 0(1)
and M = 0(n), so that each variable appears only in a few
(w M/n) clauses, each connecting it to w K other variables.
The phase transition in 2-SAT and 3-SAT has been investi-
gated in moZKST99, A1961on small instances using exact
methods. We expect that EO would perform very well on
those instances.

43 Graph Coloring (K-COL)

Given K different colors with which we can label the vertices
of a graph, we need to find a coloring that minimizes the num-
ber of edges connecting vertices of identical color [JAMS91].
We implement EO for K-COL by defining Ai for each ver-
tex as the number of equally colored vertices connected to it.
Similar to a spin glass, thk+problem is hard due to local frus-
tration [T77], rather than to the global constraints found in
the GBP. We will use EO to revisit the phase transition in 3-
and 4-COL, which has been investigated in [CKT91].

5 Experimental Results

5.1 Simple EO Application on Graph Partitioning

Following the example of [JAMS89], we tested early imple-
mentations of EO ~oePeOOa] on their n = 500 random
graph G5W of connectivity c % 5. In a 1000-run sample

from different random initial conditions, we determined the
frequency of solution obtained (see Fig. 2). For compari-
son, we have also implemented the SA algorithm as given
in [JAMS89] on the same data structure used by our EO pro-
gram. We have allowed runtimes for EO about three times
longer than the time it took for SA to “freeze”, since EO
still obtained significant gains. We checked that neither the
best-of-three runs of S& or a three times longer temperature
schedule, improved the SA results significantly. While the
basic, parameter-free version of EO from See. 2 is already
competitive, the best results are obtained by an enhancement
that we call ~-EO.

5.2 T-EO Implementation

T-EO is a general modification of EO which improves results
and avoids “dead ends” occurring in some implementations.
This comes, however, at the expense of a parameter. The
method is as follows: Rank all variables according to fitness,
the “worst” variable having rank 1 and the “best” variable
having rank n. Consider a probability distribution over the
rank i,

Pi m i–”, I<i <n, (4)

for a fixed value of the parameter T. (hI each update, for
each independent variable to be moved, select dktinct ranks
il, iz, . . . according to Pi. Then, move variables Zjl, irj2, . . .

where il = rank(~jl ), iz = rank(Aj2 ),. . . While the
“worst” variable (rank i = 1) will be chosen most often,
higher ranks will sometimes be updated instead. The choice
of a power-law distribution for Pi maintains a bias against
variables with “bad” fitness, while insuring that no rank gets
completely excluded from further evolution. Note that the
same would not be t.rpe if, say, an exponential distribution
were used higher ranks would then, in effect, never be se-
lected.

Clearly, for T = O,T-EO is exactly a random walk through
ft. Conversely, for ~ + co, the process approaches a deter-
ministic local search, only swapping the lowest-ranked vari-
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Table 1: Best cutsizes (and allowed runtime) for a testbed of large graphs of differing sizes n and connectivities c. GA results
are the best reported l?vlerF98] (at 300MHz). T-EO results are from our runs (at 200MHz). Comparison data for three of the
large graphs are due to results from heuristics in [HeL95] (at 50MHz). METIS is a partitioning program based on hierarchical
reduction instead of local search [KaK], obtaining extremely fast deterministic results (at 200MHz).

Graph I GA T-EO I [HeL95] I METIs
Hammond (n= 4720; c= 5.8) I 90 (1s) I 90 (42s) I 97 (8s) I 92 (0s)
Barth5 (n= 15606; c= 5.8) 139 (44s) 139 (64s) 146 (28s) 151 (0.5s)
Brack2 (n= 62632; c = 11.7) 731 (255s) 731 (12s) — 758 (4s)
Ocean (n= 143437; c= 5.7) 464 (1200s) 464 (200s) 499 (38s) 478 (6s)

ables, and is bound to reach a “dead end” Not surprisingly,
tests of both~=Oand~= co yield terrible results! In
the GBP, we obtained our best solutions for T % 1.4 – 1.6.
Under preliminary testing we find that there maybe a link be-
tween the optikud choice for the parameter T and a transition
to “non-ergodic” behavior, in the sense “thatfor larger values
of T certain configurations in fl maybe completely inaccessi-
ble over the course of an EO run. On the basis of that obser-
vation, in fact, we have developed a qualitative argument giv-
ing as the optimal choice T N 1 + in(A)/ in(n) pMePeOOb],
where i! = An (1 << A <<n) is the runtime. ~pically, we
use A N 102 for graphs of size n = 104, consistent with
-r = 1.5. Tests with longer runtimes indeed favor larger -r
values, while larger graphs require smaller ~ values.

5S Results on Large Graphs

Table 1 summarizes T-EO’S results on large-n mesh-graphs,
using r = 1.4 and best-of-10 runs. On each graph, we used as
many update steps t as appeared productive for EO to reliably
obtain stable results. This varied with the particularities of
each graph, from t = 2n to 200n, and the reported runtimes
arc of course influenced by this. EO’S average performance
has, on the other han~ been inconsistent. For instance, half
of the Brack2 runs returned cutsizes near 731, but the other
half returned cutsizes of above 2000. This maybe a product
of an unusual structure in these particular graphs.

5.4 Phase Transitions in Graph Partitioning

In an extensive numerical study, we have shown ~oe99] that
r-EO outperforms SA near phase transitions, where graphs
begin to “percolate” and cutsizes first become non-zero (see
Fig. 3). Studies on the average rate of convergence towards
better-cost configurations m a function of runtime t indicate
power-law convergence [GresSL86], roughly as c(sb.~~)t w
C(SAn) + At-1/2 @30ePeOOb].Of course, it is not easy to
verify for graphs of large n that those runs in fact converge
closely to the optimum C(Smin), but finite-size scaling anal-
ysis seems to justify that expectation moePeOOb].

In an even more impressive performance demonstration,
we used EO to completely enumerate all optimal solutions

s~i. near the critical point for random graphs. Instances of
random graphs typically have a high ground-state degeneracy,
i.e., possess a large number of equally optimal solutions S~i~.
In @foZKST99] it was shown that at the phase transition of 3-
SAT the fraction of constrained variables, i.e., those that are
found in an identical state in all Smin, discontinuously jumps
to a non-zero value. It was conjectured that the first-order
phase transition [Go1de92] in tils “backbone” would exist for
any NP-hard problem. To test those claims for the GBP, we
generated a large number of random graphs and explored $2
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Figure 3: Plot of the error in the best result of SA rela-
tive to EOS on identical instances of (a) random graphs and
(b) geometric graphs m function of the mean connectivity
c. The percolation points are at (a) c = 1 [ER60] and (b)
c w 4.5 ~a185], the critical points for the GBP (the first time
a component of size > n/2 appears) are slightly above that
[e.g., at c = 2 In 2 = 1.386 for (a), see MezP87]]. SA’Serror
relative to EO near the critical point in each case rises with n.
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Figure 4: Plot of the average (a) backbone fraction and (b) cutsize as a function of the connectivity c for random graph
partitioning. At each value of c, we have generated 10,000, 1,000,400, 100, and 10 instances for n = 16, 32, 64, 128,
and 256, resp. The critical point at ~At = 2 in 2 is indicated by a vertical line. The backbone fraction does not vanish for
c < Grit but appears to converge to the size of the largest cluster (still < n/2), indicated by a black fine in(a). W c > c+t,

the backbone is smaller than the largest cluster, which is > n/2 and has to be cut.

for as many ground states as EO could find. We fixed mn-
times ats 100n2, well above the times needed to explore the
Set Ofdl Smin in repeated trials for some test instances. For
each instance, we measured the cutsize, entropy, and overlap
distribution over all pairs of ground states, whose second mo-
ment is our backbone fraction. Averaged results are given in
Fig. 4. The backbone fraction rises monotonically with the
connectivity c,.becoming non-zero already for c >1, the per-
colation point lER60]. In fac~ for 1 ~ c ~ Grit = 2 in 2, the
backbone fraction merely traces (the square of) the fraction
of vertices belonging to the giant component, whose size is
exactly known I?o185]. At Grit, the largest cluster becomes
> n/2 and the backbone fraction begins to grow slower than
the giant component. For c > ~rit, the cutsize becomes non-
zero (see Fig. 4b) due to cuts forced within the giant compo-
nent it,,elf.

Our results indicate that critical phenomena in NP-hard
problems have a more diverse phenomenology than expected
in @foZKST99]. Clearly, unlike the variables in I-C-SAT,ver-
tices in the GBP do not experience frustration [T77]. Instead,
almost all vertices happily attain a state identical to their
neighbors, leaving merely a few along an interface to make
tough choices. In addition, ground states in the GBP possess a
global symmetry not found in SAT, typically an indication of
differing critical behavior (or “universality class”) [Golde92].
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