
Combining Local-Structure, Fold-Recognition, and New
Fold Methods for Protein Structure Prediction
Kevin Karplus,* Rachel Karchin, Jenny Draper, Jonathan Casper, Yael Mandel-Gutfreund, Mark Diekhans,
and Richard Hughey
Computer Engineering Department, University of California, Santa Cruz, California

ABSTRACT This article presents an overview
of the SAM-T02 method for protein fold recognition
and the UNDERTAKER program for ab initio predic-
tions. The SAM-T02 server is an automatic method
that uses two-track hidden Markov models (HMMS)
to find and align template proteins from PDB to the
target protein. The two-track HMMs use an amino
acid alphabet and one of several different local
structure alphabets. The UNDERTAKER program is
a new fragment-packing program that can use short
or long fragments and alignments to create protein
conformations. The HMMs and fold-recognition
alignments from the SAM-T02 method were used to
generate the fragment and alignment libraries used
by UNDERTAKER. We present results on a few
selected targets for which this combined method
worked particularly well: T0129, T0181, T0135, T0130,
and T0139. Proteins 2003;53:491–496.
© 2003 Wiley-Liss, Inc.

Key words: SAM-T02; UNDERTAKER; fragment-
packing program; hidden Markov mod-
el; secondary structure

INTRODUCTION

In previous CASP experiments, our team has concen-
trated on fold recognition using hidden Markov models
(HMMS) with fairly good results.1–3 We have also had
some success using standard neural-net methods to pre-
dict secondary structure,4 as measured by the EVA project.5

In 2000, we started incorporating secondary structure
prediction in our fold recognition method for CASP4.3

We entered two automatic servers in CASP5 and CAF-
ASP3: the old SAM-T99 server and a new server, SAM-
T02. SAM-T02 incorporated the most important of the fold
recognition improvements we had made in CASP4: multi-
track HMMs, in which each match node contains emission
probabilities of predicted local structure information, in
addition to amino-acid emission probabilities.3,6 The two-
track HMM is illustrated in Figure 1.

Because both servers used the same protein sequence
database and the same templates from PDB,8 any improve-
ment in performance could be attributed to improvements
in the method rather than in the underlying databases.
The multitrack HMMs we used in CASP4 relied on a
helix-strand-coil description of secondary structure,
whereas those used in CASP5 use a variety of local
structure descriptions.

For our human-assisted entry to CASP5, we added a
new fragment-packing program, UNDERTAKER, to our
tool set. The program was added to make predictions in the
new-fold and difficult-fold recognition areas, where we
previously had had no success. The same method was used
for all targets, independent of the degree of similarity to
any targets that we found.

According to the CASP5 assessors, our group had good
results in the new-fold category and the analogous-fold-
recognition category, so the new fragment-packing pro-
gram, UNDERTAKER, is the main focus of this article.

MATERIALS AND METHODS

Our overall structure prediction method can be conve-
niently divided into several parts:

● finding similar sequences with iterative search (using
SAM-T2K)

● predicting local structure properties with neural nets
● finding possible fold-recognition templates using two-

track HMMs (the SAM-T02 method)
● making alignments to the templates;
● building a specific fragment library for the target (with

FRAGFINDER)
● packing fragments and fold-recognition alignments to

make a 3D structure (with UNDERTAKER).

The overall structure of the process is outlined in Figure 2.
The iterative search method was exactly the same as the

SAM-T2K method used in CASP4—the only change was in
the size of the NR database searched.9

We predicted local structure with the same neural net
software as in CASP4, but with newly trained nets and
different local structure alphabets. For CASP4, we used
the standard EHL alphabet that is assessed in CASP. For
CASP5, we used four local structure alphabets: EBGHSTL
based on DSSP labeling,10 EBGHTL based on STRIDE
labeling,11 an extension to DSSP (STR) that divided the

Grant sponsor: National Science Foundation; Grant numbers: DBT-
9808007 and EIA-9905322; Department of Energy; Grant number:
DE-FG0395-99ER62849; Grant sponsor: National Physical Sciences
Consortium graduate fellowship.

*Correspondence to: Kevin Karplus, Computer Engineering Depart-
ment, University of California, Santa Cruz, CA 95064. E-mail:
karplus@soe.ucsc.edu

Received 3 March 2003; Accepted 3 April 2003

PROTEINS: Structure, Function, and Genetics 53:491–496 (2003)

© 2003 WILEY-LISS, INC.



�-strands into six classes (see Fig. 3),6 and an 11-letter
alphabet (alpha11) based on the torsion angle formed by
four successive C� atoms.6 We also provided a reduction to
the three-letter EHL alphabet for CASP assessment but
did not use this reduced alphabet for any other purpose.

As in CASP4, we used multitrack HMMs for target
models and amino acid-only HMMs for template models.
Because we now had five different target models (amino
acid-only and four different two-track HMMs correspond-
ing to the four local structure alphabets), we did a weighted
combination of scores for the template-based and target-
based searches. Weights were chosen arbitrarily, based on
our assumptions about how well the methods would work.
The combined weights were used to select templates.

The SAM-T02 automatic server did not include the
alpha11 torsion-angle predictions and HMMs but was
otherwise the same as the template selection step in our
hand predictions. The automatic server made no attempt
to produce 3D structures but returned alignments to the

templates based on a single two-track target HMM. The
alignment HMM used our new STR alphabet as the local
structure track, because that method had performed best
in our alignment tests.6 Because our template library is
highly redundant, the server attempted to remove duplica-
tion and report five distinct predictions. In some cases, we
managed to get decent predictions for multiple domains as
different models (e.g., for T0184 with T0184_1 as models 1
and 2 and T0184_2 as models 3 and 4), even though the
server did not explicitly consider domains.

Our SAM-T02-human method did not use a single
alignment to the template. Instead, we generated about 25
alignments for each template, using the different target-
and template-based HMMs and different alignment op-
tions (global vs local, Viterbi vs posterior decoding). In
addition to fold recognition alignments, we also used
FRAGFINDER, a new tool in our SAM tool suite, to find six
fragments of length 9 for each position in the sequence.
The fragments were found with a two-track HMM that
uses the STR local structure alphabet, taking the best six
gapless matches in the template library for each position.

Although we have not yet optimized the FRAGFINDER
method nor done extensive testing, we expect that the use
of two-track HMMs for finding fragments will be a big help
when the local structure prediction is accurate and will be
comparable to other fragment-finding techniques when
the local structure prediction is weak. The HMMs will
cause serious problems when the local structure prediction
is confident, but wrong.

The alignments and specific fragment library were given
to UNDERTAKER, along with a generic fragment library
containing all one-, two-, three-, and four-residue frag-
ments indexed by their amino acid strings from a training
set of 448 monomeric protein chains. UNDERTAKER used
the alignments to get an initial conformation and then
applied many rounds of a genetic algorithm with randomly
applied conformation-change operations to minimize a
cost function.

The following subsections describe some of the internals
of UNDERTAKER.

Fig. 1. A multitrack HMM has multiple emission tables in each
letter-generating (match or insert) state but is otherwise similar to the
standard profile HMMs used in the SAM package.7 The multitrack HMMs
model the amino acids and local structure as conditionally independent,
conditioned on the state of the model.

Fig. 2. The SAM-T02 prediction process consists of several parts:
building a multiple alignment for the target sequence using the SAM script
target2k, predicting secondary structure with predict-2nd, building HMMs
for the target sequence with the SAM script w0.5, scoring the template
library against the target HMMs using the SAM program hmmscore,
scoring the target sequence against the template HMMs with hmmscore,
combining scores to select templates, choosing target-template align-
ments, generating fragments with the SAM program FRAGFINDER, and
doing fragment packing with UNDERTAKER.

Fig. 3. Six letters in the STR alphabet, which expand on the DSSP “E”
or strand state. The strand of the residue being assigned is indicated with
a bold arrow. In a �-sheet, this strand is either surrounded by two parallel
partners “P,” two anti-parallel partners “A,” or one anti-parallel and one
parallel partner “M.” Edge strands (that have only one �-strand partner)
have either a parallel partner “Q” or an anti-parallel partner “Z.” Finally, we
retain the “E” label for strand residues to which DSSP assigns no partners
(generally beta bulges).

492 K. KARPLUS ET AL.



Conformation Representation

Selection of a conformation representation and data
structure is critical to effective fragment packing, because
it affects the computation time, the possible conformation
change operators, and the possible cost functions. UNDER-
TAKER represents protein conformations as the 3D coordi-
nates for all heavy atoms (not hydrogens). Using a full 3D
representation for all heavy atoms, rather than a more
compact one such as �-� angles or side-chain centroids,
slows down conformation generation slightly but allows
much more flexibility in defining cost functions. One
decision we plan to revisit is whether to include explicit
hydrogens—having explicit hydrogens would make hydro-
gen bond scoring simpler but would increase the size of the
conformational space, because torsion angles for the NH3

and OH groups would then need to be set. We could
optimize the torsion angles after determining that an
H-bond was desired, but this does not seem to offer much
advantage over the current implicit hydrogens.

UNDERTAKER does not require the backbone to be
contiguous but allows breaks between residues. This al-
lows us to represent directly the multiple-segment informa-
tion we get from fold-recognition alignments, bringing fold
recognition and new-fold techniques into a unified frame-
work. For homology modeling with UNDERTAKER, un-
like Rosetta,12 we do not pick a single alignment and freeze
the backbone for the core residues, but we allow many
alignments to be sampled and parts of different ones to be
combined. For distant target-template relationships, mix-
ing several alignments can help find the correct parts, but
for closer relationships, choosing a single alignment that is
most likely to be good avoids adding noise to the search.

Our poor performance on comparative modeling targets
(relative to our automatic server) is probably due in large
part to not freezing the core.

Allowing broken backbones introduces a problem that is
not present in programs (like Rosetta) that use a frozen
core or contiguous backbone: What is the relationship
between unconnected parts of the backbone? What moves
when a backbone fragment is replaced?

To solve this problem in UNDERTAKER, we represent
the protein as a tree with segments as leaves, where each
segment is a contiguous piece of the protein with properly
formed peptide bonds. When we do fragment replacement
within a segment, the transformation does not propagate
across the gap between segments. To preserve 3D relation-
ships between segments, we add edges between segments,
called tertiary edges, which indicate which pairs of atoms
are thought of as holding the segments together. These are
usually chosen to be the closest pair of atoms in the two
segments, such as a disulfide bond or Van der Waals
contact.

Any two residues in the protein chain are connected by a
unique path through the tree. Removing a peptide bond or
a tertiary edge breaks the tree into two trees, each of which
can be rigidly transformed, maintaining the structure
within that subpart of the protein, without requiring a
contiguous backbone or a frozen core. The rigid transforma-

tions may result from any of several conformation-
changing operations, described in the next section.

Note that a subtree may consist of segments that are
widely separated along the protein chain, as would be
necessary for holding together a domain while another
inserted domain changes shape.

Conformation-Changing Operators

We have implemented several conformation-changing
operations in UNDERTAKER, beginning with the frag-
ment replacement operation introduced by Simons and
Baker.13 Fragments to use for replacement came from
three sources: very short ones (1–4 residues) from a
generic fragment library, which must match exactly on all
residues, medium-length ones (9–12 residues) found by
FRAGFINDER, and variable-length ones that come from
fold-recognition alignments. We also used an operator for
replacing two fragments simultaneously to allow for hinge-
like motions of part of the conformation, although there is
currently no constraint that the conformation change
actually be hinge-like.

In addition to fragment replacement, UNDERTAKER
has alignment replacement, which replaces several seg-
ments at once, keeping them in the same physical relation-
ships as they have in the template they are copied from.
This operator allows us to import complete fold-recogni-
tion results into our fragment-packing optimization.

UNDERTAKER includes a number of operators that
attempt to improve some part of our cost function—
reducing breaks, forming or improving disulfide bonds
reducing clashes, reducing the cost of user-specified con-
straints, and so forth. Many of these operators work by
trying a small number of potential fragment replacements
and computing for each the effect that it would have on
only part of the cost function, selecting the fragment
replacement that appears to make the most improvement.

UNDERTAKER also has operators for repositioning
subtrees. It can either jiggle them a small amount or try to
find the optimal placement for them, given the constraints
and peptide bonds on the segments in the tree. There are
various ways of splitting the tree into subtrees, which
move larger or smaller sections of the protein. On a
smaller scale, the method also has operators for changing
the rotamers of the residues without changing the back-
bone, to improve packing or reduce clashes.

Because UNDERTAKER uses a genetic algorithm for
the stochastic search, the method also includes crossover
operators that combine parts of two conformations to get a
new one.

Stochastic Search

As mentioned above, UNDERTAKER uses a genetic
algorithm to search conformational space. We start from a
set of conformations (random based on fold-recognition
alignments, or from previous runs of UNDERTAKER) and
randomly apply operators to generate new conformations.
New conformations that score well are added to the pool
for the next generation, and poorly scoring older conforma-
tions are eliminated. To make sure that the pool mixes

OVERVIEW OF SAM-T02 AND UNDERTAKER PROGRAM 493



rapidly, we keep no more than 40% of the conformations
from the previous generation.

We keep track of the success rate for each operator (how
often it results in a conformation being kept in the pool)
and adjust the probability of applying the operators based
on their success. The adaptation scheme we are currently
using is rather crude and sometimes gets stuck applying
only one or two of the operators, if it has initial success
with them.

We use the results of several runs of the genetic algo-
rithm to seed the pool for another run, often getting
noticeable reduction in cost from applying crossover opera-
tors to conformations from different runs.

Cost Function

Substantial effort was put into making the cost function
in UNDERTAKER easy to modify and extend, because it
was quite clear that much future work would be put into
different scoring functions. Much less effort has been put
into making a good first version of the cost function. For
example, our cost function does not yet include a hydrogen-
bonding term, but such a term is essential for forming
�-sheets. For close fold recognition targets and for �-heli-
cal proteins, the compactness of the right structure usually
held it together in the subsequent optimization of the cost,
but for more distant folds and new folds, �-sheets often
came apart during optimization, even if they were present
in the initial conformation. We often had to add desired
hydrogen bonds as manual constraints in the cost function.

The cost function can be defined at run time as a linear
combination of any subset of a large number of different
basic cost functions, and the basic cost functions them-
selves can be parameterized at run time. New basic cost
functions are very easily added to the code, and they add
no computational cost unless they are specifically re-
quested in the linear combination specified at runtime.
Currently, we have �24 basic cost functions, and there are
several more that we believe we should implement and
test.

One of UNDERTAKER’s most important cost functions,
indeed the one that gives the method its name, is the
burial function. This is a parameterized function that
counts the number of atoms within a given radius for each
residue and scores the sphere based on the probability of
seeing that number of atoms. The sphere is referred to as a
spot, and the number of atoms whose centers are within
the sphere as the burial of the spot. The parameter files for
a burial function include a specification of where the center
of the sphere is relative to the residue, the size of the
sphere, and the smoothed probability distribution of burial
for each residue type.

The UNDERTAKER program includes functionality for
optimizing the spot locations. We define dry spots as those
for which burial has been maximized, wet spots as those
for which burial has been minimized, and generic spots
whose location does not depend on the type of residue. For
generic spots, we maximize the mutual information be-
tween the burial and the residue identity.

UNDERTAKER also has basic cost functions that can
accept the predicted probabilities over a local structure
alphabet for a target and score the conformation using
them (currently working only for the ALPHA11 torsion-
angle alphabet).

One important basic score function accepts user-
specified distance constraints on pairs of atoms and tries to
satisfy these constraints while generating conformations.
These constraints can come either from educated guesses
by the user of the program or from experimental data (such
as NMR experiments or cross-linking experiments). The
use of constraints turned out to be essential for our CASP5
predictions.

RESULTS AND DISCUSSION

Because our human-assisted prediction method began
with essentially the same fold-recognition process that
was used by our SAM-T02 automatic server, it is instruc-
tive to look at the differences in performance between the
two. For the comparative modeling targets, the server did
better (according to the GDT score) on 76% of the targets—
our use of UNDERTAKER without freezing the core
resulted in an overall loss of model quality for the closer
homologs. For the easier fold-recognition targets (classes
CM/FR and FR(H)), the server did better on about a third
of the targets, and the additional input, either by the
UNDERTAKER program or by hand, made improvements
on the remaining two thirds. For the difficult targets
[FR(A), NF/FR, and NF], the hand-assisted UNDER-
TAKER program did better than the automatic server on
about 84% of the targets.

We looked at the results of the automatic servers
registered with CAFASP and often included the models
generated by Robetta (the automatic server produced by
the Baker group using Rosetta14 as possible conformations
in the initial pool for our genetic algorithm.

On most of the new-fold targets, we did not come up with
anything resembling a correct structure. This is not surpris-
ing, given the crude nature of our cost function and the
amount of handwork necessary to get vaguely protein-like
conformations. We discuss only the rarer successes in this
article.

We did reasonably well for the new fold targets T0129
and T0181. There was also an FR(A) target that we did
well on (T0135), and a CM/FR target was popular with
most of the speakers at CASP5 (T0130). One target that
was withdrawn from CASP5, T0139, deserves some com-
ment. Each of these targets is discussed below.

New Fold: T0129

Target T0129 was the first target to be released, so we
had plenty of time to look at it and to adjust the scoring
function of UNDERTAKER to produce more protein-like
conformations. Our secondary-structure predictor gave
strong predictions for seven helices and for an extended
piece. It turned out that our secondary-structure predic-
tion was reasonably accurate (Q3 � 82%), which helped in
assembling the protein.

The first three helices of the N-terminal domain were
usually packed by the fragment assembly quite consis-

494 K. KARPLUS ET AL.



tently, but we had difficulty with the C-terminal domain.
We mentally partitioned the target into two domains, but
we mistakenly grouped helix 4 in the second domain
instead of the first, which resulted in mispacking both
domains. The program was not informed of our domain
division, but we selected 10 hand-created constraints: 4 to
try to keep helices 4–7 straight and 6 to try to form an
up-down bundle of the four helices plus the extended piece
from F80 to G85. We would have done better not to
constrain the N-terminal end of helix 4.

Our best model was model 3, whether the domains were
considered separately or together. This model was one
where we liked the (incorrect) packing of helix 4 with
helices 6 and 7, but we did not like the way that helix 5 was
messed up. Although we had included conformations pro-
vided by the Robetta server in some of our optimizations,
they had not been included in the optimizations leading to
models 2 and 3.

New Fold: T0181

Our model 2 for target T0181 had the N-terminus
basically right, but we had trouble getting the third strand
of the sheet (which we had correctly predicted as a strand)
to join the sheet, probably because of the large number of
residues between the second and third strands. We tried
adding constraints by hand to position the third strand,
but we could not simultaneously form the sheet and keep
the backbone contiguous. Because of the bad break in the
backbone, we never submitted any of our models that had
the complete sheet—these might very well have been
better than what we did submit.

We had some weak fold recognition results for T0181,
but because we still have not seen the correct structure, it
is difficult to decide what went right and wrong.

Fold Recognition (Analogous): T0135

We submitted only one model for T0135, which we
obtained through a combination of fold recognition and
new fold techniques. Our fold-recognition method by itself
had the correct fold in third place in its list of hits, but the
E-value of 9.6 gave us no confidence in the result, and
there were several other folds that scored essentially as
well. We had no way of choosing the correct fold using just
our fold-recognition methods.

When UNDERTAKER was run with no hand-added
constraints, the sheet was not assembled. To assemble it,
we tried to find topologies that were consistent with our
predictions that strand 1 would be an antiparallel or mixed
middle strand, strand 2 would be an antiparallel edge
strand, strand 3 would be a parallel strand, and strand 4
would be a mixed middle strand (using a neural net with
our extended STR alphabet). We also wanted strands 1
and 2 to be oriented the same way, because we had
predicted a single helix between them. We did not find any
topologies that met all our predictions, so we experimented
with adding constraints for various topologies. The most
promising one was a 4132 antiparallel sheet. We obtained
a model that looked roughly like a protein to us, so we
submitted it to the VAST web server15 to see if any existing

proteins had a similar structure. We got excellent align-
ments to proteins with a ferredoxin-like fold, probably
because our library of fragments and fold-recognition
alignments contained templates with this fold.

We edited VAST’s structural alignments to add more
fold-recognition alignments for this fold to UNDERTAK-
ER’s collection. Several runs of UNDERTAKER, both with
and without constraints on the sheets, resulted in models
with different flaws. We superimposed the models and did
cut-and-paste editing to put together a model with better
features, which we then reoptimized. We fiddled with
hand-added constraints and cut-and-paste editing, to try
to close gaps and pack the helices against the sheet. The
final run did not use the packing constraints but did
include constraints corresponding to the hydrogen bonds
of the predicted sheet, because our score function still does
not include a hydrogen-bonding term.

For target T0135, the new-fold methods allowed us to
recognize and align a fold that was just a little too remote
for our fold-recognition methods alone to manage. Our
success on this target is exactly what we were hoping for
by combining methods, but several other targets in the
FR(A) category were not nearly as successful.

Comparative Modeling/Fold Recognition: T0130

Target T0130 is one that almost all the presenters at
CASP5 felt obligated to present—indeed, one could almost
have selected the speakers for CASP5 just based on their
performance on this target.

Recognizing the nucleotidyltransferase fold was easy
(almost all the fold recognition servers got it), but getting a
good alignment was harder. Most of the servers (including
both of ours) did not have the third aspartic acid of the
catalytic triad (D46, D48, D79)—there was excellent se-
quence conservation up to residue 1, but a hairpin had to
be deleted from the templates to get the third strand
reasonably aligned.

We added constraints by hand to keep this triad prop-
erly spaced (based on the triads in 1bpyA, 1fa0A, and
1fa0B). These constraints managed to get most of the fold
for us, but we incorrectly predicted a helix for the final
strand. UNDERTAKER consistently unwound the helix,
but we did not think to question the rather weak predic-
tions of the neural net on this segment and try to attach it
as a strand. Instead, we kept adding constraints to try to
force the incorrectly predicted helix to form and to pack
against the sheet.

Withdrawn: T0139

Target T0139 had a picture of its structure published
just a week before the CASP5 deadline.6 We found the
picture about 24 h before the CASP5 deadline. We tried
estimating constraints from the picture and adding these
constraints to the UNDERTAKER score function. There
were a number of problems creating these constraints
(unlabeled atoms, mislabeled residues, and distances that
were difficult to guess). We ended up adding about 40
rather loose distance constraints. Just adding these noisy
constraints was not enough to get a good solution—helix 4

OVERVIEW OF SAM-T02 AND UNDERTAKER PROGRAM 495



ended up on the wrong side of the cluster of helices 1, 2,
and 3. We ended up moving the helix by hand to the other
side and reoptimizing, because our move set seemed
unwilling to unfold the conformation enough to change
which side the helix was on, and we did not have enough
time to start over from a random configuration. This
reoptimization resulted in a roughly correct structure, so
we did some further optimization without the constraints
from the article. This reoptimization did not make many
changes (our model 1 submission included the distance
constraints, and our model 2 submission did not).

In short, we got a good model for target T0139 (4.86 Å for
all CA atoms) by adding about 40 correct but noisy
distance constraints and knowledge of the chirality of the
helix bundle. This was, of course, cheating, so we informed
the organizers that target T0139 should be removed from
the CASP5 evaluation. Much more information could have
been extracted from the article—Alexey Murzin managed
to get a 3.84 Å CA-RMSD model using the same article. We
were encouraged to see how little extra information was
needed to go from a rather bad model to quite a good one,
because one of our hopes is that the UNDERTAKER
program will be useful for aiding structure determination
from data sets that would normally be insufficient or of too
low quality for the purpose.

CONCLUSION

The CASP5 experiment this year let us test both our new
use of local structure alphabets in fold recognition (compar-
ing the SAM-T02 server to the older SAM-T99 server) and
our new fragment-packing method.

Almost universally, the SAM-T02 server made better
predictions than the older SAM-T99 server, showing that
the use of predicted local structure is valuable in fold
recognition.

Hand-assisted fragment packing did substantially bet-
ter than the fold recognition server on the more difficult
targets, but worse on the easiest (comparative modeling)
targets. This loss of performance is almost certainly due to
having a large number of alignments to various templates,
with no information given to UNDERTAKER about the
scores of the alignments. UNDERTAKER’s crude cost
function was not able to pick out the best template and
alignment reliably from the set it was presented with, and
the fragment packing often resulted in some movement of
the core residues.

Our future work will concentrate on improving the cost
function in UNDERTAKER, adding new conformation-
change operators, and providing a way to preserve good
conformations from fold recognition without having to
freeze the core.

ACKNOWLEDGMENTS

We thank David Haussler and Anders Krogh for start-
ing the hidden Markov model and Dirichlet mixture work

at UCSC, because these approaches were instrumental to
our success. We also thank Christian Barrett and Spencer
Tu Basu, who implemented earlier versions of our predic-
tion server, and who made other contributions to the
techniques. We began work on T0129 and T0130 while
Kevin Karplus was on sabbatical in David Baker’s labora-
tory and conversations with members of that laboratory
were fruitful in guiding our initial work on these targets.

REFERENCES

1. Karplus K, Sjölander K, Barrett C, Cline M, Haussler D, Hughey
R, Holm L, Sander C. Predicting protein structure using hidden
Markov models. Proteins 1997;Suppl 1:134–139.

2. Karplus K, Barrett C, Cline M, Diekhans M, Grate L, Hughey R.
Predicting protein structure using only sequence information.
Proteins, 1999; Suppl 3:121–125.

3. Karplus K, Karchin R, Barrett C, Tu S, Cline M, Diekhans M,
Grate L, Casper J, Hughey R. What is the value added by human
intervention in protein structure prediction? Proteins 2001;45:86–
91.

4. Karplus K, Barrett C, Hughey R, Hidden Markov models for
detecting remote protein homologies. Bioinformatics 1998;14:846–
856.

5. Eyrich VA, Marti-Renom MA, Przybylski D, Madhusudhan MS,
Fiser A, Pazos F, Valencia A, Sali A Rost B. EVA: continuous
automatic evaluation of protein structure prediction servers.
Bioinformatics December 2001;17:1242–1243.

6. Karchin R, Cline M, Mandel-Gutfreund Y, Karplus K. Hidden
Markov models that use predicted local structure for fold recogni-
tion: alphabets of backbone geometry. Proteins June 2003;51:504–
514.

7. Hughey R, Karplus K, Krogh A. SAM: sequence alignment and
modeling software system, version 3. Technical Report UCSC-CRL-
99-11, University of California, Santa Cruz, Computer Engineer-
ing, UC Santa Cruz, CA 95064, October 1999. Available from
http://www.soe.ucsc.edu/research/ compbio/sam.html.

8. Bernstein FC, Koetzle TF, Williams GJ, Meyer EE, Brice MD,
Rodgers JR, Rennard O, Shimanouchi T, Tasumi M. The Protein
Data Bank: a computer-based archival file for macromolecular
structures. J Mol Biol 1977;112:535–542.

9. NR (All non-redundant GenBank CDS translations�
PDB�SwissProt�PIR�PRF Database) Distributed on the Inter-
net via anonymous FTP from ftp://ftp.ncbi.nlm.nih.gov/blast/
db. Information on NR is available at http://www.ncbi.nlm.nih.
gov/ BLAST/blast-databases.html.

10. Kabsch W, Sander C. Dictionary of protein secondary structure:
pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers December 1983;22(12):2577–2637.

11. Frishman D, Argos P. Knowledge-based protein secondary struc-
ture assignment. Proteins 1995;23:566–579.

12. Bonneau R, Tsai J, Ruczinski I, Chivian D, Rohl C, Strauss CEM,
Baker D. Rosetta in CASP4: progress in ab initio protein structure
prediction. Proteins 2001;45:119–126.

13. Simons KT, Bonneau R, Ruczinski I, Baker D. Ab initio protein
structure prediction of CASP III targets using ROSETTA. Pro-
teins 1999;Suppl 3:171–176.

14. Simons KT, Kooperberg C, Huang C, Baker D. Assembly of protein
tertiary structures from fragments with similar local sequences
using simulated annealing and Bayesian scoring functions. J Mol
Biol. 1997;268:209–225.

15. Gilbrat J, Made T, Bryant S. Surprising similarities in structure
comparison. Curr Opin Struct Biol 1996;6:377–85.

16. Fukushima K, Kikuchi J, Koshiba S, Kigawa T, Kuroda Y,
Yokoyama S. Solution structure of the DFF-C domain of DFF45/
ICAD: a structural basis for the regulation of apoptotic DNA
fragmentation. J Mol Biol August 9, 2002;321:317–327.

496 K. KARPLUS ET AL.


