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SUMMARY

Prostate-specific antigen (PSA) is a biomarker commonly used to screen for prostate cancer. Several
studies have examined PSA growth rates prior to prostate cancer diagnosis. However, the resulting
estimates are highly variable. In this article we propose a non-linear Bayesian hierarchical model
to combine longitudinal data on PSA growth from three different studies. Our model enables novel
investigations into patterns of PSA growth that were previously impossible due to sample size limitations.
The goals of our analysis are twofold: first, to characterize growth rates of PSA accounting for differences
when combining data from different studies; second, to investigate the impact of clinical covariates such
as advanced disease and unfavorable histology on PSA growth rates.

Keywords: Bayesian hierarchical model; Interval-censored data; Longitudinal data; Meta-analysis; Prostate-specific
antigen (PSA).

1. INTRODUCTION

Prostate-specific antigen (PSA) is a biomarker widely used for the early detection of prostate cancer.
Since its introduction in the late 1980s, PSA has changed the way prostate cancer is diagnosed and
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managed. However, from the beginning, its use has been fraught with controversy. For example, since
PSA is produced by the prostate epithelium, it can also be elevated by other prostate conditions, including
benign prostatic hyperplasia and prostatitis. Many attempts have been made to improve the specificity
of the test. These include use of information on PSA growth over time (Whittemoreet al., 1995) and
thresholds for positivity that vary by age (Oesterlinget al., 1993). Recent publications (e.g. Pungliaet
al., 2003) have cast doubt on the sensitivity of the test, suggesting that a non-trivial proportion of men
with normal test results may harbor latent prostate cancer. Moreover, the survival benefits associated
with PSA screening are still uncertain (Frankelet al., 2003), and there are concerns that the test is
overdiagnosing indolent cancers that would never have presented clinically (Etzioniet al., 2002a). In
spite of these uncertainties, use of the test has become widespread, particularly in the USA (Etzioniet al.,
2002b). The vast majority of prostate cancers detected today are diagnosed with early-stage, low-volume
disease (Jemalet al., 2003), making it difficult for the clinician to determine if a newly diagnosed patient
has indolent disease or biologically aggressive cancer that would progress to an advanced stage if left
untreated.

In determining diagnostic characteristics of PSA, retrospective analyses of serial PSA levels have been
extremely valuable. To date, five studies have provided information about PSA growth from frozen serum
samples that were stored prior to prostate cancer diagnosis (Carteret al., 1992a,b; Pearsonet al., 1994;
Morrell et al., 1995; Whittemoreet al., 1995; Slate and Clark, 1999; Slate and Turnbull, 2000). Using the
data from these studies, several authors have investigated PSA growth and the natural history of prostate
cancer. All modeled PSA growth as either linear or exponential over time with an acceleration of growth
at some point prior to disease onset. The results are, however, variable. Slate and Turnbull (2000) report
estimates of annual percentage change in PSA from three individual studies, ranging from 13% to 20%.
The variability of the estimates has important implications for clinical practice. For example, if it is known
that PSA in cancer cases increases at an annual rate of 25% then a man with an annual increase of 20%
will be treated quite differently than one with an increase of 13%. The results also have policy implications
because decision analysis models (e.g. Etzioniet al., 1999; Rosset al., 2000) use PSA growth as input
variables. Finally, we note that these analyses were based on single studies. The issue of estimating PSA
growth by combining PSA data while accounting for study differences was never addressed.

When several studies are available to address the same scientific question, it is natural to consider
combining information across studies in order to draw overall conclusions. The process of combining
information from related studies is calledmeta-analysis. When combining studies, a natural concern is
adequately capturing the study-to-study variability due to differences in study designs, protocols, and
patient populations. Bayesian hierarchical models provide a natural modeling approach to address study-
to-study variability. Such models have been used in the literature on a variety of problems; the earliest
account is the paper by DuMouchel and Harris (1983). For a review of current meta-analytic methods and
applications of hierarchical models see, for example, Stangl and Berry (2000).

This article presents a meta-analysis of PSA growth in prostate cancer patients using three of the above
mentioned retrospective studies. The combined dataset represents the largest data resource available today
with information about serial changes in PSA levels prior to a prostate cancer diagnosis. Our goal is to
produce estimates of PSA growth that reconcile between-study differences while gaining greater insight
into these differences. To do this, we propose a Bayesian hierarchical model that explicitly accounts for
between-study variability, while also estimating the overall mean PSA growth trajectory across studies.
Like previous studies, we use a change-point model to accommodate the non-linearity of PSA growth
over time; the change-point is assumed to represent a latent point of transition from normal PSA growth
to a point at which PSA is emitted at an accelerated rate. Since PSA is proportional to volume of prostate
cancer (Kabalinet al., 1995; Stameyet al., 1987), we anticipate that this point will be highly correlated
with onset of malignancy.

The combined dataset also provides a unique opportunity to address questions that could not be
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Table 1.Summary statistics of the three retrospective longitudinal studies of PSA. Means and standard
deviations (std) are provided for the age at last follow-up (FU), length of follow-up (in years), number

of longitudinal measurements, and first and last log-transformed PSA measurements

STUDY GROUP Individuals Age at last FU Length of FU Measurements First ln(PSA+1) Last ln(PSA+1)
mean (std) mean (std) mean (std) mean (std) mean (std)

Normal 88 67.33 (5.36) 7.78 (2.20) 6.40 (2.46) 0.77 (0.31) 0.93 (0.48)
CARET Local 53 60.00 (6.10) 5.34 (1.82) 4.55 (2.21) 1.42 (0.62) 2.04 (0.78)

Metastasis 6 65.67 (5.43) 5.31 (2.13) 4.17 (2.04) 1.60 (0.88) 3.43 (1.87)
Normal 282 60.05 (12.42) 16.15 (8.55) 6.34 (2.28) 0.52 (0.35) 0.82 (0.49)

BLSA Local 41 71.76 (7.52) 19.27 (6.37) 8.42 (3.00) 0.67 (0.35) 1.98 (0.70)
Metastasis 8 77.20 (8.11) 16.95 (8.71) 8.13 (3.04) 0.97 (0.70) 3.82 (0.97)

Normal 898 76.98 (14.98) 12.48 (14.73) 7.09 (4.17) 0.77 (0.49) 0.90 (0.57)
NPCT Local 51 72.27 (4.72) 3.68 (2.22) 7.31 (4.08) 1.63 (0.72) 2.11 (0.78)

Metastasis 10 71.33 (5.31) 3.04 (1.84) 7.40 (3.69) 1.77 (0.92) 2.75 (0.84)

answered by previous studies because of their limited sample sizes. Indeed, the distinguishing feature
of the combined dataset is that it has the largest collection of longitudinal PSA measures taken prior to
diagnosis on disease cases. We exploit this strength to address the following question: does PSA provide
information about whether a newly diagnosed prostate cancer case has disease that is likely to progress to
an advanced stage if left untreated? To do this, we use our models to answer the following questions: (1)
are PSA growth rates after the change-point different for cases diagnosed with early stage disease relative
to those diagnosed with late-stage disease? and (2) are PSA growth rates after the change-point different
for cases diagnosed with high-grade disease than for those diagnosed with low-grade disease? We allow
post-change point growth rates to differ by stage and grade at diagnosis by incorporating information on
these variables at the second level of the hierarchy.

The clinical importance of distinguishing aggressive localized prostate cancer from indolent disease
cannot be overstated. Prior studies have estimated the overdiagnosis rate due to PSA testing to range
between 30% and 50%, (Etzioniet al., 2002a; Draismaet al., 2003). This implies that 30% or more
of patients diagnosed by PSA screening do not require aggressive therapy for the condition, although
the majority of them will still undergo these invasive procedures. Given that the aggressive therapies
for localized prostate cancer (surgery or radiation) are commonly associated with complications such as
urinary incontinence and sexual and bowel dysfunction, all of which have been shown to significantly
diminish quality of life (Pensonet al., 2003; Potoskyet al., 2000, 2002), overdiagnosis is therefore
associated with considerable morbidity that might be avoided if a reliable method were available that
could distinguish aggressive from indolent disease given information available at the time of diagnosis.

The paper is organized as follows. In Section 2 we provide a brief description of the studies in our
meta-analysis. We describe Bayesian hierarchical change-point models in Section 3. We present model fit
results in Section 4. Finally, in Section 5 we present some conclusions and directions for further work.

2. RETROSPECTIVE STUDIES

Our models combine data from three studies: namely, the Nutritional Prevention of Cancer Trials
(NPCT), the Beta-Carotene and Retinol Efficacy Trial (CARET) and the Baltimore Longitudinal Study of
Aging (BLSA). We provide a brief description of these studies below and details are presented in Table 1.
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2.1 The Nutritional Prevention of Cancer Trials (NPCT)

The NPCT (Clarket al., 1996; Duffield-Lillicoet al., 2003) was a multi-center, double-blind, randomized,
placebo-controlled cancer prevention trial aimed at determining whether a nutritional supplement of
selenium would decrease the incidence of cancer.

The trial accrued subjects with a history of two or more basal cell carcinomas or one squamous cell
carcinoma of the skin within the prior accrual year. Moreover, the eligibility criteria required that subjects
had a five year life expectancy and no internal malignancies treated within the previous five years, and no
histories of significant liver or kidney disease.

Subjects were randomized from 1983 through 1992 to receive either placebo or a nutritional dosage
of selenium daily. Participants were scheduled to return to the clinic every six months for dermatological
examinations, a blood draw, and evaluation for signs of selenium toxicity. The primary outcome was
incidence of basal and squamous cell carcinomas of the skin. Secondary endpoints, established in 1990,
were all-cause mortality, total cancer mortality, total cancer incidence, and incidences of lung, prostate and
colorectal cancers. In particular, PSA levels were determined retrospectively from frozen plasma samples
using the Abbott Diagnostics IMx PSA assay (Abbott Park, IL).

2.2 The Beta-Carotene and Retinol Efficacy Trial (CARET)

This double-blind trial conducted from 1988–96 was aimed at evaluating the chemopreventive efficacy
and safety of beta-carotene and retinol in a population at risk for lung cancer. Blood was obtained at
randomization and yearly during a pilot period and every two years thereafter. Prostate cancer screening
or management of prostate cancer was not part of CARET; thus all diagnoses of prostate cancer were
made within the patients’ regular health care system.

For the PSA substudy (Elliset al., 2001), cases were selected from the group of 336 CARET
participants diagnosed with prostate carcinoma between January 1985 and May 1997. From this group
90 men were identified who were between 50 and 65 years old at randomization with more than one
serum specimen obtained before cancer diagnosis. Controls were men 50 to 65 years old at randomization
without a subsequent diagnosis of prostate cancer or lung cancer. All controls had serum available from
a pre-randomization visit and at least two subsequent blood specimens. Serum was stored at−70◦C until
assay. Total and free serum PSA was determined by the Abbott Diagnostics AxSYM PSA assay (Abbott
Park, IL).

Chart abstraction was performed by a single investigator. Chart data consisted of medical records
forwarded to CARET investigators by treating physicians. These data included clinical reports indicating
the initial events leading to diagnosis as well as surgical, pathological and radiological reports describing
tumor staging. From these records tumor clinical and pathological stage, and Gleason grade were
recorded. Staging was done according to 1997 American Joint Commission on Cancer TNM criteria.

In 70 cases at least three measurements were made before diagnosis and in 62 controls at least three
measurements were made before the matched case diagnosis. Among the initial events leading to the
diagnosis of prostate carcinoma was abnormal digital rectal examination in 60 men, abnormal PSA in 70,
voiding symptoms in 17 and other events in four. In some patients multiple events led to the diagnosis of
cancer. In 18 cases PSA and in 14 digital rectal examination was recorded as the only event leading to
diagnosis. These values imply that screening for prostate cancer may have led to diagnosis in some cases.

2.3 The Baltimore Longitudinal Study of Aging (BLSA)

The BLSA began in 1958 to study normal human aging (Shocket al., 1984). The BLSA is an
ongoing multi-disciplinary study of community-dwelling volunteers with the continued recruitment of
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new participants to replace other participants who leave the study due to death or dropping out. Participants
in the BLSA return to the study center every two years for three days of free biomedical and psychological
examinations. To date, over 1500 men with an average of about eight visits to the study center and 13 years
of follow-up and approximately 900 women (women were first studied in 1978) with an average of about
four visits and seven years of follow-up have participated in the study. The study participants are mostly
white (95%), well educated (at least 75% have a college degree), and financially comfortable (82%).
Besides describing human physiological changes that occur with age, the study has also been beneficial
in helping examine differences between normal aging and disease processes.

The serum PSA levels have been measured in male BLSA participants either at the time of routine
subject visits (since 1991) or using a frozen serum bank for available retrospective samples (before 1991)
donated at participant visits. This study uses PSA data on men prior to the development of prostate cancer.
PSA levels were determined using Tandem-R (Hybritech) assays.

2.4 Data aspects

In all studies described above, retrospective longitudinal PSA measurements were available for all prostate
cancer cases along with the clinical stage of the disease at diagnosis. Clinical stage is categorized into
local or metastatic stage of the disease. Disease grade was available for a subset of prostate cancer
patients. In our analysis, low grade reflects Gleason score lower than or equal to 6, while high grade
means Gleason score higher than 6. All studies also included normal patients. Table 1 summarizes the
information available from each study. Here we only consider the data for patients who had at least two
longitudinal measurements of PSA. Figure 1 shows the longitudinal profiles of PSA (log-transformed) for
prostate cancer patients as a function of age by study and stage of the disease. The data indicate that PSA
levels increase, but that the growth rate may not be constant in prostate cancer patients. Though not shown
here, longitudinal profiles of (log-transformed) PSA indicate a linear increase of PSA when considering
normal patients.

Though we were not dealing with screening studies, because of the time period in which they took
place, some men may have had PSA screening. However, our dataset does not contain information that
identifies who had PSA screening. Moreover, in our dataset the last measurement of PSA in each patient,
though closest to diagnosis, may be different from PSA measured at detection.

Finally, we note that these studies not only differ in their designs, but also in the way PSA levels were
determined. Each study used a different reagent kit; the BLSA used the Tandem-R assay (produced by
Hybritech), the NPCT used the IMx assay, and the CARET study used the AxSYM assay (both AxSYM
and IMx are produced by Abbott laboratories). Several studies (Leewansangtonget al., 1998; Oesterlinget
al., 1995; Braweret al., 1997) have confirmed that the different assays produce highly correlated, although
not always equivalent, results.

Our models, while borrowing the information across studies, account for the specific study differences
through a hierarchical structure which we describe in the next section.

3. MODEL SPECIFICATION

Let S denote the total number of studies considered for meta-analysis. Any particular study is
indexed bys(s = 1, . . . , S) and containsNs individuals. Therefore, the overall number of patients is
N = ∑S

s=1 Ns . Similarly, let i(i = 1, . . . , Ns) denote the subject index in studys. Subjecti hasni

measurements indexed byj ( j = 1, . . . , ni ).

Serial measurements of PSA are available along with individuals’ age at which the serum was sampled.
Let ys

i j = log(P S As
i j + 1) denote the (log-transformed) PSA level observed at aget s

i j . In particular, for
prostate cancer cases, lett s

i0 denote the age closest to disease diagnosis for patienti in studys.
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Fig. 1. Log-transformed PSA levels given age, group and study.

To address questions formulated in Section 1 we consider Bayesian hierarchical models. From a
Bayesian perspective, such models are fully specified with (1) a model for PSA growth described by
p(ys

i j |θs
i ), s = 1, . . . , S, i = 1, . . . , Ns, j = 1, . . . , ni , (2) a model for the inter-patient variation

described byp(θs
i |θs), (3) a model for the intra-study variationp(θs |θ), and finally (4) a model for the

inter-study variabilityp(θ).
In what follows we describe the non-linearity of PSA growth rates with patient-specific change-point

models. We formally combine the individual non-linear regression models with a hierarchical model.
There is an extensive literature on Bayesian hierarchical change-point models. Earlier developments with
discrete change-points include, for example, Booth and Smith (1982) and Carlinet al. (1992); while for
continuous change points, see Stephens (1994); Slate and Cronin (1997) and Slate and Turnbull (2000).

Our models extend earlier approaches to the analysis of PSA growth in several directions; first, by
formally addressing the study-to-study variability in PSA growth, and second, by allowing for different
post-change point growth rates depending on subject-specific disease prognosis. Finally, we note that we
model PSA as a function of age as opposed to years prior to diagnosis (Morrellet al., 1995; Slate and
Clark, 1999; Slate and Turnbull, 2000). This time-scale is flexible in that it allows us to present results as a
function of years prior to diagnosis, but it also allows prediction of transitions on a scale that is appropriate
when building natural history models.
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3.1 A hierarchical model for PSA growth

At the individual level, we propose the following non-linear model to describe growth of log(P S A + 1)

as a function of age:

ys
i j =

{
bs

0i + bs
1i ti j + εi j , for normal patients

bs
0i + bs

1i ti j + bs
2i (ti j − τi )

+ + εi j , for prostate cancer patients
(1)

wherex+ = max(0, x) and the error termsεi j are assumed independent and identically distributed with
Normal(0, σ 2): that is, a normal distribution with mean zero and varianceσ 2. We assume that 1/σ 2 ∼
Gamma(rσ , sσ ), whererσ and sσ are known hyperparameters. (Here, Gamma(a, b) denotes a Gamma
distribution with meanab−1 and varianceab−2.)

In words, equation (1) describes the growth of log(P S A+1). In normal patients the growth is constant
over time, while in prostate cancer patients a piecewise model describes the growth, withτi denoting a
change-point in the growth rate for patienti . Under this model, the growth of log(P S A + 1) for patienti
in studys is described by a linear model with interceptbs

0i and slopebs
1i . A prostate cancer patient has a

transition atτi and experiences a change in the slope bybs
2i afterτi . In summary, PSA growth for a normal

individual i in studys is characterized by a patient-specific parameter vectorθs
i = (bs

0i , bs
1i )

′ while for
prostate cancer patients we haveθs

i = (bs
0i , bs

1i , bs
2i , τi )

′. Implicit in this formulation is the assumption
that all prostate cancer patients experience a change-point in the growth rates and that normal patients do
not experience a change-point at all. Moreover, the intercept is defined for 20 year-old men.

Though patients’ change-point times are never observed, each prostate cancer patient contributes
interval-censored information that a change-point occurred before diagnosis of the disease at aget s

i0.
This is formalized with a probability model that assigns probability mass one to the event{τi < t s

i0}.

3.2 Hierarchical model

To combine subject-specific non-linear regression modelsp(ys
i j |θs

i ) defined in Section 3.1 we specify
a model p(θs

i |θs): that is, a model that explains the variation of the subject-specific parameters within
studies. LetXi be the subject-specific indicator variable for advanced stage disease. (Later, we specify
a similar model for high- versus low-grade disease.) At the second stage of the hierarchical model we
assume that

bs
0i ∼ Normal(βs

0, σ
2
0 )

bs
1i ∼ Normal(βs

1, σ
2
1 )

bs
2i ∼ Normal(βs

2 + γ s Xi , σ
2
2 )

(2)
1/σ 2

0 ∼ Gamma(rb0, sb0)

1/σ 2
1 ∼ Gamma(rb1, sb1)

1/σ 2
2 ∼ Gamma(rb2, sb2),

wherei = 1, . . . , Ns is the patient index, ands = 1, . . . , S is the study index. That is, we assume that
within a study, all patients share the same mean intercept and mean pre-change point slope. However,
patients with advanced disease (metastasis) at diagnosis may have a further increment in the mean post-
change point slope. We note that the subject-specific parameters are allowed to vary from individual to
individual in the same study. Here, the study-specific parameters are denoted byθs = (βs

0, β
s
1, β

s
2, γ

s)′.
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We combine the study-specific parameters by specifying a model forp(θs |θ) whereθ denotes the
population parameters, that isθ = (β0, β1, β2, γ )′. Weassume

βs
k ∼ Normal(βk, ψ

2
k )

γ s ∼ N (γ, σ 2
γ )

(3)
1/ψ2

k ∼ Gamma(rk, sk)

1/σ 2
γ ∼ Gamma(rγ , sγ )

where, as before,s is the study index andk = 0, 1, 2 indexes, respectively, parameters associated with
intercept, pre change-point slope and post change-point slope at either the population level or study level.
Finally, at the fourth level of the hierarchy we assume that

βk ∼ Normal(mk, v
2
k ), k = 0, 1, 2 andγ ∼ N (mγ , v2

γ ). (4)

Completing our description of the hierarchical model, for the change-point variableτi , weassume that

τi ∼ LogNormal(µ, σ 2
τ )I (τi < t s

i0)

µ ∼ N (mµ, v2
µ) (5)

1/σ 2
τ ∼ Gamma(rτ , sτ ).

3.3 Priors and posterior distributions

For our analysis we considered proper but fairly non-informative priors in that all hyperpriors were
initially set to have prior variance of 1000. Priors set on parameters associated with means were centered
at zero, while those associated with precisions were centered at one.

Posterior distributions of the model parameters, while not available in closed analytical form, can be
obtained with Markov chain Monte Carlo techniques. Full conditional distributions are available in closed
form for all parameters, except for the subject-specific change-point parametersτi . We implemented
a Metropolis-within-Gibbs algorithm; within a Gibbs sampling algorithm (Geman and Geman, 1984;
Gelfand and Smith, 1990), the updating ofτi was performed using the Metropolis–Hastings algorithm
(Metropoliset al., 1953). To obtain samples from the posterior distribution of all parameters, we ran our
Markov chain for a burn-in period of 1000 000 iterations, followed by additional 250 000 iterations from
which we stored sampled values at every 50th iteration.

As we will see in the next section, we also consider posterior predictive distributions. Those can be
obtained using our posterior samples and the composition method (Tanner, 1996, p. 2). For example,
suppose one is interested in the posterior predictive distribution ofτ for a patient who is not in our
combined dataset. This is an out-of-sample prediction formalized by

p(τ |D) =
∫

p(τ |µ, σ 2
τ )p(µ, σ 2

τ |D) dµ dσ 2
τ ,

whereD denotes our combined data and we have assumed thatτ is conditionally independent ofD given
(µ, σ 2

τ ). Note that this calculation does not use information about PSA readings, nor age at diagnosis, for
this new patient. Hence, this posterior predictive distribution applies to the population of all new patients,
not any specific patient. Since, in particular, the age at diagnosis is unknown, we obtain samples from
p(τ | D) by using posterior samples for(µ, σ 2

τ ) and drawingτ given (µ, σ 2
τ ) from the untruncated

LogNormal(µ, σ 2
τ ).
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4. MODEL ASSESSMENT

4.1 Comparing alternative models

In this section we justify the model proposed in Section 3 which we denote byM0. This model allows for
post change-point slopes to depend on disease prognosis as defined by the patient’s clinical stage of the
disease.

We defined three alternative models to assess whether not only the post-changepoint slopes, but also
the change-points varied with stage. In the first alternative modelM1 we assumed that both the change-
point and the post change-point slopes do not depend on disease prognosis. In symbols, modelM1 assumes
thatγ s ≡ 0. Our second alternative modelM2 allowed for stage-dependent change-points, but that post
change-point slopes are not stage dependent, that is, onlyγ s ≡ 0, butτi ∼ N (µ0 + µ1Xi , σ

2
τ ) whereXi

is the indicator of advanced disease for patienti . We complete the hierarchical formulation by assuming
thatµ0 ∼ N (mµ0, v

2
µ0

), µ1 ∼ N (mµ1, v
2
µ1

). Finally, our third alternative modelM3 allowed for stage-
dependent change-points and post change-point slopes, that is, it combines the model describingM0 with
the hierarchical structure for the change-point described above forM2.

From a Bayesian viewpoint, one may use Bayes factors (Kass and Raftery, 1995) for model
comparison. LetD denote the data. To compare modelsM0 and M1, the Bayes factor is the ratio
B F0,1 = P(D|M0)/P(D|M1). Using the output from our MCMC analysis, we can compute the Bayes
factors using harmonic means to compute

P(D|Mk) = 1

1
M

∑M
m=1

(
1

P(D|θ̂i ,Mk )

) (6)

whereM is the number of posterior samples(θ̂i , i = 1, . . . , M) under modelk. Weobtain 2 logB F0,1 =
12.26. Kass and Raftery (1995) provide guidelines for the interpretation of Bayes factors. We found
2log B F0,1 > 10, suggesting a decisive preference forM0 overM1. Similarly, we obtained 2 logB F0,3 >

10, again suggesting a decisive preference for modelM0 overM3. When comparingM0 andM2 we obtain
2 log B F0,2 = 7.30, still showing a strong evidence favoring modelM0.

4.2 Data analysis

We fit the hierarchical model from Section 3 to the data from the three studies. Figure 2 shows 95%
credible intervals for some subject-specific parameters. The left panel displays change-points in years
prior to prostate cancer diagnosis and indicates that patients with metastatic disease are likely to have
transitions occurring later in time (i.e. closer to disease diagnosis) as opposed to patients with local
disease. A larger variability is, however, usually associated with the change-point in patients with local
disease. The right panel of Figure 2 shows that the growth rates of PSA post change-points are somewhat
higher for patients with metastatic disease than those with local disease. This plot also highlights between-
study differences; the results suggest that post-change-point slopes for metastatic patients were highest for
the CARET study, and considerably lower for the other two studies. This may be due to between-study
differences in the definition of localized and metastatic disease. Figure 3 shows the posterior medians
of the subject-specific change-pointsversus the posterior medians of the subject-specific post change-
points slopes, indicating that in patients with metastatic prostate cancer, transitions occur at times closer
to diagnosis and that the transition is followed by a higher growth rate. Though this plot ignores the
variability in the posterior distributions, it shows a relatively good separation of the two groups of patients.

Figure 4 displays the 95% posterior predictive credibility intervals of PSA at patients’ change-points.
The horizontal dotted line displays the corresponding threshold value of 4.0 ng ml−1. This value has been
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Fig. 2. 95% Posterior credibility intervals for subject-specific parameters by study and disease stage. The posterior
medians are shown with small boxes. Left panel: Subject-specific change-pointsτi . Right panel: Subject-specific post
change-point slopesbs

2i .
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Fig. 3. Posterior medians of subject-specific change pointsversus posterior medians of subject-specific post-change
point slopes by study and disease stage. Filled symbols denote local stage while open symbols denote metastasis.

used in clinical practice as indicative of a possible prostate cancer disease. This figure shows that most
patients experience a transition at levels of PSA lower than the clinical threshold.

Posterior distributions of the study-level, post-change-point slopes for patients with local disease
(that is,βs

2, s = 1, 2, 3) are very similar between studies. However, for patients with metastatic disease
(that is,βs

2 + γ s) the posterior distributions show a much larger variability; moreover, between-study
differences are clearly apparent. The posterior distributions of the population parametersβ andγ place a
large probability mass on the positive range (probabilities equal to 0.99 and 0.93, respectively). Table 2
summarizes the posterior distributions of the study-specific and population parameters.
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Fig. 4. Predictive subject-specific values of ln(P S A + 1) levels at change-points by study and disease stage.

Wechose to fit our models to log(P S A + 1); this has been the scale used by others in analysis of PSA
data, presumably to reduce skewness while avoiding indeterminate values (Morrellet al., 1995; Slate and
Clark, 1999; Slate and Turnbull, 2000). For interpretation purposes, log(P S A) may be preferable, because
its inverse transformation provides estimated relative growth rates in the original measurement scale (i.e.
as the annual percentage change in PSA). To estimate these relative growth rates, we fit our model to the
responsey = log(P S A), with zero values (n = 10) being replaced by the minimum value of PSA in the
dataset. We found that PSA increases by an estimated 2.24% per year prior to the change-point; this is
similar to the estimate of 3.2% from Oesterlinget al. (1993) which was derived from a population without
a prostate cancer diagnosis. After the change-point, PSA increases by 15.31% per year for patients with
local disease, and by 63.09% per year for patients with advanced metastatic disease.

The posterior predictive distribution of age at transition is shown in the left panel of Figure 5. The
posterior predictive mode of the distribution is at age 57.25 (the lower and upper boundaries of the
95% credibility intervals are 42.90 and 91.06 years, respectively). The right panel of Figure 5 shows
the predictive PSA trajectory for a new patient by disease prognosis.

Figure 6 shows the posterior predictive PSA trajectories for a new patient within each of the studies.
The full lines show the posterior predictive median trajectory, while the dotted lines show the boundaries
of the 95% credibility intervals.

Figure 7 shows the 95% posterior predictive PSA trajectories for some randomly selected patients. Left
side panels correspond to trajectories for some of the local patients, while right side panels correspond to
trajectories for some of the metastatic patients in our combined dataset.

5. DISCUSSION

In this analysis we used a non-linear Bayesian hierarchical model to combine longitudinal data on
PSA growth from three different studies. Our model accounts for the study-to-study variability as well as
the variability between and within patients. In the first level of the hierarchy—the individual level—we
considered a change-point model to accommodate the non-linearity of PSA growth in cancer patients. We
then incorporated information on disease stage at the second level of the hierarchical model. Our analysis
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Table 2. Posterior estimates of the population and study specific
growth parameters

Parameter Posterior median 95% Credibility interval
POPULATION β0 0.26 (−0.52, 1.06)

β1 0.02 (−0.07, 0.09)

β2 0.21 (0.08, 0.35)

γ 0.64 (−0.60, 1.89)

CARET β1
0 0.17 (−0.08, 0.41)

β1
1 0.02 (0.02, 0.03)

β1
2 0.20 (0.12, 0.30)

γ 1 1.11 (0.51, 1.86)

BLSA β2
0 0.02 (−0.05, 0.08)

β2
1 0.02 (0.02, 0.03)

β2
2 0.21 (0.13, 0.33)

γ 2 0.41 (0.08, 1.01)

NPCT β3
0 0.60 (0.56, 0.65)

β3
1 0.01 (0.00, 0.01)

β3
2 0.21 (0.13, 0.32)

γ 3 0.40 (0.01, 0.95)
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Fig. 5. Predictive distributions. Left panel: Predictive distribution of the age at transition. Right panel: Predictive PSA
trajectory for a new patient.

allowed us to combine information across studies to obtain estimates of PSA growth that are more reliable
than those based on a single study, while also identifying between-study differences.

The combination of data across studies also provided us with some key insights that are highly relevant
from a clinical perspective. First, we found that for most patients, the change-point occurs at PSA levels
below 4.0 ng ml−1, which is the standard threshold for a positive test. Assuming that the change-point does
indeed represent a biological transition from a healthy to a neoplastic state, this finding is in concurrence
with recent studies that have observed a non-trivial frequency of prostate cancer cases with PSA levels
below this standard threshold (e.g. Pungliaet al., 2003). Second, our comparison of PSA growth patterns
between cases with localized and metastatic disease at diagnosis suggested that the PSA growth rates after
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Fig. 6. Predictive PSA trajectories for a new patient in each study.

a transition point differ for localized and metastatic cases. In particular, the post-change-point growth
rates appear to be considerably higher on average for cases destined to be diagnosed with metastatic
disease. This finding has clear implications for determining prognosis among newly diagnosed cases,
suggesting that patients with high PSA are more likely to be candidates for aggressive therapy than those
with slowly increasing levels of PSA. Moreover, it also has important implications for early detection,
because it suggests that metastatic disease may be biologically different to localized disease. The basic
premise underlying early detection is that metastatic disease diagnosed while still localized is as treatable
as localized disease. However, if metastatic disease is biologically different to localized disease from the
time of disease onset, this premise may not always hold. It is possible that our higher growth rates among
metastatic cases could reflect the presence of a second change-point with accelerated growth after that
time. We considered a two-change-point model, but found our estimates under this model to be highly
variable due to the limited number of metastatic cases in the dataset.

Our analysis compared cases staged clinically as localized or metastatic. It is known, however, that
many cancers are clinically under-staged. Partinet al. (1997) report that of approximately 60% of men
believed to have organ-confined disease and who have surgery, fewer than 50% of them are confirmed to
have local disease on final pathological analysis. Using pathological stage instead of clinical stage could
improve the estimation of PSA growth. However, information on pathological stage is only available
for patients who undergo surgery and this information is not available for most of our patients. Our
models could be expanded to deal with missing information on pathological stage or, alternatively,
mis-classification of clinical stage. However, the results shown in Figure 3 do not indicate clear mis-
classification patterns.
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Fig. 8. 95% Posterior credibility intervals for subject-specific parameters by study and grade of disease. Left panel:
Subject-specific change-pointsτi . Right panel: Subject-specific post change-point slopesbs

2i .

As an alternative to stage, one could consider other prognostic variables for studying PSA growth such
as the Gleason score. It is known that prostate cancer patients with low Gleason score (less than or equal to
6) have a considerably better disease prognosis than those with high Gleason score. Using our hierarchical
Bayesian change-point model to investigate PSA growth by Gleason score we found that patients with a
high Gleason score tended to exhibit higher post-change-point slopes than those with low Gleason score,
but the difference in post-change-point slopes between cases with low- and high-grade disease was not as
extreme as the difference observed between cases with early- and late-stage disease (see Figures 8 and 9).

While our analysis yields important new insights into the natural history of prostate cancer and PSA,
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point slopes by study and grade of disease. Filled symbols denote low Gleason while open symbols denote high
Gleason.

it is subject to some limitations. The Bayesian hierarchical framework is based on a parametric model and
imposes constraints on the correlation structure among observations from the same individual or study.
However, such models also allow detailed estimates of within- and between-individual variation—which
are needed for simulation modeling of prostate cancer. Moreover, the ability of hierarchical modeling to
provide population-level parameter estimates with any degree of precision is limited by the number of
studies (regardless of the estimation technique used). In the present analysis, data were available from
three studies, which resulted in population estimates that were considerably less precise that the study-
specific estimates. Consequently, we have presented many of our results by study which has also enabled
us to understand study-to-study variability. We hope in the future to add at least one more study to the
meta-analysis.

In conclusion, the Bayesian hierarchical framework has enabled us to combine data on PSA from
multiple studies, yielding novel insights about the disease process in prostate cancer, as reflected by PSA
growth. Findings from the current study provide insight into the evolving natural history of a patient’s
prostate cancer and may allow clinicians to more accurately determine which patients are more likely to
have indolent disease and which have more biologically aggressive tumors. This, in turn, may result in
more selective application of aggressive therapy, restricting the risk of adverse outcomes to men who are
most likely to benefit from these treatments, and, therefore, improving quality of life for all men with
prostate cancer.
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