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Combining LOPIT with differential
ultracentrifugation for high-resolution spatial
proteomics
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Claire M. Mulvey1, Oliver M. Crook 1,3, Laurent Gatto 1,4 & Kathryn S. Lilley 1

The study of protein localisation has greatly benefited from high-throughput methods uti-

lising cellular fractionation and proteomic profiling. Hyperplexed Localisation of Organelle

Proteins by Isotope Tagging (hyperLOPIT) is a well-established method in this area. It

achieves high-resolution separation of organelles and subcellular compartments but is rela-

tively time- and resource-intensive. As a simpler alternative, we here develop Localisation of

Organelle Proteins by Isotope Tagging after Differential ultraCentrifugation (LOPIT-DC) and

compare this method to the density gradient-based hyperLOPIT approach. We confirm that

high-resolution maps can be obtained using differential centrifugation down to the sub-

organellar and protein complex level. HyperLOPIT and LOPIT-DC yield highly similar results,

facilitating the identification of isoform-specific localisations and high-confidence localisation

assignment for proteins in suborganellar structures, protein complexes and signalling path-

ways. By combining both approaches, we present a comprehensive high-resolution dataset of

human protein localisations and deliver a flexible set of protocols for subcellular proteomics.
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T
he level of complexity of the human proteome extends far
beyond the number of gene products expressed by the
genome in a cell1. The compartmentalisation within

eukaryotic cells and the dynamic distribution of proteins between
organelles are crucial in the regulation of cellular processes2.
Studies of protein localisation have helped define new models to
link mutations to certain disorders3–13 and perturbations in
protein subcellular localisation, in combination with abnormal
expression, have been associated with many human diseases14–19.
Thus, comprehensive subcellular maps for tissue types or cell
lines under various physiological or pathological conditions have
the potential to further our understanding of disease aetiology
and significantly benefit drug discovery programs.

Over a decade of advances in spatial proteomics technologies
has enabled the study of organelle composition, dynamics and
function across a range of species and cell types2,20. These
methods mostly rely upon centrifugation-based cell fractionation
coupled with mass spectrometry (MS)-based proteomics and have
been applied to characterise all major organelles, macromolecular
structures and multiprotein complexes in eukaryotic cells1,20–27.
Methods for subcellular fractionation which do not involve cen-
trifugation have also been developed1,26–28. Furthermore,
advances in quantitative proteomics strategies have been parti-
cularly central to the evolution of subcellular proteomics studies.
In vitro stable isotope-labelling methods such as isobaric tagging
are now available, allowing for the simultaneous analysis of up to
11 samples in the same experiment, and have been coupled with
improvements in the accuracy of MS data acquisition29–31. This
has enabled simultaneous quantification of a greater number of
fractions per experiment, in turn avoiding unwanted technical
variability between fractions analysed in separate MS runs
and alleviating the issue of missing values resulting from the
stochastic processes of peptide quantification by MS29. Major
developments in bioinformatics including approaches to
interrogate spatial proteomics data32,33 and achieve sequence-
based or annotation-based prediction of protein subcellular
localisation34,35 have also contributed to the evolution of spatial
proteomics methods. The experimental data arising from these
developments have been used to generate publicly-accessible
organelle databases and web-based resources, some of which link
subcellular proteomics data to functional datasets as well as dis-
ease relevance and animal model information36–39.

Localisation of Organelle Proteins by Isotope Tagging (LOPIT)
is a well-established method for the simultaneous analysis of
multiple subcellular structures from complex biological mixtures
in a single experiment. This contrasts with proximity tagging
methods40 which are designed to identify proteins associated with
discrete cellular compartments and therefore provide pro-
tein subcellular distribution snapshots which are not easily inte-
grated to examine proteins with multiple localisations. LOPIT
does not require absolute organelle purification and is instead
based on the measurement of protein distribution across multiple
density gradient fractions41,42. In this case, subcellular localisation
is assigned by comparing protein profiles to those of well-curated
organelle markers using multivariate statistical analysis and
machine learning approaches33. LOPIT has been applied to the
study of the subcellular proteomes of the HEK293 human kidney
cell line, DT40 chicken lymphocyte cell line, A. thaliana roots
and root-derived callus, D. melanogaster embryos and S. cerevi-
siae cells43–49. Recently, an improved version of this method
called hyperplexed LOPIT (hyperLOPIT) was developed, inte-
grating novel approaches for sample preparation, MS data
acquisition and protein localisation classification to create a high-
resolution map of protein subcellular localisation in E14TG2a
mouse embryonic stem cells50.

Variations of hyperLOPIT have recently been employed by
Beltran et al.51, who integrated a temporal component to the
workflow to analyse human lung fibroblast cytomegalovirus
infection and Jadot et al.52, who used Nycodenz and sucrose
density gradient centrifugation to determine the rat liver orga-
nelle proteome. A label-free alternative to LOPIT, Protein Cor-
relation Profiling (PCP), has also been developed and applied to
the study of the centrosome53 and lipid droplets54 as well as
global organelle analyses55,56. Additionally, PCP has been used to
study the proteasome complexes of P. falciparum57 and combined
with Stable Isotope Labelling with Amino acids in cell Culture
(SILAC) to investigate protein-protein interactions with temporal
and stoichiometric resolution58,59.

The Dynamic Organellar Maps (DOM) workflow is based on a
simpler fractionation method, differential ultracentrifugation
(DC), and involves separation of crude nucleus-, organelle- and
cytosol-enriched fractions from SILAC-heavy cells which are then
combined with SILAC-light membrane-enriched fractions60.
DOM has recently been updated to include a TMT-labelling
option in which no reference organellar sample is analysed and
only the five post-nuclear fractions are used, enabling analysis of
two different conditions using a single TMT 10-plex set61.
However, this comes at the cost of reduced resolution since
protein profiles are restricted to just these five fractions. A six-
fraction label-free quantification approach partially rectifies this
by including an additional nucleus-enriched fraction in the ana-
lysis61. Overall, because of the reduced number of fractions taken,
this approach achieves lower resolution compared to
hyperLOPIT62.

The hyperLOPIT workflow is relatively time-consuming and
requires a considerable amount of starting material. We reasoned
that coupling the advances in sample preparation, MS data
acquisition and protein localisation classification employed in
hyperLOPIT with differential centrifugation should yield high-
resolution maps of protein localisation with less starting material
and at lower cost than those required by hyperLOPIT. We thus
introduce Localisation of Organelle Proteins by Isotope Tagging
after Differential ultraCentrifugation (LOPIT-DC), a spatial
proteomics pipeline based on differential centrifugation. Cru-
cially, unlike previous DC-based methods, LOPIT-DC enables all
cellular compartments to be analysed simultaneously. We com-
pare protein subcellular localisation maps produced by LOPIT-
DC and hyperLOPIT using the human osteosarcoma U-2 OS cell
line and evaluate the impact of employing a differential
centrifugation-based workflow on global, experiment-wide reso-
lution. Integrating the two approaches, we present the most
comprehensive MS-based spatial proteomics map of a human cell
line published to date including isoform-specific subcellular
niches and localisations for large protein complexes and proteins
involved in cancer-relevant signalling pathways. We further
demonstrate that many proteins cannot be classified to a single
localisation as they either transit between compartments or carry
out their functional role(s) in multiple locations.

Results
Development of the LOPIT-DC method. Aiming to create a
simpler but comprehensive alternative to hyperLOPIT, we
developed a second MS-based technique for the study of protein
subcellular localisation which we named LOPIT-DC. To create
this method, we combined the strengths of the hyperLOPIT
protocol (improved cell lysis, MS data acquisition and protein
localisation classification)50,63 with differential centrifugation as
employed by other subcellular fractionation workflows52,60,61

(Fig. 1).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08191-w

2 NATURE COMMUNICATIONS |          (2019) 10:331 | https://doi.org/10.1038/s41467-018-08191-w | www.nature.com/naturecommunications

www.nature.com/naturecommunications


As in hyperLOPIT, cell lysis in LOPIT-DC is followed by a
whole cell-preclearing step necessary to remove unlysed cells that
could confound downstream analysis. The cell lysis stage is critical
in both methods, as insufficient lysis can result in subcellular
fractions with reduced protein yields while excessive lysis can

damage sensitive membranes leading to organellar content release.
In contrast to hyperLOPIT, where subcellular fractionation is
based on density gradient ultracentrifugation, LOPIT-DC utilises
sequential differential centrifugation steps to partition the cell
lysate into 10 fractions. By changing the fractionation method and
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Fig. 1 Overview of the hyperLOPIT (left) and LOPIT-DC (right) workflows. LOPIT is a quantitative mass spectrometry-based method used for the

separation of organelles and other subcellular compartments. The workflows differ in step 2 (organelle separation): hyperLOPIT is based on equilibrium

density gradient ultracentrifugation from a crude membrane preparation, while LOPIT-DC utilises differential ultracentrifugation following removal of

unlysed cells. In addition, hyperLOPIT includes a separate chromatin enrichment step. Both workflows take advantage of multiplex TMT-labelling (step 3)

to reduce mass spectrometry analysis time and technical variability and SPS-MS3 for accurate quantification (step 4). Data analysis for both workflows is

performed using pRoloc (step 5)
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excluding the separate chromatin preparation present in hyper-
LOPIT, the time taken to fractionate the cells is reduced
approximately three-fold in LOPIT-DC (Supplementary Table 1).
Some of the centrifugation speeds in our LOPIT-DC workflow are
similar to those used in DOM60 with additional steps included to
efficiently utilise the full set of 10-plex TMT and increase
subcellular resolution, including an initial step to remove unlysed
cells (Supplementary Table 2, Fig. 1).

Similar to hyperLOPIT, LOPIT-DC makes use of the TMT
multiplexing strategy that enables simultaneous analysis of all
subcellular fractions in a single MS run, avoiding technical
variation and reducing missing values introduced by analysing
fractions in separate MS runs. This is extremely important, as
presence of many missing values in such datasets can have a
detrimental effect on protein localisation assignment as recently
observed by Beltran et al.51. Moreover, TMT-based multiplexing
reduces MS run time and thus experiment cost. As with
hyperLOPIT, MS analysis can be carried out using tandem mass
spectrometry (MS/MS) or the SPS (Synchronous Precursor
Selection)-based MS3 technology which improves quantitative
accuracy and spatial resolution31,50. In contrast to DOM, LOPIT-
DC is an all-in-one method meaning that all subcellular niches
are analysed in a single preparation.

For downstream statistical analysis, LOPIT-DC employs the
same robust spatial proteomics data analysis pipeline as used in
hyperLOPIT for data processing and visualisation as well as
protein localisation classification64. These open-source, open-
development R packages are interactive and new computational
methods are continuously being integrated to take advantage of
developments in machine learning65.

Application of LOPIT-DC to the U-2 OS cell line. LOPIT-DC
was applied to the human U-2 OS cell line, a well-characterised
model with many reference resources. Pertinently, the Cell Atlas
database includes immunofluorescence-based protein subcellular
localisation data for this cell line, providing an ideal data source
for orthogonal validation38.

Three LOPIT-DC replicates were obtained, using on average
7 × 107 cells per experiment (Supplementary Figs. 1a, 2a, 3). Each
replicate yielded 10 fractions with at least 60 µg protein each, that
were labelled with a 10-plex TMT kit (Supplementary Fig. 4, left).
LC-SPS-MS3 analysis of the U-2 OS LOPIT-DC fractions resulted
in identification of 9386 protein groups after replicate merging
and, following initial processing and missing value removal, 6837
protein groups with a full reporter ion series across all fractions
and replicates remained (Supplementary Table 3)50,66.

Principal component analysis (PCA) was used to visualise the
protein profiles across the main sources of variance in our
LOPIT-DC data. PCA is a dimensionality reduction method that
transforms the original continuous multi-dimensional data into a
set of uncorrelated variables (principal components), such that
the first principal component accounts for as much variability in
the data as possible and each succeeding component explains the
greatest variance possible under the constraint that it be
orthogonal to the preceding components. PCA is extremely
useful for the visualisation of quantitative proteomics data to
check if there is any underlying structure (i.e. organelle
separation) and identify any hidden patterns in the data (that
may represent subcellular niches). Using LOPIT-DC we are able
to distinguish 10 subcellular compartments (Fig. 2a); the
mitochondrion, nucleus/chromatin, endoplasmic reticulum
(ER), Golgi, proteasome, peroxisome, cytosol, plasma membrane
(PM), lysosome and ribosome. We observe that principal
components (PCs) 1 and 2 broadly separate the organelle marker
proteins into three groups: (1) membranous organelles excluding

the nucleus, (2) nucleus/chromatin, ribosome and proteasome
and (3) cytosol. Importantly, subcellular niches that seem to
overlap in PCs 1 and 2 are separated in other dimensions. For
example, the Golgi apparatus and PM exhibit overlapping
distributions in PCs 1 and 2 but are cleanly separated along
PC4 (Fig. 2a, right). Similarly, the nucleus/chromatin and
proteasome clusters overlap in PCs 1 and 2 but are separated
along PC3. LOPIT-DC offers good reproducibility between
replicates with respect to protein yield per fraction (Supplemen-
tary Fig. 4, left) and subcellular resolution (Supplementary
Figs. 1a, 2a, 3).

Comparison with hyperLOPIT. We previously presented a
hyperLOPIT map of U-2 OS cells based on two replicates38. Here,
we extend this dataset with a third replicate for a thorough
comparison with LOPIT-DC. The U-2 OS hyperLOPIT experi-
ments required on average 2.8 × 108 cells each to obtain at least
70 µg protein in each fraction with the exception of the first 5–7
fractions which were pooled for further analysis (Supplementary
Fig. 4, right). As hyperLOPIT aims to achieve maximum overall
resolution a more involved TMT labelling strategy is required,
such that two TMT 10-plexes are used for each replicate to label
all density gradient fractions plus cytosol- and chromatin-
enriched samples50 (Fig. 1, Supplementary Data 1, 2). Due to
the large number of samples analysed during our hyperLOPIT
experiments, the amount of missing values which arose
throughout the analysis was higher compared to the LOPIT-DC
data and so the final combined hyperLOPIT dataset contains
fewer proteins; following quantitative LC-SPS-MS3 analysis of all
three hyperLOPIT replicates we identified 9558 protein groups
which were reduced to 4883 after filtering and concatenating
replicates (Supplementary Table 3).

PCA of the hyperLOPIT dataset (Fig. 2b) reveals separation of
12 subcellular niches, as this method is able to resolve the
individual ribosome subunits as well as the chromatin and
nucleus clusters. We can generally class these subcellular niches
into four groups in the first two components: (1) cytosol and
proteasome, (2) nucleus, chromatin and ribosomes, (3) mito-
chondrion and peroxisome and (4) secretory pathway organelles
(lysosome, PM, ER and Golgi; Fig. 2b, Supplementary Fig. 2b).
The positions of these subcellular niches relative to one another in
the hyperLOPIT PCA plots are broadly similar to those of the
groups present in the LOPIT-DC data with two major exceptions.
Firstly, in the hyperLOPIT data, the peroxisome and mitochon-
drion are in close proximity in the first 5 PCs and do not separate
well until PC6 and PC8 (Fig. 2b, right) whereas these organelles
sit at opposite ends of PC2 in the LOPIT-DC dataset. This can be
explained by the fact that the peroxisome and mitochondrion
have similar densities but different size ranges (0.4–0.8 and
0.4–2.5 μM, respectively)67 and therefore are more easily
separated from each other by differential rather than density
gradient-based ultracentrifugation. Secondly, the proteasome and
cytosol are close together in the first 4 PCs in our hyperLOPIT
data whereas they are separated along PC1 in the LOPIT-DC
dataset. This is likely explained by subtle differences in the way
the cytosolic fraction is obtained in LOPIT-DC and hyperLOPIT.
In hyperLOPIT, soluble complexes including the proteasome
remain with the cytosolic proteins in the supernatant during the
crude membrane-cushioning step, whereas in LOPIT-DC the
proteasome and other macromolecular complexes are pelleted
during the final spin (120,000 × g) while the cytosolic proteins are
extracted from the final supernatant. Additionally, while
PC2 separates the secretory pathway organelles, mitochondrion
and peroxisome in both datasets, the cluster order is different. In
summary, both methods efficiently resolve all major subcellular
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niches but the protein profile relationships in each compartment
across the fractions are different due to the distinct fractionation
techniques employed in each workflow.

LOPIT-DC achieves high subcellular resolution. Having estab-
lished that LOPIT-DC is able to separate most major organelles,
we proceeded to a quantitative comparison with hyperLOPIT.
Firstly, we utilised QSep, a tool which quantifies the separation
between a pair of organelle marker sets by comparing the intra-
group and inter-group distances (see Methods and ref. 62), to
examine the resolution achieved by LOPIT-DC and hyperLOPIT
(Fig. 3). For all comparisons presented in this manuscript we used
the exact same subcellular marker list to analyse our two datasets.
These markers were grouped into 10 or 12 subcellular classes to
define the LOPIT-DC or hyperLOPIT data, respectively, with the
ribosome 40S and ribosome 60S hyperLOPIT groups merged into
one ribosome class for the LOPIT-DC dataset and, similarly, the
nucleus and chromatin classes merged into a single nucleus/
chromatin group in the LOPIT-DC data. This is because, as seen
in Supplementary Fig. 5, the two ribosomal subunits are not well-
separated from each other by LOPIT-DC. The same is true
regarding the nucleus and chromatin clusters, with the latter
being justified by the fact that, in contrast to our hyperLOPIT
experiments, no separate chromatin-enriched fraction was added
to our LOPIT-DC analysis.

Within the LOPIT-DC dataset, the smallest QSep distances are
observed between the peroxisome/ER, ER/PM and lysosome/

mitochondrion pairs (Fig. 3a, left) in concordance with the
LOPIT-DC PCA plot (Fig. 2a, left) where these organelles are
positioned close together in PCA space, forming a continuum of
clusters. In turn, the largest normalised distances are those
between various organelles and the proteasome or ribosome, as
also reflected by the LOPIT-DC PCA plot where the ribosome
and proteasome are well-separated from the secretory pathway
organelles and mitochondrion along PCs 1 and 2 (Fig. 2a).
HyperLOPIT provides higher overall resolution compared to
LOPIT-DC (Fig. 3a, right, 3c) but, importantly, some organelle
pairs exhibit a higher QSep distance and the proteasome
and cytosol are notably more separated from the other
subcellular niches in the LOPIT-DC data (Fig. 3b). An
additional comparison between the LOPIT-DC and hyperLOPIT
data based on QSep distances when the LOPIT-DC dataset is
annotated with 12 organelle classes is presented in Supplementary
Fig. 6.

We next employed QSep to assess the overall subcellular
resolution of our LOPIT-DC and hyperLOPIT data compared to
publicly available spatial proteomics datasets. Having previously
demonstrated that hyperLOPIT provides excellent resolution62,
we extended this comparison to include LOPIT-DC and observed
that the U-2 OS LOPIT-DC dataset exhibits better subcellular
separation relative to all other datasets with the exception of our
U-2 OS hyperLOPIT data (Supplementary Fig. 7). This
demonstrates the high quality of both of our datasets and the
exceptionally high resolution achieved by LOPIT-DC.
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LOPIT-DC and hyperLOPIT yield similar classifications. After
comparing our LOPIT-DC and hyperLOPIT datasets regarding
subcellular resolution at the marker level, we expanded our
characterisation to the level of protein localisation prediction. To
classify each unlabelled protein to a unique subcellular location,
we performed support vector machine (SVM)-based supervised
machine learning using 10 organelle classes for the LOPIT-DC
dataset and 12 for the hyperLOPIT data. As a first step in
assessing classifier performance we examined the macro
F1 scores (harmonic mean of precision and recall)64 obtained
after SVM parameter optimisation for each dataset, whereby a
score of 1 indicates that the marker proteins are consistently
assigned to the correct subcellular location by the algorithm64.
The median macro F1 scores (acquired during SVM parameter
optimisation iterations) were close to 1 for both datasets,

indicating that both LOPIT methods were able to correctly
classify the subcellular markers with high generalisation accuracy
(Fig. 4c).

Figure 4a, b show the U-2 OS LOPIT-DC and hyperLOPIT
datasets, respectively, after SVM-based protein subcellular loca-
tion classification followed by 5% FDR filtering. More
proteins were assigned to a unique location in the LOPIT-DC
data compared to the hyperLOPIT dataset but the proportion of
classified proteins was slightly higher in the hyperLOPIT
data (42%) as opposed to the LOPIT-DC dataset (35%)
(Supplementary Table 4). We proceeded to a comparison between
the SVM classifications obtained for the two datasets to
explore the level of agreement achieved by our two distinct
workflows and potential method-specific biases towards parti-
cular subcellular niches.
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We find 4162 proteins in common between the U-2 OS
LOPIT-DC and hyperLOPIT datasets (including the 579 sub-
cellular markers). Figure 4d provides an overview of the
classification of these proteins to the classes used for SVM-

based protein localisation assignment including organelle markers
(1771 proteins) and Fig. 4e depicts an overview of the
classification excluding markers (1192 proteins). The majority
of the chromatin and nucleus as well as the ribosome 40S and
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ribosome 60S hyperLOPIT classifications were assigned to the
nucleus/chromatin and ribosome niches, respectively, by LOPIT-
DC. Importantly, only 16/1192 (1.3%) proteins classified in both
datasets were assigned to different locations by LOPIT-DC and
hyperLOPIT (Fig. 4d). Instead, the majority of classification
disparities between our LOPIT-DC and hyperLOPIT data
stem from cases where a protein was assigned to a unique
subcellular niche in one dataset but remained unlabelled in the
other; we provide a detailed analysis of the LOPIT-DC and
hyperLOPIT unclassified proteomes in a later section. Finally, an
additional assignment overlap overview for our two datasets
including proteins which remained unlabelled and those that
were present in one dataset but not the other is presented in
Supplementary Fig. 8.

For most subcellular niches, the proteins classified by LOPIT-
DC were also assigned to the same compartment by hyperLOPIT:
ER, Golgi, lysosome, mitochondrion and peroxisome (100%
agreement), nucleus/chromatin and PM (99%), cytosol (97%).
The agreement was slightly lower for the ribosome, in which case
14/19 proteins were classified to either the 40S or 60S ribosome
subunit by hyperLOPIT with the remaining proteins assigned to
the nucleus (Fig. 4e). Finally, the overlap was lower for the
proteasome, in which case only 1/3 proteins were also classified to
the same subcellular niche by hyperLOPIT. Again, the remaining
proteins were assigned to the nucleus in the hyperLOPIT dataset.
This discrepancy suggests that, in rare instances, hyperLOPIT
classifies proteins to the nucleus when they may belong to
cytoplasmic complexes.

To further explore any potential biases in the protein
localisation classifications, we projected the assignments of one
LOPIT dataset onto the PCA of the other and vice versa. Plotting
the LOPIT-DC classifications upon the hyperLOPIT PCA
projections we see that the former form very similar clusters to
those observed using the original hyperLOPIT assignments
(Fig. 4f). However, the cytosol classifications spread slightly over
the proteasome and nucleus clusters, matching our observation
that 3% of the LOPIT-DC cytosol assignments are classified to the
proteasome or nucleus by hyperLOPIT. Plotting the hyperLOPIT
assignments upon the LOPIT-DC PCA projections we again
observe similar clusters to the original, with the exception of the
nucleus classifications which in this case seem more dispersed
(Fig. 4g). Overall, the predictions obtained using LOPIT-DC are
very similar to those acquired using hyperLOPIT (98.7%
identical), with minor disagreements mainly involving proteins
classified to the nucleus by hyperLOPIT.

Transfer learning showcases the merit of method integration.
Transfer learning can be used for the meaningful integration of
heterogeneous data sources in order to improve overall protein
subcellular location classification68. The transfer learning
approach is based on the integration of a primary experimental
spatial proteomics dataset and an auxiliary dataset and results in
higher generalisation accuracy than standard supervised machine
learning workflows using a single information source68. We have
previously shown that transfer learning is particularly useful for
organelle classes not optimally resolved in the primary experi-
mental data. We reasoned that the different biochemical frac-
tionation approaches employed by LOPIT-DC and hyperLOPIT
would convey individual strengths to each method such that
combining the two approaches will yield the most accurate
classification. Since the above analyses indicated that hyperLOPIT
achieved higher overall resolution than LOPIT-DC, we used the
hyperLOPIT data as the primary information source and the
LOPIT-DC dataset as the auxiliary data. Fig. 5 (right) shows the
distribution of the class-specific weights selected over 100 test

partitions of the transfer learning algorithm applied to the two
datasets. These weights, one per organelle class, determine the
proportion of primary and secondary data to be used for learning
and range between 0 and 168. A weight of 1 implies that all weight
is given to the primary data source, meaning that the final result
relies exclusively on the primary experimental dataset and ignores
the auxiliary data source provided and vice versa for a weight of 0.
A weight of 0.5 implies that both data sources are equally used
during learning and so contribute equally to the final result. It is
apparent that the weight distributions obtained over the 100
iterations performed on our two datasets reflect the resolution
achieved by hyperLOPIT and LOPIT-DC (Fig. 5, left), with the
distribution weights skewed towards 1 for 10/12 subcellular
compartments suggesting that these organelles should be pre-
dominantly classified using the hyperLOPIT data. The exceptions
to this are the cytosol, which was assigned a best weight of 0 in
78% of iterations, and the proteasome, which was assigned a best
weight of 0 or 0.5 in 85% of iterations. This indicates that the
LOPIT-DC data should be predominantly used to classify pro-
teins to these compartments, reflecting the overlapping distribu-
tions exhibited by the cytosol and proteasome in the hyperLOPIT
dataset and, in turn, their excellent separation from each other
and all other organelles in the LOPIT-DC data. Finally, the macro
F1 scores obtained after weight optimisation demonstrate that
including the LOPIT-DC data in the classification leads to an
increase in classifier prediction accuracy relative to the case of
using the hyperLOPIT dataset alone (Fig. 5, right). In conclusion,
these findings highlight the merit of integrating our two spatial
proteomics methods to achieve optimal classification of proteins
to organelles.

More than half of the proteome is in multiple locations. Sixty-
five percent of proteins remained unclassified in the LOPIT-DC
data after SVM-based subcellular location prediction and sub-
sequent 5% FDR filtering. This compares to 58% for the hyper-
LOPIT dataset. There are multiple explanations for proteins
remaining unclassified, including that they: (1) reside in more
than one subcellular compartment, (2) associate with dynamic
components, (3) actively traffic between different subcellular
locations, (4) belong to subcellular structures for which no known
markers were included in the analysis and/or (5) were inaccu-
rately quantified across the fractions leading to erroneous clas-
sification. To explore the above possibilities, we performed
further exploratory analyses of the LOPIT-DC and hyperLOPIT
unclassified proteomes.

As an initial assessment of the subcellular distribution of our
unclassified proteins we utilised the immunofluorescence-based,
U-2 OS cell-specific protein subcellular localisation information
available as part of the Cell Atlas database38. The clearest over-
represented Cell Atlas localisation for both the LOPIT-DC and
hyperLOPIT unassigned proteins is the cytosol (Fig. 6a). This is
expected, as many known translocators are soluble cytosolic
proteins capable of trafficking to different subcellular compart-
ments to exert their function(s)69.

Notably, the unassigned proteins in both datasets show a clear
under-representation for proteins localised to the mitochondria,
indicating that mitochondrial proteins are more likely to be
classified. This may be because mitochondrial proteins, having a
specific import signal sequence, are more definitively localised to
the mitochondria and therefore less likely to migrate to other
subcellular compartments.

To gain additional insights into the multilocalising proteome
captured by our two distinct workflows, we next performed
functional Gene Ontology (GO)70 term enrichment analysis on
the proteins which remained unassigned in the LOPIT-DC and

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08191-w

8 NATURE COMMUNICATIONS |          (2019) 10:331 | https://doi.org/10.1038/s41467-018-08191-w | www.nature.com/naturecommunications

www.nature.com/naturecommunications


hyperLOPIT data. These proteins are enriched with GO terms
related to the cytosol/cytoplasm, endomembrane system and
vesicle-mediated transport (Fig. 6b, c), therefore supporting our
Cell Atlas-related observations according to which the LOPIT-
DC and hyperLOPIT unclassified proteins are enriched in
translocators.

LOPIT-DC achieves suborganellar and isoform resolution.
Once we confirmed that LOPIT-DC achieves high resolution at
the level of whole organelles and explored the multilocalising
proteome captured by this method, we proceeded to examine
whether this technique can additionally resolve suborganellar
structures. As demonstrated in Fig. 7a, LOPIT-DC resolves sub-
organellar compartments with superb agreement with hyperLO-
PIT. For example, proteins that belong to the ER lumen, ER
membrane and cis-Golgi display distinct profiles and ERGIC-cis
Golgi markers are situated between the ER and Golgi clusters in
both the LOPIT-DC and hyperLOPIT PCA plots (Fig. 7a). We
also looked at structures that are difficult to resolve in bio-
chemical fractionation-based spatial proteomics experiments and
which were not part of our classification marker set, such as the
actin cytoskeleton. As expected due to the broad connectivity of
cytoskeletal components with most subcellular structures, actin-
binding proteins are mainly distributed to the unassigned area of
both LOPIT PCA plots (Supplementary Fig. 9).

We next sought to investigate the location of large protein
complexes. The majority of complexes we examined are localised
to discrete positions in an organelle and exhibit identical
distributions in the two LOPIT datasets (Fig. 7b, Supplementary
Fig. 10). For example, in both the LOPIT-DC and hyperLOPIT
datasets, the SUMO-activating enzyme and COP9 signalosome
complexes are co-localised within the cytosolic cluster, the signal
peptidase and OST (N-oligosaccharyl transferase) complexes are
both situated in the ER cluster, the snRNPs and Origin
Recognition Complex (ORC) are both positioned within the
nuclear cluster and the ATP synthase complex is located within
the mitochondrial cluster, indicating that LOPIT-DC is able to

resolve organellar substructures including macromolecular com-
plexes. Additionally, we present U-2 OS cell-specific subcellular
localisation information, taken from the Cell Atlas database,
corresponding to individual members of four of the protein
complexes (ATP synthase, OST, ORC and snRNPs) illustrated in
Fig. 7b (Supplementary Fig. 11). Notably, the vast majority (15/17
proteins examined) of these annotations agree with the localisa-
tion of these proteins in our LOPIT data. Interestingly, in the rare
cases where there is disagreement between the LOPIT and Cell
Atlas localisations (in the cases of UniProt accessions P46977 and
P62316), we find that these specific annotations are classed as
uncertain in the Cell Atlas database. This is in support of the
observation by Thul et al.38 that the agreement between
hyperLOPIT- and Cell Atlas-based subcellular localisation
assignments varies for the different reliability tiers of the Human
Protein Atlas project.

We also observe that the majority of the individual signalling
pathway constituents we examined are found in the same
subcellular niche in the two LOPIT datasets. Since our
experiments were performed using an osteosarcoma cell line,
we explored pathways which play critical roles in cancer
(Supplementary Figs. 12–18). For example, we identified 10
components of the p53 signalling pathway which controls DNA
replication and cell division and has been implicated in many
cancers71. As exhibited in Fig. 7c, 3/10 p53 signalling proteins
were classified to the same organelle in both LOPIT datasets (PM,
mitochondrion or nucleus), three were only classified in one
dataset but are positioned close to the same organelle in the PCA
plot of the other dataset and four remained unclassified by
both LOPIT workflows but are situated close to the same
subcellular niche in the PCA plots of both the LOPIT-DC and
hyperLOPIT data.

Finally, we also explored the distribution of individual protein
isoforms in our two LOPIT datasets. As seen in Supplementary
Fig. 19, we could identify six examples where two different
isoforms of a protein were detected in both the LOPIT-DC and
hyperLOPIT data. In every case, the isoforms are mapped to the
same subcellular niche in both datasets. Intriguingly, the
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canonical isoform of MAP4 (Microtubule-Associated Protein 4;
P27816–1) was classified to the nucleus by both LOPIT
approaches, in agreement with its published role in the
coordination of spindle orientation72. In contrast, MAP4 isoform
4 (P27816–4) remained unclassified but is situated at the border
between the nuclear and ribosomal clusters in the PCA plots of
both datasets. UniProt further identifies this protein as part of the
cytoskeleton, cytosol, PM and extracellular or secretory vesicles.
Our data indicate that MAP4 localisation is likely isoform-specific
and thus these isoforms might perform different microtubule-
related functions.

Discussion
The hyperLOPIT workflow is a well-established method to gen-
erate proteome-wide, high-resolution maps of protein subcellular

localisation50 and has been applied to the study of several dif-
ferent biological systems41–46,48–50. The U-2 OS hyperLOPIT
dataset presented here is the largest human (hyper)LOPIT dataset
reported thus far and the most highly resolved MS-based human
subcellular map published to date (Supplementary Fig. 7).
However, hyperLOPIT can be time-consuming and labour- and
resource-intensive. In this manuscript, we have demonstrated
that retaining most elements of the hyperLOPIT protocol but
replacing the density gradient with differential centrifugation
addresses these issues, achieving a near-hyperLOPIT level of
resolution and protein subcellular localisation classification
results which strongly agree with those provided by hyperLOPIT.

We have provided a quantitative comparison between the
spatial resolution and protein subcellular localisation assignment
output achievable applying density gradient- or differential
centrifugation-based spatial proteomics methods to the same cell
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line and by the same laboratory. While density gradient-based cell
fractionation in hyperLOPIT achieves higher overall resolution,
differential centrifugation-based fractionation in LOPIT-DC
appears to resolve the cytosolic and proteasomal compartments
more effectively. In addition, LOPIT-DC provides much greater
separation between the mitochondrion and peroxisome com-
pared to hyperLOPIT. Notably, one of the major advantages of
the hyperLOPIT workflow is the extra layer of resolution pro-
vided by an additional chromatin preparation which enables
separation between chromatin-associated and other nucleoplasm
proteins. Whilst our version of LOPIT-DC does not include this
preparation and is therefore not expected to separate these pro-
teins, we nonetheless do observe a level of separation to a lesser
degree (Supplementary Fig. 5). Where further resolution of
chromatin-associated proteins or of any other additional sub-
cellular compartment is desirable, separate preparations can be

added to the LOPIT-DC protocol via the inclusion of an 11th
TMT label in the analysis.

In conclusion, both of our LOPIT workflows accomplish high
overall resolution. The choice regarding which one to use
depends on the biological question in mind as well as the amount
of starting material, time and resources available. Where
resources are not limited, hyperLOPIT provides the maximum
possible overall subcellular resolution but in cases of starting
material, time or financial constraints the simpler and quicker
LOPIT-DC protocol can offer a great all-in-one alternative. This
workflow may be more suitable for time-course experiments or
cases where sample processing speed is important to retain bio-
logical information. In addition, in situations where the focus of
the study is the mitochondrion, peroxisome, cytosol or protea-
some there might be an argument in favour of using LOPIT-DC
instead of (or in combination with) hyperLOPIT, due to the
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Fig. 7 Suborganellar structures, complexes and pathways in the LOPIT-DC and hyperLOPIT data. a ER-lumen, ER-membrane and ERGIC/cis-Golgi markers

plotted upon the LOPIT-DC and hyperLOPIT datasets with assigned proteins. b COP9 signalosome, snRNPs, ATP synthase, signal peptidase, SUMO-

activating enzyme, OST complex and Origin Recognition Complex plotted upon the LOPIT-DC and hyperLOPIT datasets with assigned proteins. c Ten

proteins involved in p53 signalling plotted upon the LOPIT-DC and hyperLOPIT datasets with assigned proteins
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efficient and complementary separation of these compartments
achieved by this workflow. As our findings demonstrate, both
methods yield reliable, comparable results and can be utilised in
the context of dynamic studies or for the mapping of features
such as post-translational modifications, protein interactions or
isoform-specific functions. Importantly, our U-2 OS LOPIT-DC
and hyperLOPIT data are the highest-resolution MS-based spatial
proteomics maps created using human cells to date; these datasets
provide a snapshot of the structural organisation of U-2 OS cells
and can serve as a reference for future studies on human protein
subcellular localisation and its relationship to protein function.

Methods
Cell culture. The U-2 OS human osteosarcoma cell line (RRID: CVCL_0042) was a
generous gift from Emma Lundberg (SciLifeLab Stockholm and School of Bio-
technology, KTH). Cells were grown at 37 °C and 5% CO2 in McCoy’s 5A medium
(Sigma) supplemented with sodium bicarbonate, 10% foetal bovine serum (Biosera)
and 1% GlutaMaxTM (Life Technologies), without antibiotics.

Sample preparation. LOPIT-DC utilises the same cell lysis approach as hyper-
LOPIT which involves a gentle isotonic lysis buffer that keeps the organelles as
intact as possible while the cells are lysed in a ball-bearing cell homogeniser. This
step shows excellent reproducibility and can be optimised for a variety of cell or
tissue types (http://www.isobiotec.com/cell-type.html). The cell lysis stage is
important in both LOPIT-DC and hyperLOPIT as inefficient lysis results in sub-
optimal organelle recovery which leads to low protein yields during later steps,
reducing overall efficiency. For LOPIT-DC, inefficient lysis would also mean
generation of large microsomal particles which would sediment during the initial
centrifugation steps.

U-2 OS cells were harvested by trypsinisation, washed with PBS (pH 7.4) three
times and resuspended in a gentle lysis buffer (0.25 M sucrose, 10 mM HEPES pH
7.4, 2 mM EDTA, 2 mM magnesium acetate, protease inhibitors). They were then
lysed in a ball-bearing homogeniser (isobiotec) using a pair of 1 mL syringes. Each
mL of the cell suspension was passed through the homogeniser chamber 15 times
and a 12 μm ball-bearing clearance size was used. In the case of hyperLOPIT, the
combined cell lysate was then treated with 500 U of the nuclease Benzonase
(Sigma-Aldrich) for 20 min at room temperature and for a further 10 min at 4 °C in
order for its viscosity to be reduced. All lysates were spun three times at 200 × g,
5 min, 4 °C to remove any unlysed cells.

For hyperLOPIT, a chromatin extraction step was performed in parallel using
approximately 5–15 million cells (10–20% of the total number of cells used per
experiment). In detail, the cells were pelleted at 200 × g, 5 min, 4 °C and
resuspended in 5 mL of chromatin buffer A (10 mM HEPES pH 7.9, 10 mM KCl,
1.5 mM MgCl2, 340 mM sucrose, 10% (v/v) glycerol, 1 mM DTT, protease
inhibitors). Triton X-100 was added to the cell suspension to a total concentration
of 0.1% (v/v). The cell suspension was then gently mixed by inversion and left on
ice for 8 min. Next, the sample was centrifuged at 1300 × g, 5 min, 4 °C. The
supernatant was discarded and the crude nuclear pellet resuspended in another
5 mL of chromatin buffer A and centrifuged again at 1300 × g, 5 min, 4 °C. This
crude nuclear fraction was lysed by adding 5 mL of chromatin buffer B (3 mM
EDTA, 0.2 mM EGTA, 1 mM DTT, protease inhibitors), gently mixing by
inversion and incubating the sample on ice for 30 min. Next, the sample was
centrifuged at 1700 × g, 5 min, 4 °C, the supernatant discarded and the pellet
resuspended in a further 5 mL of chromatin buffer B. The washed pellet was
centrifuged again at 1700 × g, 5 min, 4 °C, the supernatant discarded and the pellet
stored at −80 °C.

HyperLOPIT subcellular fractionation. Samples for hyperLOPIT were fractio-
nated using an iodixanol density gradient38,63. In detail, a cell lysate from
approximately 280 million cells per average experiment was first separated into a
cytosol-enriched and a crude membrane fraction using 6 and 25% (w/v) iodixanol-
containing solutions and centrifugation at 100,000 × g, 90 min, 4 °C in an Optima
L-80 XP Beckman ultracentrifuge and a SW55Ti rotor (maximum acceleration,
minimum deceleration). The supernatant was stored and the membrane fractions
situated at the interface of the iodixanol layers collected, diluted 5-fold with lysis
buffer and centrifuged at 200,000 × g, 60 min, 4 °C using the same ultracentrifuge
and rotor in order to remove any residual cytosolic contamination. The mem-
branes were then resuspended in 25% (w/v) iodixanol, gently homogenised using a
1-mL Dounce homogeniser (Wheaton), underlaid beneath a linear gradient of 8%,
12%, 16 and 18% (w/v) iodixanol solutions and fractionated by centrifugation at
100,000 × g, 8 h, 4 °C using a VTi65.1 fixed-angle vertical rotor (replicate 1) or an
NVT65 fixed-angle near-vertical rotor (replicates 2 and 3) with maximum accel-
eration and minimum deceleration. After ultracentrifugation, approximately
22 0.5-mL fractions were collected using an Auto Densi-Flow peristaltic pump
fraction collector with a meniscus tracking probe (Labconco). These subcellular
fractions were diluted with lysis buffer, centrifuged four times at 100,000 × g, 1 h,
4 °C using an Optima MAX-XP Beckman benchtop ultracentrifuge and a TLA-55

rotor in order to allow the membranes to pellet out of the iodixanol and stored at
−80 °C. During all the above steps, the samples were kept on ice at all times in
order to avoid membrane degradation.

The cytosol-enriched supernatant was precipitated with five volumes of cold
acetone overnight at −20 °C. The obtained precipitated pellet and membrane
pellets were resolubilised using 8 M urea, 0.2% SDS, 50 mM HEPES pH 8.5 and
sonication. The fractions were centrifuged (16,000 × g, 10 min, 4 °C) to remove any
insoluble material. Protein concentration was measured using the BCA protein
assay kit (Thermo Fisher Scientific) according to the manufacturer’s instructions.

Sixty to seventy micrograms of protein per fraction were reduced with a final
concentration of 2.5 mM TCEP (Tris(2-carboxyethyl)phosphine) for 1 h at room
temperature and alkylated with a final concentration of 5 mM MMTS (Methyl
methanethiosulfonate) for 1 h at room temperature. The samples were then diluted
10-fold with 50 mM HEPES pH 8.5 (at this point it was ensured that the pH of each
sample was >8) and digested with sequencing-grade trypsin (Promega) at an
enzyme/protein ratio of 1/40 for 1 h at 37 °C. A second trypsinisation step was
performed overnight (no longer than 16 h) at 37 °C and at the same enzyme/
protein ratio. The next day, the trypsin digests were briefly centrifuged (16,000 × g,
10 min, 4 °C) to remove any insoluble material and subsequently reduced to
dryness in a refrigerated vacuum centrifuge with a cold trap (Labconco). Each
sample was then resuspended in 100 μL of 50 mM HEPES pH 8.5 (at this point it
was ensured that the pH of each sample was >8), centrifuged at 16,000 × g, 10 min,
4 °C to remove any insoluble material and labelled with TMT isobaric tagging
reagents (Thermo Fisher Scientific). More specifically, the TMT tags were
equilibrated to room temperature and each resuspended in 85 μL of LC-MS-grade
acetonitrile. For our hyperLOPIT samples, the tags from a TMT 10-plex kit were
split in half (essentially rendering the labelling scheme a 20-plex experiment) and
used to label all the membrane fractions (some were pooled to ensure adequate
protein amounts) as well as the cytosol-enriched and chromatin-enriched samples
for 2 h at room temperature, on a shaking platform. The labelling reaction was
quenched by adding 8 μL of 5% (w/v) hydroxylamine (which was prepared in
100 mM HEPES pH 8.5) to every sample followed by a 30-min incubation at room
temperature and on a shaker, and a further 100 μL of deionised water followed by a
1-h incubation at 4 °C. After labelling and quenching, peptides were pooled into
10-plexes and reduced to dryness by vacuum centrifugation. Three TMT 10-plex
kits were used to label three biological replicates.

The combined, TMT-labelled samples were then cleaned using C18 SepPak
cartridges (Waters) to remove salts and other substances which could interfere with
downstream peptide processing. In detail, each sample was resuspended in
approximately 5 mL of 0.1% (v/v) TFA (Trifluoroacetic acid; prepared in HPLC-
grade water) and the pH of the solution adjusted to <3. The C18 SepPak cartridges
were equilibrated using 2 mL of 100% (v/v) acetonitrile followed by 2 mL of
70% (v/v) acetonitrile and 0.05% (v/v) acetic acid (in HPLC-grade water), 2 mL of
0.05% (v/v) acetic acid (in HPLC-grade water) and 4 mL of 0.1% (v/v) TFA. The
TMT-labelled peptides were slowly loaded onto the cartridges and the columns
washed with 4 mL of 0.1% (v/v) TFA followed by 4 mL of 0.05% (v/v) acetic acid.
The peptides were eluted from the cartridges using 2 mL of the 70% (v/v)
acetonitrile+ 0.05% (v/v) acetic acid solution and subsequently reduced to dryness
by vacuum centrifugation.

The samples were then fractionated using high-pH reverse phase
chromatography. In detail, the TMT-labelled peptide samples were resuspended in
100 μL of 20 mM ammonium formate pH 10 (Buffer A) and the pH of the solution
was adjusted so that it be >9. The total volume of each sample was injected onto
an Acquity UPLC BEH C18 column (2.1-mm i.d. × 150-mm; 1.7-μm particle size)
on an Acquity UPLC System with a diode array detector (Waters) and the peptides
were eluted from the column using a linear gradient of 4–60% (v/v) acetonitrile in
20 mM ammonium formate pH 10 over 50 min and at a 0.244 mL/min flow rate
(with a total run time of 75 min). The gradient was set up as follows: 0 min–95%
Buffer A–5% Buffer B (20 mM ammonium formate pH 10+ 80% (v/v)
acetonitrile), 10 min–95% Buffer A–5% Buffer B, 60 min–25% Buffer A–75% Buffer
B, 62 min–0% Buffer A–100% Buffer B, 67.5 min–0% Buffer A–100% Buffer B,
67.6 min–95% Buffer A–5% Buffer B. Approximately 40–50 1-min fractions,
representing peak peptide elution, were collected since the moment that the
peptides began to elute and were reduced to dryness by vacuum centrifugation
shortly thereafter. For downstream MS analysis, the fractions corresponding to
each TMT 10-plex set were orthogonally combined into 18–22 samples by
combining pairs of fractions which eluted at different time points during the
gradient.

LOPIT-DC subcellular fractionation. Samples for LOPIT-DC were fractionated
using differential centrifugation (Supplementary Table 2). Importantly, among the
novel aspects of the LOPIT-DC workflow is the extended centrifugation scheme
aiming to increase the number of fractions across which to determine correlation
profiles and hence improve resolution and the ability to capture all subcellular
niches in a single experiment. A cell lysate from approximately 70 million cells per
average experiment was separated into 10 fractions using the Eppendorf 5804 R for
the first centrifugation step and the OptimaTM MAX-XP Beckman benchtop
ultracentrifuge with the TLA-55 rotor for the rest. All pellets and the last super-
natant were stored at −80 °C.
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The final supernatant was precipitated with five volumes of cold acetone
overnight at −20 °C. The obtained precipitated pellet and membrane pellets were
resolubilised in 8M urea, 0.15% SDS and 50 mM HEPES pH 8.5. Protein
concentration was measured using the BCA protein assay according to the
manufacturer’s instructions.

Fifty micrograms of protein per fraction were reduced, alkylated, digested and
TMT-labelled in exactly the same manner as for the hyperLOPIT experiments
described above. One TMT 10-plex kit was used to label all the membrane and
cytosol-enriched fractions in three biological replicates.

After labelling, peptides were pooled into 10-plexes, cleaned with C18 SepPak
cartridges and fractionated using high-pH reverse phase chromatography as
described above for our hyperLOPIT experiments. The resulting fractions
corresponding to each TMT 10-plex set were orthogonally combined into
18 samples for downstream MS analysis.

SPS-MS3 on the Orbitrap Fusion Lumos. All MS runs were performed on an
Orbitrap FusionTM LumosTM TribridTM instrument coupled to a Dionex Ulti-
mateTM 3000 RSLCnano system (Thermo Fisher Scientific).

Briefly, each of the fractionated samples was resuspended in 30 μL of 0.1% (v/v)
formic acid. Approximately 1 μg of peptides was loaded per injection for LC-MS/
MS analysis.

The nano-flow liquid chromatography method for LC-MS/MS was set as
follows: Solvent A was 0.1% (v/v) formic acid. Solvent B was 80% (v/v) acetonitrile
+ 0.1% (v/v) formic acid. Loading solvent was 0.1% (v/v) formic acid. Peptides
were loaded onto a micro precolumn (300-μm i.d. x 5 mm, particles were C18
PepMap 100, 5-μm particle size, 100-Å pore size, Thermo Fisher Scientific) using
the loading pump for 3 min. After this, the valve was switched from load to inject.
Peptides were separated on a Proxeon EASY-Spray column (PepMap RSLC C18,
50-cm × 75-μm i.d., 2-μm particle size, 100-Å pore size, Thermo Fisher Scientific)
using a 2–40% (v/v) gradient of acetonitrile+ 0.1% (v/v) formic acid at 300 nL/min
over 93 min. A wash step (90% solvent B for 5 min) was included, followed by re-
equilibration. The total run time was 120 min.

The MS workflow parameters were set as follows using the Method Editor in
XCalibur v3.0.63 (Thermo Fisher Scientific) for the SPS-MS3 acquisition method:

Detector type: Orbitrap—Resolution: 120,000—Mass range: Normal—Use
quadrupole isolation: Yes—Scan range: 380–1,500—RF lens: 30%—AGC target:
4e5—Max inject time: 50 ms—Microscans: 1—Data type: Profile—Polarity:
Positive—Monoisotopic peak determination: Peptide—Relax restrictions when too
few precursors are found: Yes—Include charge state(s): 2–7—Exclude after n times:
1—Exclusion duration (s): 70—Mass tolerance (p.p.m.): Low: 10; high: 10—
Exclude isotopes: Yes—Perform dependent scan on single charge state per
precursor only: Yes—Intensity threshold: 5.0e3—Data-dependent mode: Top speed
—Number of scan event types: 1—Scan event type 1: No condition—MSn level: 2—
Isolation mode: Quadrupole—Isolation window (m/z): 0.7—Activation type: CID
—CID collision energy (%): 35—Activation Q: 0.25—Detector type: Ion trap—Scan
range mode: Auto—m/z: Normal—Ion trap scan rate: Turbo—AGC target: 1.0e4—
Max inject time (ms): 50—Microscans: 1—Data type: Centroid—Mass range:
400–1200—Exclusion mass width: m/z: Low: 18; high: 5—Reagent: TMT—
Precursor priority: Most intense—Scan event type 1: No condition—Synchronous
precursor selection: Yes—Number of precursors: 10—MS isolation window: 0.7—
Activation type: HCD—HCD collision energy (%): 65—Detector type: Orbitrap—
Scan range mode: Define m/z range—Orbitrap resolution: 60,000—Scan range (m/
z): 100–500—AGC target: 1.0e5—Max inject time (ms): 120—Microscans: 1—Data
type: Profile; AGC, automatic gain control; HCD, higher-energy collisional
dissociation; CID, collision-induced dissociation.

An electrospray voltage of 2.1 kV was applied to the eluent via the electrode of
the EASY-Spray column. The mass spectrometer was operated in positive ion data-
dependent mode for SPS-MS3. The total run time was 120 min.

Raw data processing and quantification. Raw files from both the LOPIT-DC and
hyperLOPIT experiments were processed the same way with Proteome Discoverer
v1.4 (Thermo Fisher Scientific) using the Mascot server v2.3.02 (Matrix Science).
The SwissProt sequence database for Homo sapiens (canonical and isoform,
42,118 sequences, downloaded on 04/11/2016) was used along with common
contaminants from the common Repository of Adventitious Proteins (cRAP) v1.0
(48 sequences, adapted from the Global Proteome Machine repository, https://
www.thegpm.org/crap/). Precursor and fragment mass tolerances were set to
10 ppm and 0.6 Da, respectively. Trypsin was set as the enzyme of choice and a
maximum of 2 missed cleavages were allowed. Static modifications were: methyl-
thio (C), TMT6plex (N-term) and TMT6plex (K). Dynamic modifications were:
oxidation (M) and deamidated (NQ). Percolator was used to assess the false dis-
covery rate (FDR) and only high-confidence peptides were retained. Additional
data reduction filters were: peptide rank= 1 and ion score >20.

Quantification at the MS3 level was performed within the Proteome Discoverer
workflow using the centroid sum method and an integration tolerance of 2 mmu.
Isotope impurity correction factors were applied. Each raw peptide-spectrum
match (PSM) reporter intensity was then divided by the sum of all intensities for
that PSM (sum normalisation). Protein grouping was carried out according to the
minimum parsimony principle and the median of all sum-normalised PSM ratios
belonging to each protein group was calculated as the protein group quantitation

value. Only proteins with a full reporter ion series were retained. Additionally,
three of the 60 TMT channels present in the final hyperLOPIT dataset possessed
extremely low ion intensity profiles and were excluded from downstream data
analysis to minimise background noise in the data. Finally, proteins identified as
cRAP were also removed for downstream analysis.

SVM-based prediction of protein localisation. Data analysis was performed
using the R73 Bioconductor74 packages MSnbase v2.6.175 and pRoloc v1.21.933 as
described in64. Briefly, 579 manually curated marker proteins were used to define
12 subcellular locations: cytosol, proteasome, nucleus, chromatin, ribosome 40S,
ribosome 60S, peroxisome, mitochondrion, lysosome, Golgi apparatus, plasma
membrane (PM) and endoplasmic reticulum (ER) (Supplementary Data 1, 2).
These markers were chosen based on information gleaned from UniProt and the
literature. Care was taken not to choose markers based on previous hyperLOPIT
studies on U-2 OS cells in case this gave rise to self-prophesying subcellular
locations. These constitute our core organelle markers, proteins known to localise
to one specific subcellular niche. Supervised machine learning using a support
vector machine (SVM) classifier with a radial basis function kernel was employed
in order to predict the localisation of unlabelled proteins. For the LOPIT-DC data,
classification was performed using 10 marker classes, in which case the pairs
nucleus/chromatin and ribosome 40S/ribosome 60S were merged to form single
classes. Following the protocol in63, one hundred rounds of fivefold cross-
validation were employed (creating five stratified test/train partitions) to estimate
algorithmic performance. This protocol features an additional round of cross-
validation on each training partition to optimise the free parameters of the SVM,
sigma and cost, via a grid search. Based on the best F1 score (the harmonic mean of
precision and recall), the best sigma and cost for the hyperLOPIT dataset were 0.01
and 8, respectively. The best sigma and cost for the LOPIT-DC data were 0.01 and
16, respectively. All proteins assigned to a specific subcellular niche by SVM-based
classification were ordered according to their SVM scores and a threshold was set
to achieve a 5% FDR based on agreement with the UniProt and Gene Ontology
databases as well as the literature.

Data integration by transfer learning. To show the complementary nature of the
hyperLOPIT and LOPIT-DC methods at predicting subcellular location, we
applied a transfer learning algorithm68. The transfer learning method allows one to
integrate heterogeneous datasets (a primary and an auxiliary dataset) for optimal
classification. Following the protocol described in ref. 68, the hyperLOPIT dataset
was used as the primary source and the LOPIT-DC as the auxiliary source. Labelled
marker proteins common in both datasets were extracted and the hyperLOPIT and
LOPIT-DC quantitative protein profiles were used as input to the k-nearest
neighbour transfer learning (knntl) algorithm. Three different experiments were
conducted: (1) using the hyperLOPIT data only, (2) using the LOPIT-DC data only
and finally (3) using both hyperLOPIT and LOPIT-DC data. As per the SVM
classifier, one hundred rounds of fivefold cross-validation were used to estimate the
optimal number of nearest neighbours for the k-nearest neighbour (k-NN) clas-
sifier. These were 5 and 5 for the hyperLOPIT and LOPIT-DC datasets, respec-
tively. In the k-NN transfer learning framework we also need to estimate the
parameter theta which is a vector of weights (one per organelle) used to control the
amount of primary (hyperLOPIT) and auxiliary (LOPIT-DC) data to use in clas-
sification. We tested all weight combinations of 0, 0.5 and 1 for each organelle class
and performed 100 iterations of cross-validation to determine the optimal theta
weight for each organelle based on the F1 score. The median theta weight was
(0, 0.75, 0.5, 0.5, 1, 1, 0.5, 0.5, 0.5, 0.5, 1, 1) for the cytosol, ER, Golgi, lysosome,
mitochondrion, nucleus, chromatin, peroxisome, PM, proteasome, ribosome 40S
and ribosome 60S, respectively.

QSep analysis. The QSep function which is available as part of the pRoloc R
package33 was used to quantify the resolution of the LOPIT-DC and hyperLOPIT
datasets. QSep calculates cluster separation by comparing the average Euclidean
distances within and between subcellular clusters. These distances always refer to
one specific organelle marker cluster and the distances within clusters are usually
smaller than the ones between clusters, except in cases of overlapping subcellular
niches. To enable reliable comparison of such distances within a single experiment
but also across different studies, QSep further divides each value by the reference
within-cluster average distance (for more details see ref. 62). The resulting distance
value is informative of how much the average distance between two clusters is
greater than the average distance within a cluster, the reference within-cluster
distance here being a measure of how compact a cluster is. The resolution metric
used by QSep is not influenced by the number of classes used for its computation
and performs consistently well when provided with different organelle marker
annotation. However, subcellular marker definition does affect the resolution
assessment scoring, with low quality marker lists yielding suboptimal results62.

GO term enrichment analysis. GO over-representation analysis for the unclas-
sified proteins was conducted using the R package goseq76. This package was
originally developed to account for the relationship between the probability of a
differentially expressed gene in RNA-seq experiments and the length of the gene by
calculating a probability weight function to estimate the relationship between gene
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length and P(differential expression) and then approximating a null distribution
for the number of genes expected to be differentially expressed from a given set
(e.g. GO term) based on their length alone. An empirical p-value is derived by
comparing the number of observed genes to the null expectation. The package
allows this approach to be generalised to any observation and any confounding
factor. We used protein abundance (derived from77 taking the maximum abun-
dance recorded across the replicates) and confirmed that more abundant proteins
are more likely to be detected in the LOPIT experiments. Proteins not present in
the above reference dataset were excluded from the analysis. Resultant p-values
were adjusted to account for multiple testing using the Benjamini-Hochberg FDR
procedure78. GO-terms with adjusted p-value <0.01 and at least five proteins were
considered significantly over-represented. Over-representation values shown in
figures are not adjusted for protein abundance.

Plotting of biological feature subcellular localisation. All signalling and meta-
bolic pathways presented in this manuscript were plotted according to information
available in the KEGG PATHWAY database79.

Code availability. No custom code was used to generate, test or process the data
described herein. Peptide spectrum matching and quantification to protein-level
abundances were performed in Proteome Discoverer v1.4 (Thermo Fisher Scien-
tific) using the Mascot server v2.3.02 (Matrix Science) as described in the Raw data
processing and quantification section. Protein localisation analyses were performed
using the freely and openly available R Bioconductor packages MSnbase v2.6.175

and pRoloc v1.21.933 as described in the SVM-based prediction of protein locali-
sation, Data integration by transfer learning and QSep analysis sections in the
Methods. Step-by-step tutorials which describe each data analysis stage in detail are
also documented with each R package as part of the open-source, open-
development Bioconductor project74 and additional coding examples are available
in the Data Analysis section of ref. 63.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All protein-level datasets generated during this study are available in the R
Bioconductor pRolocdata package (version >= 1.19.4) and can be viewed
interactively via the pRolocGUI application (version 1.17.0) or directly online
through the dedicated R Shiny apps at https://proteome.shinyapps.io/lopitdc-
u2os2018 and https://proteome.shinyapps.io/hyperlopit-u2os2018. All proteomics
data have been deposited to the ProteomeXchange Consortium via the PRIDE80

partner repository with the dataset identifier PXD011254 (https://www.ebi.ac.uk/
pride/archive/projects/PXD011254). A reporting summary for this Article is
available as a Supplementary Information file. All other data supporting the
findings of this study are available from the corresponding authors on reasonable
request.
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