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Time series forecasting is essential for various engineering applications in �nance, geology, and information technology, etc.
Long Short-Term Memory (LSTM) networks are nowadays gaining renewed interest and they are replacing many practical
implementations of the time series forecasting systems. �is paper presents a novel LSTM ensemble forecasting algorithm that
e	ectively combines multiple forecast (prediction) results from a set of individual LSTM networks. �e main advantages of our
LSTM ensemble method over other state-of-the-art ensemble techniques are summarized as follows: (1) we develop a novel way
of dynamically adjusting the combining weights that are used for combining multiple LSTM models to produce the composite
prediction output; for this, ourmethod is devised for updating combining weights at each time step in an adaptive and recursiveway
by using both past prediction errors and forgetting weight factor; (2) our method is capable of well capturing nonlinear statistical
properties in the time series, which considerably improves the forecasting accuracy; (3) ourmethod is straightforward to implement
and computationally e�cient when it comes to runtime performance because it does not require the complex optimization in the
process of �nding combining weights. Comparative experiments demonstrate that our proposed LSTM ensemble method achieves
state-of-the-art forecasting performance on four real-life time series datasets publicly available.

1. Introduction

Time series is a set of values wherein all values of one index
are arranged in chronological order. �e objective of time
series forecasting is to estimate the next value of a sequence,
given a number of previously observed values. To this end,
forecast (prediction) models are needed to predict the future
based on historical data [1]. �e traditional mathematical
(statistical) models, such as Least Square Regression (LSR)
[2], Autoregressive Moving Average [3–5], and Neural Net-
works [6], were widely used and reported in literature for
their utility in practical time series forecasting.

Time series forecasting has fundamental importance in
numerous practical engineering �elds such as energy, �nance,
geology, and information technology [7–12]. For instance,
forecasting of electricity consumption is of great importance
in deregulated electricity markets for all of the stakeholders:
energy wholesalers, traders, retailers, and consumers [10].

�e ability to accurately forecast the future electricity con-
sumption will allow them to perform e	ective planning and
e�cient operations, leading to ultimate �nancial pro�ts for
them. Moreover, energy-related time series forecasting plays
an important role in the planning and working of the power
grid system [7, 8]; for instance, accurate and stablewind speed
forecast has primary importance in the wind power industry
and make an in�uence on power-system management and
the stability of market economics [11].

However, the time series forecasting in the aforemen-
tioned applications is an inherently challenging problem due
to the characteristics of dynamicity and nonstationarity [1,
6, 13, 14]. Additionally, any data volatility leads to increased
forecasting instability. To overcome the above challenges,
there is a growing consensus that ensemble forecasting [3–
6, 13, 14], i.e., forecasting model combination, has advantage
over using a single individual model in terms of enhanc-
ing forecasting accuracy. �e most common approach of
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Figure 1: Overall framework of the proposed LSTM ensemble method for the purpose of time series forecasting.

ensemble forecasting is simple averaging that assigns equal
weights to all forecasting component models [3–5]. �e sim-
ple averaging approach is sensitive to extreme values (i.e., out-
liers) and unreliable for skewed distributions [6, 14]. To cope
with this limitation, weighted combination schemes have
been proposed.�e authors in [2] proposed the Least Square
Regression (LSR) that attempts to �nd the optimal weights
by minimizing the Sum of Squared Error (SSE). �e authors
in [15] adopted the Average of In-sample Weights (AIW)
schemewhere each weight is simply computed as the normal-
ized inverse absolute forecasting error of an individual model
[16].�e authors in [6] developed a so-called Neural Network
Based Linear Ensemble (NNLE) method that determines the
combining weights through a neural network structure.

Recently, a class of mathematical models, called Recur-
rent Neural Networks (RNNs) [17], are nowadays gaining
renew interest among researchers and they are replacing
many kinds of practical implementation of the forecasting
systems, previously based on statistical models [1]. In par-
ticular, Long Short-TermMemory (LSTM) networks—which
are a variation of RNN—have proven to be one of the most
powerful RNN models for time series forecasting and other
related applications [1, 15]. �e LSTM networks can be con-
structed in such a way that they are able to remember long-
term relationships in the data. �e LSTM networks have been
shown to model temporal sequences and their long-range
dependencies more accurately than original RNNmodel [1].
However, despite the recent popularity of the LSTM net-
works, their applicability in the context of ensemble forecast-
ing has not been investigated yet. Hence, to our knowledge,
how to best combine multiple forecast results of individual
LSTMmodels still remains a challenging and open question.

In this paper, we present a novel LSTM ensemble forecast-
ingmethod for improved time series forecasting, which e	ec-
tively combines multiple forecasts (predictions)(throughout

the remainder of this paper, both terms of “forecast” and
“prediction” will be used interchangeably) inferred from the
di	erent and diverse LSTM models. Especially, we develop a
novel way of dynamically adjusting the so-called combining
weights that are used for combining multiple LSTM models
to produce the composite prediction output. �e main idea
of our proposed method is to update combining weights
at each time step in an adaptive and recursive way. For
this, the weights can be determined by using both past
prediction errors (measured up to the current time step)
and forgetting weight factor. �e weights are assigned to
individual LSTM models, which improve the forecasting
accuracy to a large extent. �e overall framework of our
proposed method is illustrated in Figure 1. Results show
that the proposed LSTM ensemble achieves state-of-the-art
forecasting performance on real-world time series dataset
publicly available and it is considerably better than other
recently developed ensemble forecasting methods as it will be
shown in Section 4.

�e rest of this paper is organized as follows. Section 2
describes our proposed approach for building an ensemble
of LSTMs that is well-suited for use in time series forecasting.
�en, we discuss how to �nd combining weights for the
purpose of adaptively combining LSTM models. Section 4
presents and discusses our comparative experimental results.
Finally, the conclusion is given in Section 5.

2. Building LSTM Ensemble for
Time Series Forecasting

In the proposed method, an ensemble of LSTM networks
should be �rst constructed in an e	ective way of maximizing
a complementary e	ect during the combination of multiple
LSTM forecast results, aiming to improve forecasting accu-
racy. Before explaining our LSTM ensemble construction,
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we present a brief review on LSTM network for the sake of
completeness as follows. LSTM networks and their variants
have been successfully applied to time series forecasting [1].
LSTM networks are applied on sequential data as input,
which without loss of generality means data samples that
change over time. Input into LSTM networks involves a
so-called sequence length parameter (i.e., the number of
time steps) that is de�ned by the sample values over a
�nite time window [19]. �us, sequence length is how we
represent the change in the input vector over time; this is
the time series aspect to the input data. �e architecture
of LSTM networks is generally composed of units called
memory blocks. �e memory block contains memory cells
and three controlling gates, i.e., input gate, forget gate, and
output gate. �e memory cell is designed for preserving
the knowledge of previous step with self-connections that
can store (remember) the temporal state of the network
while the gates control the update and �ow direction of
information.

For time series prediction of the input ��, the LSTM
updates the memory cell �� and outputs a hidden state ℎ�
according to the following calculations, which are performed
at each time step �. �e below equations give the full
mechanism for a modern LSTM with forget gates [15]:

�� = � (W���� +Wℎ���−1 + 	�) ,
�� = � (W���� +Wℎ���−1 + 	�) ,
�� = � (W���� +Wℎ���−1 + 	�) ,
�� = �� ⊗ ��−1 + �� ⊗ � (W���� +Wℎ�ℎ�−1 + 	�) ,
ℎ� = �� ⊗ � (��) .

(1)

In (1), W	
 denotes the weight of the connection from gate� and gate n, and 	
 is bias parameter to learn, where� ∈ {�, ℎ} and � ∈ {�, �, �, �}. In addition, ⊗ represents the
element-wise multiplication (Hadamard product), � stands
for the standard logistic sigmoid function, and � denotes the
tanh function: �(�) = 1/(1 + �−�) and �(�) = (�� − �−�)/(�� +�−�).�e input, forget, and output gates are denoted by ��, ��,
and ��, respectively, while �� represents the internal state of the
memory cell � at time �. �e value of the hidden layer of the
LSTM at time � is the vector ℎ�, while ℎ�−1 is the values output
by each memory cell in the hidden layer at the previous time.

�e underlying mechanism behind LSTM model (used
for building our LSTM ensemble) mainly comes from the
“gate” components (shown in (1)) that are designed for
learning when to let prediction error in, and when to let it
out. As such, LSTM gates provide an e	ective mechanism in
terms of quickly modifying the memory content of the cells
and the internal dynamics in a cooperative way [20, 21]. In
this sense, the LSTM may have a superior ability to learn
nonlinear statistical dependencies of real-world time series
data in comparison to conventional forecasting models.

In the proposed ensemble forecasting method, each of the
individual LSTM networks is used as “base (component) pre-
dictor model” [6]. Note that ensemble forecasting approach
can be generally e	ective when there is considerable extent of

diversities among individual base models, namely, ensemble
members, [6, 13, 14]. In light of this fact, we vary the LSTM
model parameter [15], namely, sequence length, to increase
diversity among individual LSTM networks as ensemble
members. For this, we learn on each LSTM network for a
particular sequence length. Underlying idea for using di	erent
sequence length parameters is to inject diversity during
the generation of individual LSTM models. �is approach
may be bene�cial for e	ectively modelling highly nonlin-
ear statistical dependencies, since using multiple sequence
length values allows for creating multiple LSTMmodels with
various number of memory cells, which is likely to provide
complementary e	ect on learning the internal dynamics and
characteristics of time series data to be predicted. In this way,
an ensemble of LSTM models with varying sequence length
is capable of handling the dynamics and nonstationarities of
real-world time series.

Assuming that a total of� LSTMmodels in an ensemble
are provided, their ensemble forecast result for time series,

denoted as (�(1), �(2) . . . , �(�)) with � observations, is given
by

�̂(�) = ∑
	=1

�	�̂(�)	 for � = 1, . . . , � (2)

where �̂(�)	 denotes the forecast output (at the �th time step)
obtained using the�th LSTMmodel and�	 is the associated
combining weight. In (2), each weight �	 is assigned to a
corresponding LSTM model’s forecast output. Note that 0 ≤�	 ≤ 1 and ∑	=1�	 = 1.
3. Finding Adaptive Weights for

Combining LSTM Models

An important factor that a	ects the forecasting performance
of our LSTM ensemble is a set of combining weights�	,� =1, . . . ,�. We develop a novel weight determination scheme
which accounts for capturing the time varying dynamics of
the underlying time series in an adaptive manner.

We now describe the details of our weight determination
solution, which has been developed based on the following
property: if the regression errors of individual estimators
are uncorrelated and zero mean, their weighted averaging
(shown in (2)) has minimum variance when the weights
are inversely proportional to variances of the estimators
[22]. �is property provides the theoretical foundation for
developing our weight determination solution; for details
on this proof, please refer to the Appendix section. �e
combining weights are computed in the following recursive
way:

�(�+1)	 = �(�)	 + �Δ�(�)	 for � = 1, . . . ,� (3)

where we suggest � = 0.3.Note that Δ�(�)	 is computed based
on the inverse prediction error of the respective LSTM base
model as follows:

Δ�(�)	 = 1/ (�)	1/ (1)	 + 1/ (2)	 + ⋅ ⋅ ⋅ + 1/ (�)	 (4)
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Table 1: Description of the four di	erent time series datasets [18] used in our experimentation.

Time Series Type Total size Training size Validation size Testing size

River �ow Stationary, nonseasonal 600 360 90 150

Vehicles Nonstationary, nonseasonal 252 151 38 63

Wine Monthly seasonal 187 112 29 46

Airline Monthly seasonal 144 86 22 36

�e  (�)	 is related to past prediction error measured up to the�th time step in the following way:

 (�)	 = �∑
�=�−V+1

"�−��(�)	 (5)

where 0 < " ≤ 1, 1 ≤ V ≤ � and �(�)	 is the prediction
error at each time step � of the �th LSTM model. In (5), (�)	 is calculated by de�ning a sliding time window formed
by the last V prediction errors. Herein, the forgetting factor" is devised for reducing the in�uence of old prediction
errors. By performing weight update in time as described in
(3), we can �nd the weights by analyzing intrinsic patterns
in successive data forecasting trials; this would be bene�-
cial for coping with nonstationary properties in the time
series or avoiding complex optimization for �nding adaptive
weights.

Using (3), (4), and (5), the weights are updated over
time series with # time steps (� = 1, . . . , #), leading to the

�nal weights �(�)	 (� = 1, . . . ,�). Finally, the weight to be
assigned to each LSTMmodel in an ensemble is computed as
follows:

�	 = �(�)	∑
=1�(�)
 for � = 1, . . . ,� (6)

Note that the weights computed using (6) satisfy the con-

straints such that 0 ≤ �	 ≤ 1 and ∑	=1�	 = 1.
4. Experimentation

4.1. Experimental Setup and Condition. �e proposed LSTM
ensemble method was implemented using TensorFlow [23]
andwas trainedwith the stochastic gradient descent (SGD).A
total of ten LSTM base models (i.e., ensemble members) were
used to build our LSTM ensemble. For each LSTM network,
we used one hidden layer and the same number of memory
cells as in the assigned sequence length value (e.g., LSTMwith
sequence length “5” has �ve memory cells). We set the " and
V parameters [shown in (5)] as 0.85 and 4, respectively. Also,

the initial value of �(�)	 in (3) was set to zero.
We tested our proposed LSTM ensemble on four discrete

time series datasets (please refer to Table 1), namely, “River
�ow”, “Vehicles”, “Wine”, and “Airline” representing real-
world phenomena which are publicly available at the Time
SeriesData Library (TSDL) [18]. For each time series, we used
around 60% as training dataset, the successive 15% as vali-
dation dataset, and the remaining 25% as test dataset. Note
that validation dataset was used for �nding the combining

Table 2: Demonstrating e	ectiveness of our proposed LSTM
ensemble on improving forecasting performance. (a) MAE and (b)
MSE.

(a)

Time series Mean ± Std.
Best individual

LSTM
Proposed LSTM

ensemble

River Flow 0.67 ± 0.05 0.64 0.53

Vehicles 2.55 ± 0.32 2.22 1.85

Wine 1.27 ± 0.29 1.09 0.94

Airline 8.22 ± 1.81 6.43 5.58

(b)

Time series Mean ± Std.
Best individual

LSTM
Proposed LSTM

ensemble

River Flow 1.31 ± 0.24 1.10 0.88

Vehicles 8.35 ± 1.97 6.25 4.45

Wine 9.63 ± 3.18 6.78 3.65

Airline 92.90 ± 15.83 81.73 64.11

Note: Mean±Std. indicates the average and standard deviation of MAE (or
MSE) measures computed over all of the individual LSTM base models in
an ensemble.

weights and all the results reported here were obtained using
test dataset.

In our experimental study, we used the following two
error measures used to evaluate the forecasting accuracy,
namely, mean absolute error (MAE) and the mean square
error (MSE) [1, 6], as follows:

MAE = ∑��=1 $$$$$�(�) − �̂(�)$$$$$� (7)

MSE = ∑��=1 (�(�) − �̂(�))2
� (8)

where �(�) and �̂(�) are the target and forecast values
(outcomes), respectively, of time series with a total of �
observations. Both MAE and MSE performances of the
forecasting algorithms considered were computed based on
one-step-ahead forecasts as suggested in [1, 6, 13].

4.2. Experimental Results

4.2.1. E�ectiveness of the Proposed LSTM Ensemble Forecast-
ing. �e results in Table 2 demonstrate the e	ectiveness of
our LSTM ensemble algorithm on improving forecasting
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Figure 2: Time series forecasts of (a) Airline, (b) River �ow, (c) Vehicles, and (d) Wine, obtained using our proposed LSTM ensemble
forecasting algorithm.

performance (in terms of both MAE and MSE) against the
case of using only a single individual LSTM base model. We
can see that our LSTM ensemble greatly outperforms all the
individual LSTM base models in an ensemble. To support
this, compared to the best individual LSTMmodel, prediction
error “MSE” can be signi�cantly reduced using our ensemble
method of up to about 22%, 29%, 46%, and 21% for respective
“River �ow”, “Vehicles”, “Wine”, and “Airline” time series.
Likewise, for using MAE, prediction errors can be reduced
as much as 16%, 16%, 14%, and 13% in the same order of
the aforementioned time series by using the proposed LSTM
ensemble method.

Figure 2 depicts the actual and predicted time series
obtained using our LSTM ensemble forecasting method. It
is seen that, in each plot, the closeness between the actual
observations and their forecasts is clearly evident. �e results
shown in Table 2 and Figure 2 con�rm the advantage of
our proposed LSTM ensemble method for notably improving
forecasting accuracy compared to the approach of using a
single individual LSTM network.

4.2.2. Comparison with Other State-of-the-Art Ensemble
Forecasting Methods. We compared our proposed method
with other state-of-the-art ensemble forecasting algorithms
including simple averaging (Avg.) [3–5], Median [15], Least
Square Regression (LSR) [2], Average of In-sample Weights

(AIW) [16], and Neural Network Based Linear Ensemble
(NNLE) [6]. Table 3 presents comparative results. Note
that all the results for comparison were directly cited from
corresponding papers recently published (for details, please
refer to [6]). In Table 3, the proposed LSTM ensemble
achieves the lowest prediction errors, namely, the highest
prediction accuracy for both MAE and MSE measures.
In particular, from Table 3, it is obvious that our LSTM
ensemble approach can achieve the best performance for
challenging time series “Airline” and “Vehicles”, each of
which is composed of nonstationary and quite irregular
patterns (movements).

To further guarantee stable and robust comparison with
other ensemble forecasting methods, we calculate the so-
called their worth values [1, 6]. Note that the worth values
are computed as the average percentage reductions in the
forecasting errors of the worst one of all ensemble forecasting
methods (under consideration) over all four time series
datasets used. �is measure shows the extent to which an
ensemble forecasting method performs better than the worst
ensemble and, hence, represents the overall “goodness” of
the ensemble forecasting method. Let us denote by “error�,�”
the forecasting error (calculated via MAE or MSE) obtained
for the %th ensemble method for the �th time series and by
“max error�” the maximum (or worst) error obtained by a
particular method for the �th time series at hand.�en, worth
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Table 3: Comparison with other state-of-the-art ensemble forecasting methods. (a) MAE and (b) MSE.

(a)

Time series
Ensemble forecasting methods

Avg.[3–5] Median[15] LSR[2] AIW[16] NNLE[6] Proposed

River Flow 0.751 0.676 0.736 0.749 0.638 0.536

Vehicles 2.087 2.139 2.059 2.071 2.001 1.851

Wine 2.075 2.173 2.466 2.372 1.923 0.937

Airline 11.63 11.73 10.68 10.22 7.434 5.582
(b)

Time series
Ensemble forecasting methods

Avg.[3–5] Median[15] LSR[2] AIW[16] NNLE[6] Proposed

River Flow 1.158 1.138 1.245 1.156 0.978 0.881

Vehicles 6.188 6.683 7.508 6.175 5.531 4.452

Wine 9.233 10.05 10.07 9.204 7.524 3.653

Airline 181.4 176.5 158.3 143.1 86.63 64.112

Note: Bold values denote the best results of forecasting each time series.

Table 4: Comparison of the worth values obtained for di	erent
ensemble forecasting methods.

Methods
Worth values (%)

MAE MSE

Avg. [3–5] 4.7848 8.2202

Median [15] 5.4671 5.6206

LSR [2] 3.6722 3.1835

AIW [16] 5.0325 13.6540

NNLE [6] 20.0354 31.3260

Proposed LSTM Ensemble 39.1271 49.5803

value, denoted as worth�, for the %th ensemble forecasting
method is de�ned as follows:

worth� = 1&
�∑
�=1

[(max error� − error�,�

max error�
) × 100]
for % = 1, . . . ;

(9)

where & and ; are the total number of time series datasets
and ensemble forecasting methods, respectively, used in our
experiments. In (9), worth� measures the percentage error
reduction of the %th ensemble method, compared to the worst
method. �e worth values of all the ensemble methods for
both MAE and MSE error measures are listed in Table 4.
From this table, it can be seen that the proposed LSTM
ensemble method achieves the best worth values, which are
about 39% and 49% for MAE and MSE, respectively. �is
result indicates that, for four di	erent time series, our LSTM
ensemble forecasting method can provide around 39% and
49% more accurate results than a worst ensemble method in
terms of MAE andMSE, respectively. �e comparison results
inTables 3 and 4 validate the feasibility of our proposed LSTM
ensemble method with regard to improving state-of-the-art
forecasting performance.

4.2.3. E�ect of LSTM Ensemble Size on Forecasting Accuracy.
In the proposedmethod, the size of LSTM network ensemble
(i.e., the number of LSTM models within an ensemble) is
one of the important factors for determining the forecasting
accuracy. In this subsection, we discuss experimental results
by investigating the impact of our LSTM ensemble size on
forecasting accuracy.

Figures 3(a) and 3(b) show the training and testing fore-
casting accuracy (in terms of MAE and MSE, respectively)
with respect to di	erent number of ensemble members for
the “Wine” dataset. We can see that training forecasting
accuracy for both MAE and MSE continues to increase as
the size of LSTM ensemble becomes large and quickly levels
o	. Considering testing forecasting accuracy, it seems to
generally improve as the size of ensemble increases up to
a particular number and repeat increasing and decreasing,
and �nally converges to nearly the same constant value. It
can be also observed that, in Figure 3, testing forecasting
accuracy for both datasets is the best when the number
of ensemble members is around 10. �e above-mentioned
observations indicate that larger LSTM ensemble size does
not always guarantee improved (generalization [24]) fore-
casting accuracy. Moreover, the least number of ensemble
members is more bene�cial for reducing the computational
costs required, especiallywhenour proposed LSTMensemble
is applied to forecast (predict) a large number of time series,
which is common in energy- and �nance-related forecasting
applications [7–9].

4.2.4. Runtime Performance. Furthermore, we assess the
runtime performance of our LSTM ensemble forecasting
framework using the “River �ow” dataset. Our hardware
con�guration comprises a 3.3-GHz CPU and a 64G RAM
with the NVidia Titan X GPU. It is found that the total
time needed to train a single LSTM model is about 2.9
minutes, while the training time required to build our
overall LSTM ensemble framework (for the case of ten
ensemble members) is about 28.3 minutes. However, it
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Figure 3: Impact of LSTM ensemble size in the proposed method on forecasting accuracy. (a) MAE and (b) MSE.

should be pointed out that the average time required to
forecast across all time points (steps) is as low as 0.003
seconds. It should be also noted that the time required
to construct our LSTM ensemble framework should not
be considered in the measurement of the execution times
because this process can be executed o�ine in real-life
forecasting applications. In light of this fact, the proposed
LSTM ensemble method can be feasible for practical engi-
neering applications by considering the balance between
forecasting accuracy, lower testing time, and straightforward
implementation.

5. Conclusions

We have proposed a novel LSTM ensemble forecasting
method.We have shown that our LSTM ensemble forecasting
approach is capable of well capturing the dynamic behavior
of real-world time series. Comparative experiments on the
four challenging time series indicate that the proposed
method achieves superior performance compared with other
popular forecasting algorithms. �is can be achieved by
developing a novel scheme that can adjust combining weights
based on time-dependent reasoning and self-adjustment.
It is also shown that our LSTM ensemble forecasting can
e	ectively model highly nonlinear statistical dependencies,
since their gating mechanisms enable quickly modifying
the memory content of the cells and the internal dynamics
in a cooperative way [20, 21]. In addition, our complexity
analysis demonstrates that our LSTM ensemble is able to
have a runtime which is competitive with the approach
to use only a single LSTM network. Consequently, our
proposed LSTM ensemble forecasting solution can be readily
applied in time series forecasting (prediction) problems,
both in terms of forecasting accuracy and fast runtime
performance.

Appendix

Weighted averaging de�ned in (2) obtains the combined

output �̂(�) by averaging the outputs �̂(�)	 , � = 1, . . . ,�,
of individual estimator models with di	erent weights. If we

de�ne prediction (or regression) error as �(�)	 = �̂(�)	 − �(�) for
each estimator, �̂(�) can be expressed as

�̂(�) = ∑
	=1

�	�̂(�)	 = �(�) + ∑
	=1

�	�(�)	 (A.1)

where the weights satisfy the constraint that �	 ≥ 0 and∑	=1�	 = 1. �e mean square error (MSE) of combined

output �̂(�) with respect to the target value �(�) can be written
as follows [22]:

MSE [�̂(�)] = ∑
	=1

∑

=1

�	�
A	
 (A.2)

where A	
 stands for the symmetric covariance matrix

de�ned by A	
 = E[�(�)	 �(�)
 ]. Our goal is to �nd the optimal
weights that minimize the aforementioned MSE, which can
be solved by applying the Lagrangemultiplier as follows [22]:

BB� [∑

=1

�	�
A	
 − 2�( ∑
	=1

�	 − 1)] = 0. (A.3)

By imposing the constraint ∑	=1�	 = 1, we �nd that

�	 = ∑
=1 A−1	
∑�=1∑
=1 A−1�
 . (A.4)
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Under the assumption that the errors �(�)	 are uncorrelated
and zero mean, i.e., A	
 = 0 ∀ � ̸= �, and the optimal �	
can be obtained [22]

�	 = �−2	∑
=1 �−2
 (A.5)

where �2	 = A		 = E[(�(�)	 )2]. �e result in (A.5) shows that
theweights should be inversely proportional to variances (i.e.,
errors) of the respective estimators. In other words, it means
that the weights should be in proportion to the prediction
(regression) performance of individual estimators.
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