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ABSTRACT

Context. Inversion techniques applied to the radiative transfer equation for polarized light are capable of inferring the physical param-
eters in the solar atmosphere (temperature T , magnetic field B, and line-of-sight velocity vlos) from observations of the Stokes vector
(i.e., spectropolarimetric observations) in spectral lines. Inferences are usually performed in the (x, y, τc) domain, where τc refers to
the optical-depth scale. Generally, their determination in the (x, y, z) volume is not possible due to the lack of a reliable estimation of
the gas pressure, particularly in regions of the solar surface harboring strong magnetic fields.
Aims. We aim to develop a new inversion code capable of reliably inferring the physical parameters in the (x, y, z) domain.
Methods. We combine, in a self-consistent way, an inverse solver for the radiative transfer equation (Firtez-DZ) with a solver for the
magneto-hydrostatic equilibrium, which derives realistic values of the gas pressure by taking the magnetic pressure and tension into
account.
Results. We test the correct behavior of the newly developed code with spectropolarimetric observations of two sunspots recorded
with the spectropolarimeter (SP) instrument on board the Hinode spacecraft, and we show how the physical parameters are inferred
in the (x, y, z) domain, with the Wilson depression of the sunspots arising as a natural consequence of the force balance. In particular,
our approach significantly improves upon previous determinations that were based on semiempirical models.
Conclusions. Our results open the door for the possibility of calculating reliable electric currents in three dimensions, j(x, y, z), in the
solar photosphere. Further consistency checks would include a comparison with other methods that have recently been proposed and
which achieve similar goals.
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1. Introduction

Inversion techniques applied to the radiative transfer equation
for polarized light are arguably the best tools at our disposal
for inferring the physical properties (temperature T , magnetic
field B, and line-of-sight velocity vlos) of the solar atmosphere
(Socas-Navarro 2001; del Toro Iniesta 2003a; Bellot Rubio et al.
2006; Ruiz Cobo et al. 2007; del Toro Iniesta & Ruiz Cobo
2016). Because the natural scale to describe how photons prop-
agate is the so-called optical depth (τ), the physical properties
are inferred in the (x, y, τc), where τc refers to the continuum
optical depth. Here “continuum” means any wavelength where
the absorption is only due to bound-free and free-free transitions
(Mihalas 1970, Sect. 4.4).

In order to infer the physical parameters in the (x, y, z)
domain, additional constraints must be invoked. By far, the
most widely used has been hydrostatic equilibrium. However,
this assumption is adequate only in regions where the mag-
netic field is force-free (i.e., Lorentz force ∝ j × B = 0) and
the plasma is stationary (i.e., no time dependence) and static
(i.e., no velocities). In many regions of the solar atmosphere,

notably in sunspots, the force-free assumption breaks down and
a different method must therefore be employed.

The first authors that attempted a more realistic treatment
were Martinez Pillet & Vazquez (1990, 1993), Solanki et al.
(1993). They all employed the theoretical model from Maltby
(1977), which considers an axially symmetric magnetic field
around the sunspot in order to account for the magnetic pressure
and tension. This approach had been used until recently (see e.g.,
Mathew et al. 2004), until the pioneering work of (Puschmann
et al. 2010, hereafter referred to as PUS2010), who presented
a new method based on the minimization of the Lorentz force
and ∇ · B in order to transform the physical parameters from
the (x, y, τc) domain into the (x, y, z) domain. Despite its impor-
tance, PUS2010 suffers a couple of drawbacks. The first is that
the minimization, based on a genetic algorithm, is very slow due
to the large number of free parameters and therefore can only
deal with relatively small regions. More important, however, is
the fact that the gas pressure is modified in the process of infer-
ring the physical parameters in the (x, y, z) domain, and therefore
the physical parameters are not able to provide the best possible
fit to the observed polarization signals.
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Fig. 1. Maps of the normalized continuum intensity, Ic/Ic,qs, for the two sunspots analyzed in this work. Left: NOAA AR 10923 observed on
November 14, 2006. Right: NOAA AR 10944 observed on February 28, 2007. At the time of the observations, both sunspots were located at disk
center. Regions marked with red symbols and solid blue lines will be studied in more detail later on.

The results from PUS2010 have sparked a new interest in
developing an inversion code for the radiative transfer equa-
tion that is capable of inferring the physical parameters in the
solar atmosphere in the geometrical (x, y, z) three-dimensional
domain. This has resulted in a number of new approaches, begin-
ning with adapting the PUS2010 method to minimize only ∇ · B
but in a much larger area (Löptien et al. 2018, 2020). Methods
that rely on magneto-hydrodynamic (MHD) simulations have
also been developed, with some using these simulations as train-
ing sets for artificial neural networks (Carroll & Kopf 2008) and
convolutional neural networks (Asensio Ramos & Díaz Baso
2019), while others employing them as a database of physical
parameters capable of fitting the observed polarization signals
(Riethmüller et al. 2017).

We have developed an alternative approach that is loosely
based on PUS2010. In Pastor Yabar et al. (2019), we pre-
sented an inversion code for the radiative transfer equation that
works directly in the (x, y, z) domain, and we showed that the
reliability of inferences in the z-scale depend upon the real-
ism of the gas pressure (Pg). In Borrero et al. (2019), we
presented a method that is based on the magneto-hydrostatic
(MHS) equilibrium instead of hydrostatic equilibrium and can
be used to infer very realistic values of Pg. In this article,
we come full circle and demonstrate how the approaches pre-
sented in the previous two papers can be combined to deter-
mine accurate physical parameters in the solar atmosphere in the
(x, y, z) domain, by applying our newly developed methods to
spectropolarimetric observations with high spatial and spectral
resolution.

2. Hinode/SP observations

The observations employed in this work correspond to spec-
tropolarimetric observations (i.e., Stokes vector �obs) of two
neutral iron (Fe I) spectral lines at 630 nm. The Stokes vector
possesses four components, � = (I,Q,U,V), where I refers to
the total intensity, Q and U to the linear polarization, and V to
the circular polarization (see Sect. 3.3 in del Toro Iniesta 2003b).

The observations were carried out with the spectropolarime-
ter (SP; Lites et al. 2001; Ichimoto et al. 2007) attached to the
Solar Optical Telescope (SOT; Suematsu et al. 2008; Tsuneta
et al. 2008; Shimizu et al. 2008) on board the Japanese satel-
lite Hinode (Kosugi et al. 2007). The spectral region contain-
ing the two aforementioned Fe i lines was measured across
Λ = 112 wavelength points with a wavelength sampling of about
21.5 mÅ. The atomic parameters for these spectral lines can be
found in Borrero et al. (2014) (see their Table 1). The SP is a
slit-spectrograph where a given region is scanned spatially. For
each slit position, the light is integrated for a total of 4.8 s, yield-
ing a noise level of σ = 10−3 in units of the quiet-Sun continuum
intensity. The spatial sampling along the slit and perpendicular
to it is about 0.16 arcsec (i.e., dx = dy = 120 km at disk center).

In this work, we analyze spectropolarimetric data from two
different sunspots: NOAA AR 10923 and NOAA AR 10944.
Both spots were observed very close to disk center µ ≈ 1.0, on
November 14, 2006 (at around 7:15 UT) and February 28, 2007
(at around 11:50 UT), respectively. Maps of the continuum inten-
sity Ic, normalized to the quiet-Sun continuum intensity Ic,qs, can
be seen in Fig. 1 for AR 10923 (left) and AR 10944 (right). The
analyzed maps possess the following horizontal dimensions (in
pixels): L = 645, M = 640 and L = 350, M = 300, respectively.

3. Methodology

3.1. Stokes inversion with Firtez-DZ

The Stokes inversion code employed in this work is Firtez-DZ
(Pastor Yabar et al. 2019). A graphical sketch of how Firtez-
DZ operates is presented in Fig. 2 and is highlighted in red
boxes. A more detailed description of this figure will be given
throughout this section. Firtez-DZ needs guesses of the physi-
cal parameters Ci j in the solar atmosphere as inputs. We refer
to these physical parameters with the super-indexes i, j, where
i-even indicates that we are currently inside the Stokes inversion
loop within Firtez-DZ, while i-odd implies that we are inside
the MHS module. Index j stands for the iteration number within
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Fig. 2. Flow chart indicating the inversion process of the radiative transfer equation (RTE) for polarized light (i.e., the Stokes inversion) combined
with MHS constraints. The black squares denote the acquisition of the observed Stokes vector �obs(x, y, λ) and the determination of an initial set of
physical parameters (T 00(x, y, z), B00(x, y, z)) with which we can start the inversion (i.e., a guess). The red squares indicate the inversion process
as carried out by the Firtez-DZ code. This is described in detail in Sect. 3.1. Blue squares correspond to the steps carried out by the MHS module
(see Sect. 3.3 for details). Finally, green squares and arrows indicate locations where an interplay between Firtez-DZ and the MHS module are
needed in order to assess if convergence and exit conditions are achieved (see Sect. 3.4 for more information).

either Firtez-DZ or the MHS module and is reset to j = 0 every
time the Stokes inversion and MHS modules communicate with
each other.

The aforementioned physical parameters Ci j stand for: tem-
perature (T i j), three components of the magnetic field (Bi j

x , B
i j
y ,

B
i j
z ), and the line-of-sight component of the velocity (vi j

los), all as
a function of the Cartesian1 coordinates (x, y, z). Besides these
physical parameters, Firtez-DZ needs the density ρi j and gas
pressure P

i j
g . The former can be obtained from the latter if the

temperature is known by using the equation of state:

ρi j =
u

Kb

µi jP
i j
g

T i j
, (1)

where u and Kb refer to the atomic unit mass and the Boltz-
mann constant, respectively: u = 1.6605 × 10−24 g and Kb =

1.3806 × 10−16 erg K−1. The mean molecular weight µ is a func-
tion of T and Pg, and its determination involves the iterative
computation of the Saha ionization equation and the Boltzmann
equation for the occupancy of the energy levels within an atom
(Mihalas 1970).

The question that remains is how to determine the gas pres-
sure P

i j
g at every j-step during the inversion process. At i = 0, the

1 In this paper we will always assume that the observer’s line-of-sight
is parallel to the gravity direction −z and therefore vlos = vz. This is
possible because the selected observations are very close to disk center
(µ ≈ 1; see Sect. 2).

MHS module has not yet been employed, so we need to rely on
hydrostatic equilibrium approximation along the vertical direc-
tion:

∂P
0 j
g

∂z
= −ρ0 jg, (2)

where g = 2.74 cm s−2 is the Sun’s gravitational acceleration.
The gas pressure is recalculated at every j-step during the Stokes
inversion as long as i = 0 (i.e., hydrostatic equilibrium). This is
indicated by the solid red arrow in Fig. 2. For i ≥ 1, the MHS
module (Sect. 3.3) already provides the gas pressure, and there-
fore we do not need to calculate it. Indeed, for i ≥ 1, Firtez-DZ
keeps Pg constant during the Stokes inversion (i.e., j-step; see
dashed red arrow in Fig. 2).

With all these ingredients, Firtez-DZ solves the radia-
tive transfer equation for polarized light in the z-scale (Landi
Degl’Innocenti & Landi Degl’Innocenti 1985) under the
assumption of local thermodynamic equilibrium and computes
the polarized spectrum (i.e., Stokes vector �i j) of atomic spec-
tral lines in the Zeeman regime as a function of wavelength and
horizontal grid position (x, y, λ). This Stokes vector is referred to
as a “synthetic” Stokes vector and is denoted as �syn

i j
(x, y, λ). The

four components of the Stokes vector (see Sect. 2) are generi-
cally referred to as Is,i j (Is=1 = I, Is=2 = Q, Is=3 = U, Is=4 = V).
The �syn

i j
(x, y, λ) is then compared to the observed Stokes vector
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Table 1. Summary of indexes employed in Sect. 3.

Index Phys.mag Ref. Step size

i-even, j-any χ2(�syn
i j
, �obs) Sect. 3.1; Eq. (3) na

i-odd, j-any χ2(zi j+1
w , z

i j
w) Sect. 3.3; Eq. (8) na

k = 1, . . . ,Λ = 112 � Sect. 2 21.5 mÅ
s = 1, . . . , 4 � Sect. 3.1 na
l = 1, . . . , L x Sect. 2 120 km
m = 1, . . . ,M y Sect. 2 120 km
n = 1, . . . ,N = 128 z Sect. 3.1 12 km

�
obs(x, y, λ) via a χ2-merit function:

χ2(�syn
i j
, �obs) =

1
4MLΛ − F

L∑

l=1

M∑

m=1

Λ∑

k=1

4∑

s=1

w2
s[Iobs

s (xl, ym, λk)

− I
syn
s,i j

(xl, ym, λk)]2 with i even, (3)

where the sum runs for all grid points on the horizontal plane
(x, y) (indexes l and m, respectively), for all observed wave-
lengths (index k) and for all four Stokes parameters (index
s). In order to help the reader keep track of all indexes, a
summary is provided in Table 1. In Eq. (3), F stands for the
total number of free parameters employed in the inversion (see
Table 2). The ws factors in Eq. (3) are used as weights during the
inversion of the radiative transfer equation (see Eq. (35) del Toro
Iniesta & Ruiz Cobo 2016), and χ2 is normalized such that a
value of χ2 < 1 indicates a good fit between �obs and �syn

i j
. In this

paper, the inversion is performed such that it gives three times
more weight to the linear polarization profiles Q and U than to
I: w2 = w3 = 3w1, and two times more weight to the circular
polarization V than to I: w4 = 2w1. The weight given to Stokes
I was taken as the inverse of the noise (see Sect. 2): w1 = 1/σ.

Analytical derivatives of χ2 with respect to the physical
parameters2 are calculated and fed into a Levenberg-Marquardt
(LM) algorithm (Press et al. 1986) that, along with the singu-
lar decomposition value (SVD) method (Golub & Kahan 1965),
provides the new physical parameters in the solar atmosphere
Ci j+1 as a function of (x, y, z); these new parameters produce a
better match between the synthetic and observed Stokes profiles:
χ2

i j+1 < χ
2
i j

. This process continues iteratively until the best pos-
sible match between the synthetic and observed Stokes vector is
found (i.e., χ2-minimization).

We will now assume that the minimization is achieved
after j = p iterations of the Stokes inversion process (i-even),
thus proving the physical parameters in the solar atmosphere,
[Cip, P

ip
g , ρ

ip], as a function of (x, y, z). If i = 0, Firtez-DZ pro-
vides only a “first estimation” of the physical parameters in the
solar atmosphere as a function of (x, y, z) because, as discussed in
Pastor Yabar et al. (2019), their reliability in the (x, y, z) domain
depends upon the accuracy of the gas pressure Pg(x, y, z), whose
inference is in turn hindered by the limitations of hydrostatic
equilibrium employed at i = 0. In order to improve the determi-
nation of Pg(x, y, z), all physical parameters (T ip, P

ip
g , ρip, B

ip
x ,

B
ip
y , B

ip
z , and v

ip
z ) are then passed onto the disambiguation mod-

ule (Sect. 3.2) and from there to the MHS module (Sect. 3.3).

2 These derivatives are ultimately written as a function of the deriva-
tives of the Stokes vector with respect to the physical parameters: the
so-called response functions (see Sect. 6 in del Toro Iniesta & Ruiz Cobo
2016).

Table 2. Summary of free parameters in Firtez-DZ (Sect. 3.1).

Ci j i = 0 i = 2 i = 4 i = 6

T 8 8 8 8
Bx 1 1 4 4
By 1 1 4 4
Bz 1 1 4 4
vz 1 1 4 4

With this, we increase the i-index by one (i is now odd), and,
since the MHS module has its own internal iteration that is inde-
pendent from the Stokes inversion, we also reset the j-index to
zero. This step is indicated by the green arrow in Fig. 2.

During the inversion process, the three-dimensional volume
is discretized in L, M, and N points along each of the three Carte-
sian coordinates, x, y, and z, respectively. The grid sizes are
denoted as dx, dy, and dz. In all our inversions, we discretized
the vertical direction with N = 128 grid points with a spacing of
dz = 12 km. The number of grid points on the horizontal plane,
L and M, depends on the actual size of the observed sunspots
(see Sect. 2). The horizontal spacing is always dx = dy =
120 km. A summary of these values is also included in Table 1.

We note that the inversion process performed by Firtez-DZ
is done in such a way that the complexity of the atmospheric
model along the vertical z-direction increases slowly. This means
that the number of free parameters that are determined, at every
j-step of the Stokes inversion process (i-even), also increases.
More details can be found in Pastor Yabar et al. (2019, see
Sect. 2.3). The number of free parameters employed in this paper
is indicated in Table 2.

We slightly modified the original implementation of Firtez-
DZ in order to avoid excessively modifying the temperature
outside the “sensitivity region”, which we denote as [τa, τb]
(τa > τb; see also Appendix A). To do so, temperature per-
turbations δT , calculated with the LM algorithm, are forced to
exponentially decay above τb:

δT (z) = δT (z[τi]) exp{−2(log τb − log τi)} if z < z(τb). (4)

Additionally, temperature perturbations for layers below τa are
set to be equal to those at the sensitivity region limit, namely:
δT (z) = δT (z[τa]) if z > z(τa).

3.2. Disambiguation module

Between the inversion of the radiative transfer equation
(Sect. 3.1; i-even) and the MHS module (Sect. 3.3; i-odd), there
is an intermediate step that refers to the resolution of the 180◦

ambiguity on the horizontal component of the magnetic field. As
already mentioned in Borrero et al. (2019) (Sect. 5), the inver-
sion of the radiative transfer equation provides the horizontal
component of the magnetic field (Bx, By) with an ambiguity of
180◦ (Metcalf 1994). This means that, at every point on the solar
surface (x, y), we could randomly exchange (Bx, By, Bz) with
(−Bx,−By, Bz) and the radiative transfer equation would yield
exactly the same solution: �syn(x, y, λ). If the magnetic field thus
inferred is fed into the MHS module (Sect. 3.3), we would solve
for a completely erroneous force balance as the electric currents
derived from such a magnetic field, j = (4π)−1c∇ × B, would be
completely unrealistic.

Therefore, we first must ensure that the aforementioned
ambiguity has been resolved. While there are many tools
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available to solve this issue (Metcalf et al. 2006), we decided
to employ the so-called non-potential field calculation method
(NPFC) from Georgoulis (2005). Since the NPFC method
works in a two-dimensional plane parallel to the solar surface
(i.e., fixed z), we solved the 180◦ ambiguity at the height z that
corresponds to the middle of the sensitivity region for the mag-
netic field z = z(̃τ), where τ̃ is defined in Eq. (A.2). This is where
it makes the most sense to solve the 180◦ ambiguity as it is the
region where the errors in the inference of B by Firtez-DZ are the
smallest. Elsewhere, we simply extrapolated the solution from
the NPFC method to all other z values.

3.3. Magneto-hydrostatic module

The MHS module receives the physical parameters from the dis-
ambiguation module. This is indicated by the green arrow in
Fig. 2. The MHS module is based on the approach presented
in Borrero et al. (2019). In that paper, we employed the “fish-
pack” library (Swarztrauber & Sweet 1975) to solve the follow-
ing equation, which represents the MHS equilibrium in the solar
atmosphere:

∇2Pg = −g
∂ρ

∂z
+

1
c
∇ · ( j × B) . (5)

In this paper, we employed the magnetic field inferred from
the inversion of the radiative transfer equation. This is not neces-
sarily consistent with the MHD equations and contains measure-
ment errors (see e.g., Wiegelmann & Inhester 2010). Therefore,
we solved a modified version of Eq. (5), namely

∇2(ln Pg) = −
gu

Kb

∂

∂z

(
µ

T

)
−

f (β)
cPg

[
4π‖ j‖2

c
+ ( j × B) · ∇(ln Pg)

]
.

(6)

The derivation of this equation is detailed in Appendix B.
Here we only need to mention that the factor f (β) is a func-
tion that aims at limiting the effect of the Lorentz force in those
regions of the solar atmosphere where the plasma-β, defined as
β = 8πPg/‖B‖

2, drops below a certain value β∗. We prescribe
f (β) as:

f (β) =
{

(β/β∗)2 if β ≤ β∗

1 if β > β∗ , (7)

where we adopt β∗ = 0.5. Using a first estimation of the gas pres-
sure Pi0

g (i-odd), we can solve for the left-hand side of Eq. (6)
as a Poisson-like equation and obtain a new gas pressure, Pi1

g ,
which is then inserted back into the right-hand side, and the pro-
cess continues until convergence. Each time a new gas pressure
is obtained, the conversion between z and the optical depth τc
changes even if the temperature is kept constant (see Appendix A
and Eq. (A.1)). Convergence is assessed by requiring that the
Wilson depression zw = z(τc = 1) does not vary, on aver-
age over the observed region, by more than half a vertical grid
point (dz/2) between two consecutive iterations. To this end, we
defined the following χ2-merit for the Wilson depression:

χ2(zi j+1
w , z

i j
w) =

1
LMdz2

L∑

l=1

M∑

m=1

[zi j+1(xl, ym, τc = 1)

− zi j(xl, ym, τc = 1)]2 with i − odd. (8)

With the previous conditions, convergence is achieved when-
ever χ2(zi j+1

w , z
i j
w) < 1/4. The iterations performed by the MHS

module are illustrated in Fig. 2 in blue boxes. We will now

assume that convergence occurs after j = q iterations, resulting
in a gas pressure P

iq
g with i-odd. The resulting physical param-

eters [Ciq

†
, P

iq
g , ρ

iq] are then sent back into the Stokes inversion
module by Firtez-DZ (Sect. 3.1). We then increase the i-index
by one, which thus becomes an even number, and again we reset
the j-index to zero. This is indicated by the blue arrow in Fig. 2.

It is important to note here that the physical parameters C†
that the MHS module sends back to the Firtez-DZ inversion code
(blue arrow in Fig. 2) are not exactly the same as the physi-
cal parameters C that the MHS module receives from Firtez-DZ
(green arrow in Fig. 2). This occurs because even though C and
C† are the same in the (x, y, z) domain, they might differ sig-
nificantly in the (x, y, τc) scale as the conversion between z and
τc is strongly dependent on the gas pressure and density (see
Eq. (A.1)).

Finally, it must be borne in mind that, in order to solve
Eq. (6), we need to establish a number of boundary conditions
for the gas pressure Pg on the left-hand side of this equation,
as well as for the magnetic field and temperature on the right-
hand side. The boundary conditions employed in this work are
detailed in Appendix C.

3.4. Iterating between Firtez-DZ and the MHS module

As mentioned in Sect. 3.1, the inversion code Firtez-DZ itera-
tively determines (i-even; see red boxes in Fig. 2) the temper-
ature, T , the vertical component of the velocity, vz, and three
components of the magnetic field, Bx, By, and Bz, in the three-
dimensional (x, y, z) domain. These physical parameters were
referred to as C. The gas pressure Pg was initially (i = 0) deter-
mined under hydrostatic equilibrium (Eq. (2)), while the den-
sity, ρ, is determined by applying the equation of state (Eq. (1)).
All these parameters (C, Pg, and ρ) are then passed through
the disambiguation module and onto the MHS module so as to
determine a more consistent gas pressure through the iterative
solution of Eq. (6) (i-odd; see blue boxes in Fig. 2).

At this point, at i = 0, or in other words before the
MHS module has been applied even once, we calculate the gas
pressure and density through hydrostatic equilibrium (Eq. (2)).
Because ρ depends on the temperature through Eq. (1), we need
to reevaluate Eq. (2) at every step of the j-index iteration (Firtez-
DZ). That is why in Fig. 2, after the temperature is modified,
T 0 j+1 = T 0 j + δT 0 j, we go back to Eq. (2) (see solid red arrow).
However, after the application of the MHS module (i ≥ 1), the
physical parameters are directly employed to solve the radia-
tive transfer equation inside Firtez-DZ (blue arrow in Fig. 2).
In fact, for i ≥ 1, the gas pressure is never modified by Firtez-
DZ and is kept to whatever values came from the MHS module
(dashed red arrow in Fig. 2; see also Sect. 3.1). The density, how-
ever, does change inside Firtez-DZ because the temperature is
being changed by the LM and SVD algorithms (LM+SVD box
in Fig. 2).

Finally, we note that, as mentioned in Sect. 3.3, the phys-
ical parameters Ci j

†
(z) that come out of the MHS module and

are fed back into the Firtez-DZ are in general different from
those inferred from the inversion code. Consequently, the out-
put physical parameters from the MHS module, Ciq (i-odd),
will not necessarily produce the same �syn as the output physi-
cal parameters Cip (i-even) from Firtez-DZ. As indicated by the
green if-statements in Fig. 2, Firtez-DZ verifies this by measur-
ing whether the physical parameters from the MHS module, Ciq,
can still produce a good fit to �obs. If they cannot, Firtez-DZ
resumes the inversion while keeping the gas pressure fixed at
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Fig. 3. Observed (black dots) and best-fit Stokes profiles (solid lines) after the application of the Firtez-DZ inversion code (i-even): i = 0 (orange),
i = 2 (green), i = 4 (red), and i = 6 (purple). The spatial location of these profiles corresponds to a quiet-Sun pixel (red diamond in the right-hand
panel of Fig. 1.) The intensity as a function of wavelength I(λ), normalized to the average quiet-Sun continuum intensity Ic,qs, in the two Fe I
lines at 630 nm is presented in the upper-left panel. The linear polarization profiles, Q(λ) and U(λ), are displayed in the upper-right and lower-left
panels, respectively. Finally, the circular polarization profile, V(λ), is shown in the lower-right panel.

Fig. 4. Same as Fig. 3 but for a pixel located in the penumbra (see the red triangle in the right-hand panel of Fig. 1).
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Fig. 5. Same as Fig. 3 but for a pixel located in the umbra (see the red square in the right-hand panel of Fig. 1).

P
iq
g (i-odd). On the other hand, if Ciq does indeed produce a good

fit to �obs, we can consider that we have achieved convergence in
both Firtez-DZ and the MHS module, and we therefore exit the
process.

4. Fits to observed data

As mentioned in Sect. 1, one of the limitations in PUS2010 was
that the resulting synthetic Stokes profiles, �syn(x, y, λ), did not
provide the best possible fit to the observed ones, �obs(x, y, λ).
This was more a matter of choice rather than a real limitation.
The optimization process in PUS2010, based on a genetic algo-
rithm, was too time-consuming to allow for further iterations in
the inversion process. Aside from this, there was nothing pre-
venting those authors from feeding their results in the z-scale
back into the Stokes inversion code in order to continue the
χ2-minimization (Eq. (3)). This is explicitly taken into account
in our method, as already explained in Sect. 3.4 and illustrated
in Fig. 2. Therefore, our method can be considered as having a
similar motivation as those from Riethmüller et al. (2017) and
Löptien et al. (2018), in the sense that we aim at providing the
best possible fit to the observed Stokes profiles. This is in con-
trast with PUS2010 and Asensio Ramos & Díaz Baso (2019),
where fitting the observations plays a secondary role.

To showcase the quality of the fits, we present, in Figs. 3–5,
three examples – in the umbra, penumbra, and quiet Sun, respec-
tively – of the observed Stokes profiles (black dots) and the best-
fit profiles (solid colored lines) after i = 0 (orange), i = 2 (green),
i = 4 (red), and i = 6 (purple). These examples provide only a
qualitative idea about the quality of the fits. A more quantitative
picture can be drawn from Fig. 6, where we present the mean

Fig. 6. Mean value of the χ2-merit function between the observed
�

obs(x, y, λ) and synthetic �syn(x, y, λ) Stokes profiles (Eq. (3)) over the
entire field-of-view as a function of the inversion iteration (i-even) per-
formed with the Firtez inversion code (Sect. 3.1). Results for NOAA AR
10944 (left-hand panel in Fig. 1) are indicated in orange, while results
for NOAA AR 10944 (right-hand panel in Fig. 1) are shown in blue.

value of χ2(�syn
i j
, �obs) over the entire field-of-view for NOAA AR

10944 (blue; right-hand panel in Fig. 1) and NOAA AR 10923
(orange; left-hand panel in Fig. 1). As can be seen, i = 6 yields
the best fits of the observed profiles. We note that this is simply
a side effect of having the largest number of free parameters (see
Table 2). This case allows us to fit even well-known asymmet-
ric Stokes V profiles found in the sunspot penumbra, as seen in
Fig. 4 (see also Sanchez Almeida & Lites 1992; Borrero et al.
2006). The important thing to consider here is not that the fit
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Fig. 7. Physical parameters for the sunspot NOAA AR 10923 on a vertical slice (XZ-plane) along the blue line in Fig. 1 (left-hand panel). From
top to bottom: vertical component of the magnetic field Bz, radial component of the magnetic field Br, temperature T , and logarithm of the gas
pressure Pg. The solid black line indicates the location of the Wilson depression (z(τc = 1) level). See the text for more details.

improves for larger i values, but rather that it does not get worse.
The reason is that the pressure and density, and hence also the
optical-depth scale, are modified after each application of the
MHS module (i-odd; see Sect. 3.3), thus potentially changing
the synthetic profiles �syn(x, y, λ) in a way that they no longer
provide the best fit to the observed Stokes vector �obs(x, y, λ) (see
e.g., Fig. 9 in PUS2010).

5. Inferred physical parameters

Next we look at the physical parameters inferred from the com-
bined application of the Firtez-DZ inversion code (Sect. 3.1) and
the MHS constraints (Sect. 3.3). While the physical parameters
are retrieved in the (x, y, z) domain, we will not consider those

regions outside [z(τa), z(τb)], where τa = 10 and τb = 10−4. As
such, we avoid presenting results in atmospheric layers where
the errors are large. As explained in Appendix A, the locations
of z(τa) and z(τb) depend on the point of the solar surface (x, y)
where we look. This can be illustrated by plotting the physical
parameters in the XZ plane for a fixed value of y (see horizontal
blue lines in Fig. 1). These physical parameters are presented in
Figs. 7 and 8 for NOAA AR 10923 and 10944, respectively. In
these figures, we present the absolute value of the vertical com-
ponent of the magnetic field ‖Bz(x, z)‖ (first panel), the radial
component of the magnetic field Br(x, z) = [B2

x(x, z)+B2
y(x, z)]1/2

(second panel), the temperature T (x, z) (third panel), and the log-
arithm of the gas pressure log Pg(x, z) (fourth panel). We note
that NOAA AR 10923 is a negative polarity sunspot (Bz < 0
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Fig. 8. Same as Fig. 7 but for the sunspot NOAA AR 10944 (right-hand panel in Fig. 1).

in the umbra) but that this is not seen because we plot only
‖Bz(x, z)‖. Another important point is that the vertical z-scale
and horizontal x-scale are not identical in these figures. While
the total vertical extension of the box is about 1.5 Mm, it hori-
zontally covers 40–60 Mm (see Sect. 3 and Table 1). Therefore,
for a better visualization, we have stretched the vertical z-scale.

In Figs. 7 and 8, the solid black lines indicate the location
of z(τc = 1) (i.e., the Wilson depression). In these figures, we
can see that, along the selected slice of constant y (blue lines in
Fig. 1), the location of z(τc = 1) is about z ≈ 1.0 Mm in the quiet
Sun, whereas in the umbra it decreases to about z ≈ 0.4−0.5 Mm,
yielding a Wilson depression of some 500–600 km. We can also
notice many small-scale features. Two examples of such features
are umbral dots and/or light bridges (vertical dashed line in Fig. 8
at x ≈ 21 Mm), where we see a local enhancement in the temper-
ature T and a local decrease in Bz at around z ≈ 0.5 Mm. This is

accompanied by a small increase in the location of the z(τc = 1)
level. Other interesting features are the magnetic field concentra-
tions and magnetic knots outside the sunspot. They are seen, for
instance, at x ≈ 75 Mm in Fig. 7 (see the vertical dashed lines).
These magnetic knots are characterized by having strong vertical
magnetic fields of the same or opposite polarity of the sunspot’s
magnetic field, and they feature a strong dip at the z(τc = 1)
level.

In Figs. 9 and 10, we show the two-dimensional (x, y) maps
of the geometrical height at which different τc levels are reached
in NOAA AR 10923 and 10944, respectively. All values are
given with respect to the quiet Sun zqs(τc) (see white rectan-
gles in these figures). These maps correspond to four differ-
ent realizations of the z − τc conversion (see Eq. (A.1)) over
the entire observed regions. Again, our method is capable of
inferring the small-scale structure of the conversion between
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Fig. 9. Maps of the geometrical height at
which different τc levels are reached in NOAA
AR 10923: τc = 1 (top left), τc = 10−1 (top
right), τc = 10−2 (bottom left), and τc =

10−3 (bottom right). All values are given with
respect to the geometrical height for that τc

level in the quiet Sun, zqs(τc). The quiet-Sun
value is calculated as the spatial average over
the white rectangle.

geometrical height z and optical depth τc. This is clearly seen
around the light bridges in both sunspots as well as the magnetic
knots around them. The mean values of the Wilson depression,
zqs(τc = 1) − z(τc = 1), in the umbra obtained with our method
are 588 km for NOAA AR 10923 (Fig. 9; upper-left panel) and
524 km for NOAA A 10944 (Fig. 10; upper-left panel). The max-
imum values around are 630 and 580 km, respectively.

It is important to notice that panels for each τc level differ.
This is a consequence of our method being capable of stretching
and/or shrinking the z− τc scale between consecutive grid points
along the vertical direction through the changes in temperature,
density, and pressure (see Eq. (A.1)). Other methods, where the
z − τ conversion is obtained by simply shifting, at each (x, y)-
location, the entire z-scale up or down, would yield exactly the
same results at different τc levels in Figs. 9 and 10.

6. Conclusions

We have presented a new inversion code for the polarized radia-
tive transfer equation that is capable of retrieving the physical
parameters in the solar photosphere in the (x, y, z) domain in a
way that is consistent with the MHS equations, and therefore it
takes into account the effects of the Lorentz force (magnetic ten-
sion and pressure) in the force balance. Because of this, our new
inversion code is capable of inferring not only the three compo-
nents of the magnetic field, the temperature, and the line-of-sight

velocity, but also the gas pressure and density in the solar photo-
sphere. The development of this code is inspired, albeit loosely,
on the work by Puschmann et al. (2010).

The inversion code makes use of the Firtez-DZ code and
an MHS solver that have been described and tested separately
by Pastor Yabar et al. (2019) and Borrero et al. (2019), respec-
tively, employing results from three-dimensional MHD simula-
tions of sunspots (Rempel 2012). In this paper, we combine both
approaches into a single one and test its results with spectropo-
larimetric observations from the Hinode/SP instrument in two
sunspots located very close to disk center.

To put our new approach in context, we will categorize all
available methods (Carroll & Kopf 2008; Puschmann et al. 2010;
Riethmüller et al. 2017; Löptien et al. 2018; Asensio Ramos &
Díaz Baso 2019) that also aim at retrieving the physical param-
eters in the (x, y, z) domain into those that: (a) can be applied to
large regions of the solar surface (i.e., entire sunspots plus their
surrounding plage, moat, and quiet Sun); (b) infer the small-scale
structure (i.e., umbral dots, penumbral filaments, light bridges,
magnetic knots, etc.); and (c) fit the observed Stokes vector. All
of the aforementioned methods give priority to some features at
the expense of others. For instance, Löptien et al. (2018) limit the
number of Fourier coefficients in order to analyze large fields-of-
view, thereby limiting their ability to retrieve small-scale struc-
tures. Puschmann et al. (2010) make the opposite sacrifice. The
Asensio Ramos & Díaz Baso (2019) method can deal with both
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Fig. 10. Same as Fig. 9 but for NOAA
AR 10944.

situations but does not provide the best possible fit to the observed
Stokes vector. Although our method meets the three previous
requirements, there is a very obvious drawback: its speed. Just
to give some numbers: the first iteration cycle (i = 0) took totals
of 500 (small spot) or 2000 (large spot) combined CPU (central
processing unit) hours. Later iterations (i ≥ 2) needed about half
this. Although the actual running time was significantly reduced
by running our inversions in clusters with several hundred nodes,
our method is not yet suitable for processing large amounts of
data. Therefore, which of the available methods is to be preferred
depends on the particular use case.

Our inversion code also yields, in a natural way, the Wilson
depression across the solar surface, not only at τc = 1 but at all
optical depths within the region where the analyzed spectral lines
are formed. Our values for the inferred Wilson depression are
compatible, albeit somewhat smaller, by about 50–70 km, with
similar studies of the same sunspots (Löptien et al. 2018, 2020;
Asensio Ramos & Díaz Baso 2019). We note, however, that
those studies were carried out with inversion results that con-
sidered the effects of the telescope and instrument point spread
function (PSF). Those inversions usually retrieve sharper varia-
tions of the magnetic field along the (x, y)-directions, which is
likely the reason our results differ from theirs. We will study this
particular point in more detail in a future work by implementing
the coupled-inversion technique by van Noort (2012) into our
code, in order to remove the smearing effects introduced by the
instrumental PSF.

It is also desirable to check how close to solenoidal the
inferred magnetic field B(x, y, z) is. This might imply the imple-
mentation of a new approach, within our inversion code, to min-
imize ∇ · B. Therefore, we have decided to leave it for a future
study. Such minimization seems to help improve the results of
the inferences in the (x, y, z) domain (Puschmann et al. 2010;
Löptien et al. 2018). We are not sure, however, how much our
method will benefit from such an implementation as methods
that minimize ∇ · B typically only modify the potential compo-
nent of the magnetic field while leaving the non-potential com-
ponent, and hence the electric currents j ∝ ∇ × B, untouched
(Tóth 2000). Consequently, none of those methods would have
any effect on the MHS force balance as implemented in our code
(Eq. (6); Appendix B).

A corollary of the discussion in the previous paragraph is
that, in its current state, our inversion code can be used to infer
realistic electric currents j even if the magnetic field is not
close to being solenoidal. We foresee future applications where
the full j-vector, instead of simply its vertical jz-component, is
employed to study the evolution of magnetic structures on the
solar surface that are likely to produce enhanced chromospheric
and coronal activity (see e.g., Solanki et al. 2003; Wang et al.
2017).
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Appendix A: z − τc conversion and sensitivity

regions

The conversion between the continuum optical depths τc and z
depends on the density and continuum opacity κc, which in turn
depends on the gas pressure and temperature, as:

dτc = −ρκc(Pg,T )dz . (A.1)

Let us define za = z(τa) and zb = z(τb) as the locations of
the optical depths τa and τb that cover the sensitivity region of
the spectral lines to the physical parameters C as determined
by Firtez-DZ. We note that τa > τb, whereas za < zb because
the optical-depth scale and the geometrical scale grow in oppo-
site directions (see Eq. (A.1)). It is important to bear in mind
that, due to its dependence on the density and opacity, Eq. (A.1)
implies that the locations za and zb are different for every (x, y)
position.

Owing to the fact that different spectral lines are sen-
sitive to different regions in the solar atmosphere (Ruiz
Cobo & del Toro Iniesta 1994), we adopted [τa, τb]=
[10, 10−4] in this work. With this, we can define the optical
depth location that corresponds to the “middle” of the sensitivity
region as:

τ̃ = 10
1
2 [log τa+log τb] . (A.2)

This yields τ̃ ≈ 0.0316. The values of τa, τb, and τ̃ depend,
of course, on the observed spectral lines (see Sect. 2). The more
spectral lines that are observed, the larger the sensitivity region
becomes.

Appendix B: MHS equation

Let us start with the momentum equation in ideal MHS (see
Eq. 16.23 in Kippenhahn & Moellenhoff 1975):

∇Pg = ρg + c−1 j × B , (B.1)

where Pg, ρ, and g = −gez stand for the gas pressure, density, and
the Sun’s gravity acceleration, respectively. These were intro-
duced in Sect. 3.1. The term c−1 j×B corresponds to the Lorentz
force and can be decomposed into the magnetic pressure and the
magnetic tension (Priest 1984, Sect. 2.7; Eq. (2.56)). In Borrero
et al. (2019), we took the divergence of this equation to transform
it from a system of three first-order partial differential equations
into a single second-order partial differential equation. Here we
will proceed along those same lines, but first we will employ the
equation of state (Eq. (1)) to substitute the above density, as well
as divide the left-hand side and the right-hand side by the gas
pressure:

∇Pg

Pg
=

u

Kb

µ

T
g +

1
c

j × B

Pg
. (B.2)

This equation can be further transformed as follows:

∇(ln Pg) = −
ug

Kb

µ

T
ez +

1
c

j × B

Pg
. (B.3)

Finally, we take the divergence of the equation above, which
yields:

∇2(ln Pg) = −
ug

Kb

∂

∂z

[
µ

T

]
+

1
c
∇ ·

[
j × B

Pg

]
. (B.4)

Unlike Eq. (5), solving Eq. (B.4) will always yield Pg > 0.
While this was not critical when employing physical param-
eters resulting from MHD simulations (Borrero et al. 2019),
we are now determining the right-hand side using a magnetic
field (B) and temperature (T ) that have been inferred from the
observations via the inversion of the radiative transfer equation
(Sect. 3.1). They are therefore affected by measurement errors,
which become exponentially larger as we consider regions out-
side the sensitivity region of the spectral line (see Appendix A).
Consequently, when dealing with actual observations, Eq. (B.4)
is highly preferable.

We will now focus our attention on the second term on the
right-hand side of Eq. (B.4) (highlighted in red) and expand the
divergence operator as:

∇ ·

[
j × B

Pg

]
=

1
Pg

[∇ · ( j × B) − ( j × B) · ∇(ln Pg)] , (B.5)

where the first term on the right-hand side (again highlighted in
red) of the above equation can be further expanded, employing
basic vector identities, as:

∇ · ( j × B) = −
c

4π
[(∇2B)B + ‖∇ × B‖2]. (B.6)

We can see here that the first term on the right-hand side
of Eq. (B.6) involves second-order spatial derivatives of the
magnetic field, whereas the second term on the right-hand side
involves the square of first-order derivatives. Unlike MHD sim-
ulations, where grid sizes are typically on the order of a few
kilometers, observational grid sizes are much larger (see Sect. 2
and Table 1) and therefore second-order derivatives will be
much more inaccurate than first-order ones. For this reason,
we decided to neglect the first term on the right-hand side of
Eq. (B.6) (∇2B) and retain only the second term (‖∇ × B‖2).
In the future, it might be possible to include the neglected term
as new observing facilities, such as the Daniel K. Inouye Solar
Telescope (DKIST; Rimmele et al. 2020) and the European Solar
Telescope (EST; Jurčák et al. 2019), will provide spectropolari-
metric observations, also with a spatial resolution of a few kilo-
meters. Once we insert the simplified Eq. (B.6) into Eq. (B.5)
and into Eq. (B.4) we obtain:

∇2(ln Pg) = −
ug

Kb

∂

∂z

[
u

T

]
−

1
cPg

[
4π‖ j‖2

c
+ ( j × B) · ∇(ln Pg)

]
.

(B.7)

Next we consider that, as we approach the highest layers of
the solar photosphere (i.e., close to the temperature minimum),
the density and gas pressure are so low that the Lorentz force
term dominates the force balance (Eq. (B.1)). At this point, large
velocities also usually appear (oftentimes supersonic and super-
Alfvenic) so that the advection term (ρ(u · ∇) · u) starts to play an
important role. Unfortunately, the velocity term is not included
in our force balance (Eqs. (5), (6), (B.1)) simply because we do
not have access, via spectropolarimetry, to the horizontal com-
ponents of the velocity. Until such time that we implement a
new method to determine vx and vy (see e.g., Asensio Ramos
et al. 2017), we will take a pragmatic approach and consider that
the advection term partially compensates for the Lorentz force
term as we approach regions with very low plasma-β. To mimic
this effect, we introduced a scaling function f (β) that reduces the
effect of the Lorentz force in regions where β ≥ 0.5 (see Eq. (7)).
Our approach is justified by the fact that the advection term par-
tially compensates for the Lorentz force term in the high photo-
sphere in MHD simulations (Rempel 2012), bringing the force
balance close to hydrostatic equilibrium.

A190, page 13 of 15



A&A 647, A190 (2021)

Appendix C: Boundary conditions

In the following, we describe the boundary conditions employed
to solve Eq. (6). The need for these boundary conditions was
mentioned in the last paragraph of Sect. 3.3.

C.1. Pg boundary conditions: Non-axially symmetric
sunspots

The boundary conditions for the gas pressure apply to the left-
hand side of Eq. (6) and must be known for all six sides of
the three-dimensional volume. These sides are characterized by
x1 = y1 = z1 = 0 and by xL = Ldx, yM = Mdy, zN = Ndz
(see Table 1). In this paper, we consider only Dirichlet boundary
conditions. In Borrero et al. (2019, see Eq. (9)), we employed
axially symmetric boundary conditions for Pg. In this paper,
we continue using the same values for the side boundaries:
P(x1, y, z), P(xL, y, z), P(x, y1, z), and P(x, yM , z). These are ade-
quate as long as the analyzed sunspot is fully surrounded by quiet
Sun on all four sides. This is indeed our case (see Sect. 2). In
the z-direction, we adopted a different approach that does not
assume axial symmetry. This is important because, more often
than not, sunspots have elliptical shapes, contain umbral dots or
light bridges, are surrounded by plage or pores, the penumbra is
unevenly developed, etc. (Schlichenmaier et al. 2010, 2016). To
account for this possibility, we instead employed the following
empirical boundary conditions at z = z1 and z = zN :

log P
i j
g (x, y, z1) = 6.19 − 4.57 × 10−5‖B

i j
z (x, y, τ̃)‖

log P
i j
g (x, y, zN) = 2.44 − 9.55 × 10−4‖B

i j
z (x, y, τ̃)‖ , (C.1)

where ‖Bi j
z (x, y, τ̃)‖ refers to the modulus of the vertical com-

ponent of the magnetic field at an optical depth corresponding
to the middle of the sensitivity region τ̃ (Eq. (A.2)). To get an
idea about the values that Eq. (C.1) yields, we can consider
that, in the quiet Sun, ‖Bz (̃τ)‖ ≈ 0 Gauss, thus resulting in
Pg(z1) ≈ 250 dyn cm−2 and Pg(zN) ≈ 1.55 × 106 dyn cm−2.
On the other hand, taking a value of ‖Bz (̃τ)‖ ≈ 4000 Gauss
for a strong umbra, we obtain Pg(z1) ≈ 0.04 dyn cm−2 and
Pg(zN) ≈ 1.02 × 106 dyn cm−2. These values are in qualitative
agreement with the results from three-dimensional MHD simu-
lations of sunspots (Rempel 2012).

The purpose of these boundary conditions is to speed up the
convergence of the MHS module (Sect. 3.3). Using significantly
different boundary conditions results in very similar results to
those presented in Sect. 5. We have tested that this is the case by
running the MHS module with Pg(z1) = 1.25×106 dyn cm−2 and
Pg(zN) = 2.5 dyn cm−2, which are the same at every (x, y), over
the lowermost z = z1 and uppermost z = zN planes. These results
are in agreement with Borrero et al. (2019), where the role of the
boundary conditions was studied in more detail.

C.2. T and B outside the sensitivity regions

At the beginning of Sect. 3.1, we introduced the physical param-
eters Ci j = [T, Bx, By, Bz]. In principle, we could use the phys-
ical parameters Ci j inferred from the inversion to solve Eq. (6).
However, the inversion retrieves very unreliable values outside
the sensitivity region [za, zb] (see Appendix A), and therefore
we will change the physical parameters outside this region to
more meaningful values. This will not interfere with our ability
to fit the observed Stokes vector because the spectral lines are
not sensitive to whatever happens outside [za, zb]. Consequently,

we do not directly employ Ci j on the right-hand side of Eq. (6)
but rather Ci j

†
, which is constructed from the previous as follows:

C
i j

†
(z) =



C(z1) + C
i j(za)−C(z1)

za−z1
(z − z1) ifz < za

Ci j(z) ifz ∈ [za, zb]
C(zN) + C

i j(zb)−C(zN )
zb−zN

(z − zN) ifz > zb

. (C.2)

Here we see that C† = C inside the sensitivity region, and
therefore we kept the physical parameters as determined by
the Firtez-DZ inversion code (Sect. 3.1). Outside the sensitiv-
ity region, we performed a linear interpolation between z1 and za

as well as between zb and zN . Since the values at za and zb are
reliable and are provided by the inversion, all we need to do is
establish the values at the boundaries z1 and zN ; then, by virtue of
the linear interpolation in Eq. (C.2), we can determine the phys-
ical parameters everywhere outside the sensitivity region. We
note that Eq. (C.2) must be applied separately for each (x, y) grid
point on the horizontal plane because za and zb change horizon-
tally (see Appendix A). Also, it is important to bear in mind that
Eq. (C.2) must be applied after every j-iteration of the solution
of Eq. (6) (see Sect. 3.3) as well because P

i j
g and ρi j change with

each j-iteration and hence so do the locations where z = z(τa)
and z = z(τb) (see Eq. (A.1)).

For the temperature at the uppermost boundary, we sim-
ply say that T (zN) = T (zb), and therefore the temperature for
z > zb is always constant and equals T (zb) (i.e., no interpola-
tion needed). At the lowermost boundary, we employed a method
similar to the one described in Borrero et al. (2019) (Sect. 4.2),
in which we perform azimuthal averages of T (x, y, z1) as pro-
vided by the three-dimensional simulations of sunspots Rempel
(2012) and fit the resulting radial dependence with a fourth-order
polynomial. The resulting polynomial, as a function of the nor-
malized radial distance ξ = r/R (R is the sunspot radius), is:

log T (ξ, z1) = 3.957 + 0.024ξ + 0.439ξ2 − 0.392ξ3

+ 0.094ξ4. (C.3)

Equation (C.3) yields temperatures of approximately 9000 K
and 13 500 K at z1 in the center of the umbra (ξ = 0) and in the
quiet Sun (ξ = 2), respectively.

We will now focus on the horizontal components of the mag-
netic field. At z = zN and z = zN−1, we consider that they vanish,
whereas at z = z1 we take them to be the same as those in the
middle of the sensitivity region (this last condition also applies
to the vertical component of the magnetic field):

B
i j
x (zN) = B

i j
x (zN−1) = 0

B
i j
y (zN) = B

i j
y (zN−1) = 0

B
i j
x (z1) = B

i j
x (z[̃τ]) (C.4)

B
i j
y (z1) = B

i j
x (z[̃τ])

B
i j
z (z1) = B

i j
z (z[̃τ]).

The last boundary condition we need is that of the verti-
cal component of the magnetic field at the uppermost bound-
ary, B

i j
z (zN). To find it, we first write the radial component of the

momentum equation in cylindrical coordinates at the uppermost
z-plane, which, once we apply the boundary conditions for the
Bx and By components of the magnetic field given by Eq. (C.4),
simplifies into:

∂

∂r

(
Pg +

B2
z

8π

)
= 0 . (C.5)
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Using this, we can readily determine the boundary condition for
the vertical component of the magnetic field at z = zN :

B
i j
z (x, y, zN) =

√
8π[Pi j

g,qs(zN) − P
i j
g (x, y, zN)] , (C.6)

where the values of the gas pressure at zN can be obtained from
Eq. (C.1) by inserting the values of the z-component of the mag-
netic field in the middle of the sensitivity region: B

i j
z (x, y, τ̃). The

quiet-Sun values P
i j
g,qs are obtained by setting the magnetic field

in Eq. (C.1) to zero.
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