Model-based clustering	BIC and ICL	Combining Components	Results	Summary
000	00	0	000	

Combining Mixture Components for Clustering

Gilles Celeux INRIA, Saclay Île-de-France

Joint work with Jean-Patrick Baudry, Adrian Raftery, Kenneth Lo and Raphaël Gottardo Supported by NICHD and NSF

> Journées Franco-Roumaines 2010, Poitiers 27 août 2010

Model-based clustering	BIC and ICL 00	Combining Components O	Results 000	Summary
Outline				

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Model-based clustering	BIC and ICL	Combining Components	Results	Summary
000	00	0	000	
		Outline		

• Model-based clustering

Model-based clustering	BIC and ICL	Combining Components	Results	Summary
000	00	0	000	
		Outline		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

- Model-based clustering
- Choice of the number of components: BIC and ICL

Model-based clustering	BIC and ICL	Combining Components	Results	Summary
000	00	0	000	
Outline				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Model-based clustering
- Choice of the number of components: BIC and ICL
- Combining mixture components for clustering

Model-based clustering	BIC and ICL	Combining Components	Results	Summary
000	00	0	000	
Outline				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Model-based clustering
- Choice of the number of components: BIC and ICL
- Combining mixture components for clustering
- Simulation example

Model-based clustering	BIC and ICL 00	Combining Components O	Results 000	Summary
		Outline		

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Model-based clustering
- Choice of the number of components: BIC and ICL
- Combining mixture components for clustering
- Simulation example
- Flow cytometry example

Model-based clustering	BIC and ICL	Combining Components	Results	Summary
•00	00	0	000	

Model-based clustering

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Summary

Basic Ideas of Model-Based Clustering

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \text{MVN}_d(\mu_g, \Sigma_g),$$

• where $\Sigma_g = \lambda_g D_g A_g D_g^T$

-based clustering BIC and	ICL Combining Co	mponents Results	s Sumn
00	0	000	

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

• where $\Sigma_g = \lambda_g D_g A_g D_g^T$

Mode

• λ_g = determinant of Σ_g : controls the *volume* of the *g*th cluster

based clustering	BIC and ICL	Combining Components	Results	Sur
	00	0	000	

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

• where $\Sigma_g = \lambda_g D_g A_g D_g^T$

Model

- λ_g = determinant of Σ_g : controls the *volume* of the *g*th cluster
- $A_g = \text{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$

ased clustering	BIC and ICL	Combining Components	Results	S
	00	0	000	

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \text{MVN}_d(\mu_g, \Sigma_g),$$

• where $\Sigma_g = \lambda_g D_g A_g D_g^T$

Model-b

• λ_g = determinant of Σ_g : controls the *volume* of the *g*th cluster

•
$$A_g = \text{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$$

• controls the *shape* of the *g*th cluster

ed clustering	BIC and ICL	Combining Components	Results
	00	0	000

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

• where $\Sigma_g = \lambda_g D_g A_g D_g^T$

Model-ba

• λ_g = determinant of Σ_g : controls the *volume* of the *g*th cluster

•
$$A_g = \text{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$$

- controls the *shape* of the *g*th cluster
- $(1 \ge \alpha_2 \ge \ldots \ge \alpha_d > 0)$

d clustering	BIC and ICL	Combining Components	Results
	00	0	000

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \text{MVN}_d(\mu_g, \Sigma_g),$$

• where $\Sigma_g = \lambda_g D_g A_g D_g^T$

Model-bas

• λ_g = determinant of Σ_g : controls the *volume* of the *g*th cluster

•
$$A_g = \text{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$$

• controls the *shape* of the *g*th cluster

•
$$(1 \ge \alpha_2 \ge \ldots \ge \alpha_d > 0)$$

• E.g. α_2 close to zero: Cluster g concentrated about a line.

l clustering	BIC and ICL	Combining Components	Results
	00	0	000

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

• where $\Sigma_g = \lambda_g D_g A_g D_g^T$

Model-base

• λ_g = determinant of Σ_g : controls the *volume* of the *g*th cluster

•
$$A_g = \text{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$$

• controls the *shape* of the *g*th cluster

•
$$(1 \ge \alpha_2 \ge \ldots \ge \alpha_d > 0)$$

- E.g. α_2 close to zero: Cluster g concentrated about a line.
- E.g. $\alpha_{2g}, \ldots, \alpha_{dg}$ all close to 1: Cluster g nearly spherical.

clustering	BIC and ICL	Combining Components	Results
	00	0	000

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

• where $\Sigma_g = \lambda_g D_g A_g D_g^T$

Model-based

• λ_g = determinant of Σ_g : controls the *volume* of the *g*th cluster

•
$$A_g = \text{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$$

• controls the *shape* of the *g*th cluster

•
$$(1 \ge \alpha_2 \ge \ldots \ge \alpha_d > 0)$$

- E.g. α_2 close to zero: Cluster g concentrated about a line.
- E.g. $\alpha_{2g}, \ldots, \alpha_{dg}$ all close to 1: Cluster g nearly spherical.

• D_g = Eigenvectors: Control the *orientation* of the *g*th cluster

• Based on a finite mixture of multivariate normal distributions:

$$y_i \sim \sum_{g=1}^{G} \tau_g \mathrm{MVN}_d(\mu_g, \Sigma_g),$$

- where $\Sigma_g = \lambda_g D_g A_g D_g^T$
- λ_g = determinant of Σ_g : controls the *volume* of the *g*th cluster

•
$$A_g = \text{diag}\{1, \alpha_{2g}, \dots, \alpha_{dg}\}$$

• controls the *shape* of the *g*th cluster

•
$$(1 \ge \alpha_2 \ge \ldots \ge \alpha_d > 0)$$

- E.g. α_2 close to zero: Cluster g concentrated about a line.
- E.g. $\alpha_{2g}, \ldots, \alpha_{dg}$ all close to 1: Cluster g nearly spherical.
- $D_g = \text{Eigenvectors: Control the orientation of the gth cluster}$
- Different clustering models can be obtained by constraining each of volume, shape and orientation to be constant across clusters, or by allowing them to vary (Banfield & Raftery, 93, Celeux & Govaert 95)

Model-based clustering	BIC and ICL	Combining Components	Results	2
000	00	0	000	

Model-Based Clustering Strategy

Summary

Model-Based Clustering Strategy

• Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via repeated small runs of EM from many radom positions.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via repeated small runs of EM from many radom positions.
- Choosing the Number of Clusters and the Clustering Method/Model:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via repeated small runs of EM from many radom positions.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via repeated small runs of EM from many radom positions.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.
 - Each combination of (Number of Clusters, Clustering Model) is viewed as a separate statistical model

Summary

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via repeated small runs of EM from many radom positions.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.
 - Each combination of (Number of Clusters, Clustering Model) is viewed as a separate statistical model
 - We use the Bayes factor, i.e. the ratio of posterior to prior odds for one model against another.

Summary

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via repeated small runs of EM from many radom positions.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.
 - Each combination of (Number of Clusters, Clustering Model) is viewed as a separate statistical model
 - We use the Bayes factor, i.e. the ratio of posterior to prior odds for one model against another.
 - This allows comparison of the multiple, nonnested models considered.

Summary

Model-Based Clustering Strategy

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via repeated small runs of EM from many radom positions.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.
 - Each combination of (Number of Clusters, Clustering Model) is viewed as a separate statistical model
 - We use the Bayes factor, i.e. the ratio of posterior to prior odds for one model against another.
 - This allows comparison of the multiple, nonnested models considered.
 - We approximate the Bayes factors via

 $BIC = 2 \log \max(n) \log(n)$

Model-Based Clustering Strategy

- Maximum likelihood estimation for the mixture model parameters $\theta = (\tau, \mu, \Sigma)$, via the EM algorithm
- Initialization of EM via repeated small runs of EM from many radom positions.
- Choosing the Number of Clusters and the Clustering Method/Model:
 - Both are reduced to statistical model selection problems, and solved simultaneously.
 - Each combination of (Number of Clusters, Clustering Model) is viewed as a separate statistical model
 - We use the Bayes factor, i.e. the ratio of posterior to prior odds for one model against another.
 - This allows comparison of the multiple, nonnested models considered.
 - We approximate the Bayes factors via

 $BIC = 2 \log \text{maximized likelihood} - (\# \text{ parameters}) \log(n)$

• This is consistent for the number of components (Keribin 2000), and also provides consistent density estimates (Roeder and Wasserman 1997).

Aodel-based clustering	BIC and ICL	Combining Components	Results	Summa
00	00	0	000	

Choice of Number of Components: Simulation Study

10 experiments based on distribution of estimates in literature (Steele & Raftery 2010)

Choice of Number of Components: Simulation Study

10 experiments based on distribution of estimates in literature (Steele & Raftery 2010)

	0		/	00		,
Expt.	BIC	Stephens	AIC	ICL	UIP	DIC
1	50	49	45	50	44	20
2	50	48	38	50	39	17
3	50	50	42	50	40	22
4	49	48	34	50	30	14
5	49	46	33	49	19	16
6	23	29	35	0	40	20
7	50	42	46	19	34	23
8	47	45	45	16	33	14
9	50	41	37	39	22	10
10	50	43	39	50	7	20
Total	468	441	394	373	308	176
% Correct	94	88	79	75	62	35

Times right model chosen/50 (bigger is better)

|▲□▶|▲圖▶|▲圖▶|▲圖▶|| 圖|||の�@

Choice of Number of Components: Simulation Study

10 experiments based on distribution of estimates in literature (Steele & Raftery 2010)

MISE of density estimate (smaller is better)

Expt.	BIC	Stephens	AIC	ICL	UIP	DIC
1	0.19	0.21	0.22	0.19	0.23	0.67
2	0.21	0.24	0.33	0.21	0.31	0.65
3	0.35	0.35	0.41	0.35	0.50	1.32
4	0.48	0.51	1.30	0.48	1.35	2.24
5	0.60	1.00	1.58	0.60	2.75	3.20
6	1.53	1.13	0.86	2.31	0.77	0.76
7	0.23	0.24	0.23	2.18	0.25	0.28
8	0.55	0.39	0.37	2.45	0.42	0.61
9	0.37	0.75	0.47	0.61	0.58	0.77
10	0.34	0.44	0.39	0.34	0.75	0.58
Mean	0.48	0.53	0.62	0.97	0.79	1.11

Model-based clustering	BIC and ICL	Combining Components	Results	Summary
000	•0	0	000	

Choosing the Number of Clusters: ICL, a first solution

Choosing the Number of Clusters: ICL, a first solution

 \bullet Problem: Cluster \neq One mixture component, if its distribution is not Gaussian

• •

Choosing the Number of Clusters: ICL, a first solution

- Problem: Cluster \neq One mixture component, if its distribution is not Gaussian
 - It might be better represented by two or more mixture components

Choosing the Number of Clusters: ICL, a first solution

- Problem: Cluster \neq One mixture component, if its distribution is not Gaussian
 - It might be better represented by two or more mixture components
 - Thus # Clusters $\le \#$ Mixture components

BIC and ICL

BIC and ICL

Choosing the Number of Clusters: ICL, a first solution

- \bullet Problem: Cluster \neq One mixture component, if its distribution is not Gaussian
 - It might be better represented by two or more mixture components
 - Thus # Clusters $\le \#$ Mixture components
- First solution: Instead of BIC, which approximates the log integrated likelihood of the data,

$$\log p(\mathbf{x}|K) = \int p(\mathbf{x}|K, \theta_K) \pi(\theta_K) d\theta_K,$$
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Choosing the Number of Clusters: ICL, a first solution

- \bullet Problem: Cluster \neq One mixture component, if its distribution is not Gaussian
 - It might be better represented by two or more mixture components
 - Thus # Clusters $\le \#$ Mixture components

BIC and ICL

• First solution: Instead of BIC, which approximates the log integrated likelihood of the data,

$$\log p(\mathbf{x}|K) = \int p(\mathbf{x}|K, \theta_K) \pi(\theta_K) d\theta_K,$$

Choosing the Number of Clusters: ICL, a first solution

- \bullet Problem: Cluster \neq One mixture component, if its distribution is not Gaussian
 - It might be better represented by two or more mixture components
 - Thus # Clusters $\le \#$ Mixture components

BIC and ICL

• First solution: Instead of BIC, which approximates the log integrated likelihood of the data,

$$\log p(\mathbf{x}|K) = \int p(\mathbf{x}|K, \theta_K) \pi(\theta_K) d\theta_K,$$

use ICL, which approximates the log integrated likelihood of the *completed data*,

$$\mathsf{ICL}(K) = \log p(\mathbf{x}, \mathbf{z} \mid K) = \int_{\Theta_K} p(\mathbf{x}, \mathbf{z} \mid K, \theta) \pi(\theta \mid K) d\theta$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Choosing the Number of Clusters: ICL, a first solution

- \bullet Problem: Cluster \neq One mixture component, if its distribution is not Gaussian
 - It might be better represented by two or more mixture components
 - Thus # Clusters $\le \#$ Mixture components

BIC and ICL

• First solution: Instead of BIC, which approximates the log integrated likelihood of the data,

$$\log p(\mathbf{x}|K) = \int p(\mathbf{x}|K, heta_K) \pi(heta_K) d heta_K,$$

use ICL, which approximates the log integrated likelihood of the *completed data*,

$$ICL(K) = \log p(\mathbf{x}, \mathbf{z} \mid K) = \int_{\Theta_{K}} p(\mathbf{x}, \mathbf{z} \mid K, \theta) \pi(\theta \mid K) d\theta$$
$$\approx \log p(\mathbf{x}, \hat{\mathbf{z}} \mid K, \hat{\theta}_{K}) - \frac{\nu_{K}}{2} \log n$$

(Biernacki, Celeux & Govaert 2000)

BIC and ICL ○● Combining Components

Result

Summary

BIC and ICL

Combining Components O Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Summary

ICL and Entropy

• $\mathsf{ICL}(\mathsf{K})\approx\mathsf{BIC}(\mathsf{K})$ – the mean entropy, $\mathsf{Ent}(\mathsf{K}),$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

ICL(K) ≈ BIC(K) - the mean entropy, Ent(K), Ent(K) = -∑^K_{k=1}∑ⁿ_{i=1} t_{ik}(θ̂_K) log t_{ik}(θ̂_K) ≥ 0

• $\mathsf{ICL}(\mathsf{K})\approx\mathsf{BIC}(\mathsf{K})$ – the mean entropy, $\mathsf{Ent}(\mathsf{K}),$

- Ent $(K) = -\sum_{k=1}^{K} \sum_{i=1}^{n} t_{ik}(\hat{\theta}_K) \log t_{ik}(\hat{\theta}_K) \ge 0$
- where t_{ik} = conditional probability that x_i is from *k*th mixture component

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- $\mathsf{ICL}(\mathsf{K})\approx\mathsf{BIC}(\mathsf{K})$ the mean entropy, $\mathsf{Ent}(\mathsf{K}),$
 - Ent $(K) = -\sum_{k=1}^{K} \sum_{i=1}^{n} t_{ik}(\hat{\theta}_K) \log t_{ik}(\hat{\theta}_K) \ge 0$
 - where $t_{ik} = \text{conditional probability that } \mathbf{x}_i \text{ is from } k\text{th mixture component}$

• Thus ICL tends to find smaller K than BIC

- $\mathsf{ICL}(\mathsf{K})\approx\mathsf{BIC}(\mathsf{K})$ the mean entropy, $\mathsf{Ent}(\mathsf{K}),$
 - Ent(\mathcal{K}) = $-\sum_{k=1}^{K} \sum_{i=1}^{n} t_{ik}(\hat{\theta}_{\mathcal{K}}) \log t_{ik}(\hat{\theta}_{\mathcal{K}}) \geq 0$
 - where t_{ik} = conditional probability that x_i is from kth mixture component
 - Thus ICL tends to find smaller K than BIC
- Problem: If ICL is used to estimate the number of mixture components, it tends to underestimate it when there are poorly separated components, and so can fit the data poorly

▲□▼▲□▼▲□▼▲□▼ □ ● ●

- $\mathsf{ICL}(\mathsf{K})\approx\mathsf{BIC}(\mathsf{K})$ the mean entropy, $\mathsf{Ent}(\mathsf{K}),$
 - Ent(\mathcal{K}) = $-\sum_{k=1}^{K} \sum_{i=1}^{n} t_{ik}(\hat{\theta}_{\mathcal{K}}) \log t_{ik}(\hat{\theta}_{\mathcal{K}}) \geq 0$
 - where t_{ik} = conditional probability that x_i is from kth mixture component
 - Thus ICL tends to find smaller K than BIC
- Problem: If ICL is used to estimate the number of mixture components, it tends to underestimate it when there are poorly separated components, and so can fit the data poorly

• Goal: Find a method that gives the best of both worlds:

- ICL(K) \approx BIC(K) the mean entropy, Ent(K),
 - Ent $(K) = -\sum_{k=1}^{K} \sum_{i=1}^{n} t_{ik}(\hat{\theta}_{K}) \log t_{ik}(\hat{\theta}_{K}) \geq 0$
 - where t_{ik} = conditional probability that \mathbf{x}_i is from kth mixture component
 - Thus ICL tends to find smaller K than BIC
- Problem: If ICL is used to estimate the number of mixture components, it tends to underestimate it when there are poorly separated components, and so can fit the data poorly

- Goal: Find a method that gives the best of both worlds:
 - fits the data well (like BIC), and

- $ICL(K) \approx BIC(K)$ the mean entropy, Ent(K),
 - Ent(\mathcal{K}) = $-\sum_{k=1}^{K} \sum_{i=1}^{n} t_{ik}(\hat{\theta}_{\mathcal{K}}) \log t_{ik}(\hat{\theta}_{\mathcal{K}}) \geq 0$
 - where t_{ik} = conditional probability that \mathbf{x}_i is from kth mixture component
 - Thus ICL tends to find smaller K than BIC
- Problem: If ICL is used to estimate the number of mixture components, it tends to underestimate it when there are poorly separated components, and so can fit the data poorly
- Goal: Find a method that gives the best of both worlds:
 - fits the data well (like BIC), and
 - identifies clusters rather than mixture components (like ICL)

Model-based clustering	BIC and ICL	Combining Components	Results	Su
000	00	•	000	

• Start with a mixture model that fits the data well, with K chosen by BIC

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

- Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• These clusterings all fit the data equally well:

- Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K,K-1,\ldots,1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering

- These clusterings all fit the data equally well:
 - the likelihood doesn't change.

- Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering

- These clusterings all fit the data equally well:
 - the likelihood doesn't change.
 - Only the number and definition of clusters are different

- Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering

- These clusterings all fit the data equally well:
 - the likelihood doesn't change.
 - Only the number and definition of clusters are different
 - one clustering for each number of clusters

- Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K,K-1,\ldots,1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering

- These clusterings all fit the data equally well:
 - the likelihood doesn't change.
 - Only the number and definition of clusters are different
 - one clustering for each number of clusters
- Choosing the number of clusters:

- Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K,K-1,\ldots,1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering

- These clusterings all fit the data equally well:
 - the likelihood doesn't change.
 - Only the number and definition of clusters are different
 - one clustering for each number of clusters
- Choosing the number of clusters:
 - substantive grounds, or

- Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering

- These clusterings all fit the data equally well:
 - the likelihood doesn't change.
 - Only the number and definition of clusters are different
 - one clustering for each number of clusters
- Choosing the number of clusters:
 - substantive grounds, or
 - choose the number selected by ICL, or

- Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering
- These clusterings all fit the data equally well:
 - the likelihood doesn't change.
 - Only the number and definition of clusters are different
 - one clustering for each number of clusters
- Choosing the number of clusters:
 - substantive grounds, or
 - choose the number selected by ICL, or
 - $\bullet\,$ seek an elbow in the plot of the entropy versus # clusters, or

- Start with a mixture model that fits the data well, with K chosen by BIC
 - Design a sequence of soft clusterings with $K, K-1, \ldots, 1$ clusters by successively merging the components
 - At each stage we choose the two mixture components to be merged so as to minimize the entropy of the resulting clustering
- These clusterings all fit the data equally well:
 - the likelihood doesn't change.
 - Only the number and definition of clusters are different
 - one clustering for each number of clusters
- Choosing the number of clusters:
 - substantive grounds, or
 - choose the number selected by ICL, or
 - seek an elbow in the plot of the entropy versus # clusters, or
 - use piecewise regression to find the elbow (Byers & Raftery 1998)

BIC and IC

Combining Component

Results

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Summary

Simulated Example

BIC and ICI

Combining Components

Results

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

æ

Summary

Simulated Example

Simulated data

BIC and ICL

Combining Components

Results

▲ロト ▲圖ト ▲温ト ▲温ト

æ

Summary

Simulated Example

Simulated data

BIC: K=6. Ent=122

BIC and ICL

Combining Components

Results

・ロト ・ 一 ト ・ モト ・ モト

Summary

Simulated Example

Simulated data

ICL: K=4. Ent=3

æ

BIC and ICL

Combining Components

Results

Summary

Simulated Example

Simulated data

BIC: K=6. Ent=122

э

Combined: K=5. Ent=41

BIC and ICL

Combining Components

Results

・ロト ・ 雪 ト ・ ヨ ト

Summary

Simulated Example

Simulated data

BIC: K=6. Ent=122

ICL: K=4. Ent=3

э

Combined: K=5. Ent=41

Combined: K=4. Ent=5

BIC and ICL

Combining Component:

Results

Summary

Simulated Example

Simulated data

ICL: K=4. Ent=3

Combined: K=5. Ent=41

Combined: K=4. Ent=5

Entropy plot

BIC and ICL

Combining Components

Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Summary

Flow Cytometry Data

(Brinkman et al 2007; Lo et al 2008)

BIC and ICL

Combining Components

Results

Summary

Flow Cytometry Data

(Brinkman et al 2007; Lo et al 2008)

• 9,083 cells from a graft-versus-host-disease (GvHD) patient

BIC and ICL

Combining Components

Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Summary

Flow Cytometry Data

(Brinkman et al 2007; Lo et al 2008)

• 9,083 cells from a graft-versus-host-disease (GvHD) patient

• 4 biomarkers: CD4, CD8 β , CD3, CD8

BIC and ICL

Results

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Summary

Flow Cytometry Data

(Brinkman et al 2007; Lo et al 2008)

• 9,083 cells from a graft-versus-host-disease (GvHD) patient

- 4 biomarkers: CD4, CD8β, CD3, CD8
- Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
BIC and ICL

Results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Flow Cytometry Data

(Brinkman et al 2007; Lo et al 2008)

• 9,083 cells from a graft-versus-host-disease (GvHD) patient

- 4 biomarkers: CD4, CD8β, CD3, CD8
- Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
- Clusters labeled CD3+ if mean of CD3 is >280.

BIC and ICL

Results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Flow Cytometry Data

(Brinkman et al 2007; Lo et al 2008)

• 9,083 cells from a graft-versus-host-disease (GvHD) patient

- 4 biomarkers: CD4, CD8β, CD3, CD8
- Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
- Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.

BIC and ICL

Results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Flow Cytometry Data

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8 $\beta\text{-}$ region lumped in with CD3- \Longrightarrow not good

BIC and ICL

Results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Flow Cytometry Data

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8 $\beta\text{-}$ region lumped in with CD3- \Longrightarrow not good
- BIC chose 12 components, of which 6 were CD3+.

BIC and ICL

Results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Flow Cytometry Data

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8 $\beta\text{-}$ region lumped in with CD3- \Longrightarrow not good
- BIC chose 12 components, of which 6 were CD3+.
 - Known CD4+ CD8 β + region corresponds to cyan, green, red components.

BIC and ICL

Results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Flow Cytometry Data

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8 $\beta\text{-}$ region lumped in with CD3- \Longrightarrow not good
- BIC chose 12 components, of which 6 were CD3+.
 - Known CD4+ CD8 β + region corresponds to cyan, green, red components.
 - First 3 mergings (down to 9 clusters) make biological sense

BIC and ICL

Results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Flow Cytometry Data

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8 $\beta\text{-}$ region lumped in with CD3- \Longrightarrow not good
- BIC chose 12 components, of which 6 were CD3+.
 - Known CD4+ CD8 β + region corresponds to cyan, green, red components.
 - First 3 mergings (down to 9 clusters) make biological sense
 - 4th merging (to 8 clusters) doesn't

BIC and ICL

Results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Flow Cytometry Data

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8 $\beta\text{-}$ region lumped in with CD3- \Longrightarrow not good
- BIC chose 12 components, of which 6 were CD3+.
 - Known CD4+ CD8 β + region corresponds to cyan, green, red components.
 - First 3 mergings (down to 9 clusters) make biological sense
 - 4th merging (to 8 clusters) doesn't
 - \implies substantively choose 9 clusters

BIC and ICL

Results

Summary

Flow Cytometry Data

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8 $\beta\text{-}$ region lumped in with CD3- \Longrightarrow not good
- BIC chose 12 components, of which 6 were CD3+.
 - Known CD4+ CD8 β + region corresponds to cyan, green, red components.
 - First 3 mergings (down to 9 clusters) make biological sense
 - 4th merging (to 8 clusters) doesn't
 - \implies substantively choose 9 clusters
 - retains the 6 important CD3+ cell sub-populations

BIC and ICL

Results

Summary

Flow Cytometry Data

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8 $\beta\text{-}$ region lumped in with CD3- \Longrightarrow not good
- BIC chose 12 components, of which 6 were CD3+.
 - Known CD4+ CD8 β + region corresponds to cyan, green, red components.
 - First 3 mergings (down to 9 clusters) make biological sense
 - 4th merging (to 8 clusters) doesn't
 - \implies substantively choose 9 clusters
 - retains the 6 important CD3+ cell sub-populations
- Entropy plot also has elbow at 9 clusters

BIC and ICL

Results

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Flow Cytometry Data

- 9,083 cells from a graft-versus-host-disease (GvHD) patient
 - 4 biomarkers: CD4, CD8β, CD3, CD8
 - Goal: Find CD3+ CD4+ CD8 β + cell sub-populations
 - Clusters labeled CD3+ if mean of CD3 is >280.
- ICL chose 9 clusters, of which 5 were CD3+.
 - Major CD3+ CD4+ CD8 $\beta\text{-}$ region lumped in with CD3- \Longrightarrow not good
- BIC chose 12 components, of which 6 were CD3+.
 - Known CD4+ CD8 β + region corresponds to cyan, green, red components.
 - First 3 mergings (down to 9 clusters) make biological sense
 - 4th merging (to 8 clusters) doesn't
 - \implies substantively choose 9 clusters
 - retains the 6 important CD3+ cell sub-populations
- Entropy plot also has elbow at 9 clusters
 - ullet \Longrightarrow statistical method recovers substantive result

Model-based clustering	BIC and ICL	Combining Components	Results	Summar
000	00	0	00●	

Flow Cytometry Data: Results for CD3+ Clusters

Model-based clustering	BIC and ICL	Combining Components	Results	Summar
000	00	0	00•	

Flow Cytometry Data: Results for CD3+ Clusters BIC: K=12. Ent=4782

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Flow Cytometry Data: Results for CD3+ Clusters BIC: K=12. Ent=4782 ICL: K=9. Ent=3235

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

э

Flow Cytometry Data: Results for CD3+ Clusters BIC: K=12. Ent=4782 ICL: K=9. Ent=3235

イロト 不得 トイヨト イヨト

э

Combined: K=9. Ent=1478

Flow Cytometry Data: Results for CD3+ Clusters BIC: K=12. Ent=4782 ICL: K=9. Ent=3235

Combined: K=9. Ent=1478

E 990

Model-based clustering	BIC and ICL	Combining Components	Results	Summary
000	OO	O	000	
	Sur	nmary		

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Model-based clustering	BIC and ICL	Combining Components	Results	Summary
000	00	O	000	
	Sur	nmary		

• Model-based clustering with the number of mixture components, *K*, chosen by BIC, gives a good fit to data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Model-based clustering	BIC and ICL	Combining Components	Results	Summary
000	00	0	000	

- Model-based clustering with the number of mixture components, *K*, chosen by BIC, gives a good fit to data
 - But it can overstate the number of clusters because a non-Gaussian cluster can be represented by more than one mixture component

Model-based clustering	BIC and ICL	Combining Components	Results	Summary
000	00	0	000	

- Model-based clustering with the number of mixture components, *K*, chosen by BIC, gives a good fit to data
 - But it can overstate the number of clusters because a non-Gaussian cluster can be represented by more than one mixture component

• We propose a method for merging mixture components into clusters, by maximizing the change in entropy at each stage

Model-based clustering	BIC and ICL	Combining Components	Results	Summary
000	00	0	000	

- Model-based clustering with the number of mixture components, *K*, chosen by BIC, gives a good fit to data
 - But it can overstate the number of clusters because a non-Gaussian cluster can be represented by more than one mixture component

- We propose a method for merging mixture components into clusters, by maximizing the change in entropy at each stage
 - Yields a sequence of K soft clusterings

Model-based clustering	BIC and ICL	Combining Components	Results	Summary
000	00	0	000	

- Model-based clustering with the number of mixture components, *K*, chosen by BIC, gives a good fit to data
 - But it can overstate the number of clusters because a non-Gaussian cluster can be represented by more than one mixture component
- We propose a method for merging mixture components into clusters, by maximizing the change in entropy at each stage
 - Yields a sequence of K soft clusterings
 - User can choose between them substantively or using the entropy plot, or ICL

Model-based clustering	BIC and ICL	Combining Components	Results	Summary
000	00	0	000	

- Model-based clustering with the number of mixture components, *K*, chosen by BIC, gives a good fit to data
 - But it can overstate the number of clusters because a non-Gaussian cluster can be represented by more than one mixture component
- We propose a method for merging mixture components into clusters, by maximizing the change in entropy at each stage
 - Yields a sequence of K soft clusterings
 - User can choose between them substantively or using the entropy plot, or ICL

• Worked well in simulation experiments

Model-based clustering	BIC and ICL	Combining Components	Results	Summary
000	00	0	000	

- Model-based clustering with the number of mixture components, *K*, chosen by BIC, gives a good fit to data
 - But it can overstate the number of clusters because a non-Gaussian cluster can be represented by more than one mixture component
- We propose a method for merging mixture components into clusters, by maximizing the change in entropy at each stage
 - Yields a sequence of K soft clusterings
 - $\bullet\,$ User can choose between them substantively or using the entropy plot, or ICL

- Worked well in simulation experiments
- Found a biologically satisfactory solution in the flow cytometry dataset

Model-based clustering	BIC and ICL	Combining Components	Results	Summary
000	00	0	000	

- Model-based clustering with the number of mixture components, *K*, chosen by BIC, gives a good fit to data
 - But it can overstate the number of clusters because a non-Gaussian cluster can be represented by more than one mixture component
- We propose a method for merging mixture components into clusters, by maximizing the change in entropy at each stage
 - Yields a sequence of K soft clusterings
 - $\bullet\,$ User can choose between them substantively or using the entropy plot, or ICL
- Worked well in simulation experiments
- Found a biologically satisfactory solution in the flow cytometry dataset
- Paper is to appeared in the next issue of *Journal of Computational* and *Graphical Statistics*

Model-based clustering	BIC and ICL	Combining Components	Results	Summary
000	00	0	000	

- Model-based clustering with the number of mixture components, *K*, chosen by BIC, gives a good fit to data
 - But it can overstate the number of clusters because a non-Gaussian cluster can be represented by more than one mixture component
- We propose a method for merging mixture components into clusters, by maximizing the change in entropy at each stage
 - Yields a sequence of K soft clusterings
 - $\bullet\,$ User can choose between them substantively or using the entropy plot, or ICL
- Worked well in simulation experiments
- Found a biologically satisfactory solution in the flow cytometry dataset
- Paper is to appeared in the next issue of *Journal of Computational* and *Graphical Statistics*

• All the described material is available in the MIXMOD software http://www.mixmod.org