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Maximum likelihood classi	er (MLC) and support vector machines (SVM) are two commonly used approaches in machine
learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based
nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically
modeling the learning process. In this paper, MLC and SVM are combined in learning and classi	cation, which helps to yield
probabilistic output for SVMand facilitate so
 decisionmaking. In total four groups of data are used for evaluations, covering sonar,
vehicle, breast cancer, and DNA sequences.�e data samples are characterized in terms of Gaussian/non-Gaussian distributed and
balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined
SVM-MLC classi	er. Interesting results are reported to indicate how the combined classi	er may work under various conditions.

1. Introduction

Maximum likelihood classi	cation (MLC) is one of the
most commonly used approaches in signal classi	cation and
identi	cation, which has been successfully applied in a wide
range of engineering applications including classi	cation
for digital amplitude-phase modulations [1], remote sensing
[2], genes selection for tissue classi	cation [3], nonnative
speech recognition [4], chemical analysis in archaeological
applications [5], and speaker recognition [6]. On the other
hand, support vector machines (SVM) have attracted much
increasing attention, which can be found in almost all areas
when prediction and classi	cation of signal are required,
such as scour prediction on grade-control structure [7], fault
diagnosis [8], EEG signal classi	cation [9], and 	re detection
[10] as well as road sign detection and recognition [11].

Based on the principles of Bayesian statistics, MLC
provides a parametric approach in decision making where
the model parameters need to be estimated before they
are applied for classi	cation. On the contrary, SVM is a
nonparametric approach, where the theoretic background is

supervised machine learning. Due to the di�erences of these
two classi	ers, their performance appears to be much di�er-
ent. Taking the application in remote sensing, for example,
in Pal and Mather [12] and Huang et al. [13], it is found
that SVM outperforms MLC and several other classi	ers. In
Waske and Benediktsson [14], SVM produces better results
from SAR images, yet in most cases it generates worse results
than MLC from TM images. In Szuster et al. [15], SVM only
yields slightly better results thanMLC for land cover analysis.
As a result, detailed assessments as on what conditions SVM
outperforms or appears inferior to MLC are worth further
investigation.

Furthermore, there becomes a trend to combine the
principle of MLC, Bayesian theory, with SVM for improved
classi	cation. In Ren [16], Bayesian minimum error clas-
si	cation is applied to the predicted outputs of SVM for
error-reduced optimal decision making. Similarly, in Vong
et al. [17], Bayesian decision theory is applied in SVM
for imbalance measurement and feature optimization for
improved performance. In Vega et al. [18], Bayesian statis-
tics are combined with SVM for parameter optimization.
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In Hsu et al. [19], Bayesian inference is applied to estimate
the hyperparameters used in SVM learning to speed up the
training process. In Foody [20], relevance support machine
(RVM), a Bayesian extension of SVM, is proposed which
enables an estimate of the posterior probability of class mem-
bership where conventional SVM fail to do so. Consequently,
in-depth analysis of the two classi	ers is desirable to discover
their pros and cons in machine learning.

In this paper, analysis and evaluations of SVM and MLC
are emphasized, using data from various applications. Since
the selected data satisfy certain conditions in terms of speci	c
sample distributions, we aim to 	nd out how the performance
of the classi	ers is connected to the particular data distribu-
tions. As a consequence, thework and the results shown in the
paper are valuable for us to understand how these classi	ers
work, which can then provide insightful guidance as how to
select and combine them in real applications.

�e remaining parts of the paper are organized as follows.
Section 2 introduces the principles of the two classi	ers.
Section 3 describes data and methods that have been used,
where experimental results and evaluations are analyzed and
discussed in Section 4. Concluding remarks are given in
Section 5.

2. MLC and SVM Revisited

In this section, the principles of the two classi	ers, SVM
and MLC, are discussed. By comparing their theoretic back-
ground and implementation details, the two classi	ers are
characterized in terms of their performances during the
training and testing processes.�is in turn has motivated our
work in the following sections.

2.1.�eMaximum Likelihood Classi�er (MLC). Let x� = (��,1,��,2, . . . , ��,�)�, � ∈ [1,�], be a group of N-dimensional
features, derived from � observed samples, and �� ∈ [1, �]
denotes the class label associated with x�; that is, in total we
have � classes denoted as ��, 	 ≥ 2. �e basic assumption
of MLC is that for each class of data the feature space
satis	es speci	ed distributions, usually Gaussian, and also
the samples are independent of each other. To this end, the
likelihood (probability) for samples within the kth class, ��,
is given as follows:

� (x | ��)
= 1(2�)�/2 ����S�����1/2 exp {−

1

2
(x −��)� S−1� (x −��)} , (1)

where �� and S�, respectively, denote the mean vector and
covariance of all �� samples within ��, which can be deter-
mined using maximum likelihood estimation as

�� = �−1� ��∑
�=1

x�,
S� = �−1� ��∑

�=1
(x� −��) (x� −��)� .

(2)

For a given sample x�, the probability it belongs to class��
can be denoted as �(�� | x�). �e class 	 that x� is determined
to be within is then decided by

�MLC (x�) = argmax
�

(� (�� | x�)) . (3)

Based on Bayesian theory, we have

� (�� | x�) = � (��) � (x� | ��)� (x�) . (4)

Since �(x�) is a constant in (4) when x� is given, (3) can be
rewritten as

�MLC (x�) = argmax
�

(� (��) � (x� | ��)) . (5)

Applying logarithm operation to the right side of (5), also
letting ��(x) = ln�(x | ��) + ln�(��) be the discriminating
function, (5) becomes

�MLC (x�) = argmax
�

(�� (x�)) , (6)

�� (x) = − 12 (x − u�)� S−1� (x − u�) − �2 ln2�
− 12 ln ����S����� + ln� (��) .

(7)

Again we can ignore the constant in (7) and simplify the
discriminating function as

�� (x) = − 1

2
(x − u�)� S−1� (x − u�) − 1

2
ln
����S�����

+ ln� (��) = x
�
W�x +w�� x + ��,

(8)

where W� = −(2S�)−1, w� = S
−1
� u�, and �� = −2−1uT� S−1� u� −

2−1ln|S�| + ln�(��).
As can be seen, ��(x) is now a quadratic function

of x depending on three parameters, that is, u�, S�, and�(��). When the class 	 is speci	ed, these parameters are
determined; hence the quadratic function only depends on
the class 	 and the input sample x. Also it is worth noting that
the third item �� is actually a constant.

In a particular case when �(��) is a constant for all 	,
that is, the prior probability that a sample belongs to one of
the classes is equal, ln�(��) in (8) can be ignored; hence the
discriminating function is rewritten as

�� (x) = − (x −u�)� S−1� (x −u�) − ln ����S����� , (9)

where the scalar 1/2 is also ignored as it makes no di�erence
when (6) is applied for decision making. However, such sim-
pli	cation cannot be made unless we have clear knowledge
about the equal distribution of the samples over the� classes.

Based on (9), the decision function can be further
simpli	ed if the total number of classes is reduced to two,
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where the two classes are denoted as −1 and 1 and the sign
function is introduced for simplicity:

�MLC (x�) = sign (�MLC (x�))
= {{{

−1, if �MLC (x�) < 0,
1, if �MLC (x�) > 0,

�MLC (x) = (x −u−)� S−1− (x −u−)
− (x − u+)� S−1+ (x − u+) + ln ����S+��������S−���� .

(10)

Moreover, in a special case when S+ = S− = S, the quad-
ratic decision function in (10) becomes a linear one as

�MLC (x) = (u− − u+)� S−1x
− 2−1 (u�−S−1u− − u�+S−1u+) . (11)

2.2. �e Support Vector Machine (SVM). SVMwas originally
developed for the classi	cation of two-class problem. In
Cortes and Vapnik [21], the principles of SVM are compre-
hensively discussed. Let the two classes be denoted as 1 and−1,
similar to the decision function for MLC in (10); the decision
function for linear SVM is given by

�� = �SVM (x�) = {{{
1, if �SVM (x�) ≥ 1,
−1, if �SVM (x�) ≤ −1,

�SVM (x�) = w
�
x� + �,

(12)

where �� denotes the labeled value for the input sample x�; w
and � are parameters to be determined in the training process.

Note that the decision function in (12) is actually equiva-
lent to the one in (10) if we adjust the scalar for �, yet (12) is
more feasible as it has increased the decisionmargin between
the two classes from near zero to 2|w|−1. By multiplying ��
to both sides of the discriminating function �, this can be
further simpli	ed as ���SVM(x�) ≥ 1, that is,

�� (w�x� + �) ≥ 1. (13)

Hence, the optimal hyperplane to separate the training
data with a maximal margin is de	ned by

w
�
� x + �� = 0, (14)

where w� and �� are the determined parameters, and the
maximal distance becomes 2|w�|−1.

To determine this optimal hyperplane, we need to max-
imize 2|w|−1, or equivalently to minimize 2−1|w|2, subject to∀x�, ��(w�x� + �) ≥ 1. Using the Lagrangian multipliers, this
optimization problem can be solved by

Ω(w, �,  �) = 1

2
‖w‖2 − �∑

�=1
 � (�� (w�x� + �) − 1)

s.t.  � ≥ 0.
(15)

Eventually, the parameters w� and �� are decided as

w� = �∑
�=1

 ���x�,
� = �� −w�� x�,
where  � ̸= 0.

(16)

For any nonzero  �, the corresponding x� is denoted as

one support vector which naturally satis	es ��(w�x� + �) = 1.
�erefore,w� is actually the linear combination of all support
vectors. Also we have ∑ ��� = 0.

Eventually if we combine (16) with (12), the discrimina-
tion function for any test sample x becomes

�SVM (x) = �∑
�=1

 ���x�� x + � (17)

which solely relies on the inner product of the support vector
and the test sample.

For nonlinear problems which are not linearly separable,
the discrimination function is extended as

�SVM (x) = �∑
�=1

 ���$ (x�)� $ (x) + �
= �∑
�=1

 ���%(x�, x) + �,
(18)

where $ aims tomap the input samples to another space, thus
making them linearly separable.

Another important step is to introduce the kernel trick
to calculate the inner product of mapped samples, that is,⟨$(x�), $(x)⟩, which avoids the di�culty in determining the
mapping function $ and also the cost for calculation of the
mapped samples and their interproduct. Several typical ker-
nels including linear, polynomial, and radial basis function
(RBF) are summarized as follows:

%(x�, x	) =
{{{{{{{{{{{{{{{

x
�
� x	 linear

(x�� x	 + 1)
 , � > 0 polynomial

exp(−/////x� − x	
/////2

202 ) RBF,

(19)

where optimal values for the associated parameters � and 0
are determined automatically during the training process.

�ough SVM is initially developed for two-class prob-
lems, it has been extended to deal with multiclass classi	-
cation based on either combination of decision results from
multiple two-class classi	cations or optimization on multi-
class based learning. Some useful further readings can be
found in [22–24].

2.3. Analysis and Comparisons. MLC and SVM are two
useful tools for classi	cation problems, where both of them
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rely on supervised learning in determining the model and
parameters. However, they are di�erent in several ways as
summarized below.

Firstly, MLC is a parametric approach which has a basic
assumption that the data satisfy Gaussian distribution. On
the other contrary, SVM is a nonparametric approach and
it has no requirement on the prior distribution of the data,
yet various kernels can be empirically selected to deal with
di�erent problems.

Secondly, for MLC the model parameters, �� and S�,
can be directly estimated using the training data before they
are applied for testing and prediction. However, SVM relies
on supervised machine learning, in an iterative way, to
determine a large amount of parameters including w�, ��, all
nonzero  �, and their corresponding support vectors.

�irdly, MLC can be straightforward applied to two-class
and multiclass problems, yet additional extension is needed
for SVM to deal with multiclass problem as it is initially
developed for two-class classi	cation.

Finally, a posterior class probabilistic output for the pre-
dicted results can be intuitively generated from MLC, which
is a valuable indicator for classi	cation to show how likely a
sample belongs to a given class. For SVM, however, this is not
an easy task though some extensions have been introduced
to provide such an output based on the predicted value
from SVM. In Platt [25], a posterior class probability �� is
estimated by a sigmoid function as follows:

�� = 4 (�= 1 | x�) ≈ 1

1 + exp (6�SVM (x�) + 7) . (20)

�e parameters 6 and 7 are determined by solving a
regularized maximum likelihood problem as follows:

(6∗, 7∗)
= argmin
(�,
)

(− �∑
�=1

(9� log (��) + (1− 9�) log (1−��))) ,

9� = {{{{{{{
(1 + �1)(2 + �1) , if �� = 1,

1(2 + �−1) , if �� = −1,
(21)

where �1 and �−1 denote the number of support vectors
labeled in classes 1 and −1, respectively.

In addition, in Lin et al. [26] Platt’s approach is further
improved to avoid any numerical di�culty, that is, over�ow
or under�ow, in determining �� in case ;� = 6�SVM(x�) +7 is
either too large or too small:

�� = {{{
(1 + ?−��)−1 , if ;� ≥ 0,
?�� (1 + ?��)−1 , otherwise.

(22)

Although there are signi	cant di�erences between SVM
and MLC, the probabilistic model above has uncovered the
connection between these two classi	ers. Actually, in Franc
et al. [27] MLC and SVM are found to be equivalent to each
other in linear cases, and this can also be convinced by similar
decision functions in (10) and (12).

3. Data and Methods

In this paper, analysis and evaluations of SVM and MLC are
emphasized, using data from various applications. Since the
selected data satisfy certain conditions in terms of speci	c
sample distributions, we aim to 	nd out how the performance
of the classi	ers is connected to the particular data distribu-
tions. As a consequence, thework and the results shown in the
paper are valuable for us to understand how these classi	ers
work, which can then provide insightful guidance as how to
select and combine them in real applications.

3.1. �e Datasets. In our experiments, four di�erent datasets,
SamplesNew, svmguide3, sonar, and splice, are used. Among
these four datasets, SamplesNew is a dataset of suspi-
cious microclassi	cation clusters extracted from [16] and
svmguide3 is a demo dataset of practical SVM guide [28],
whilst sonar and splice datasets come from the UCI reposi-
tory of machine learning databases [29]. Actually, two prin-
ciples are applied in selecting these datasets: the 	rst is how
balanced the samples are distributed over two classes, and
the second is whether the feature distributions are Gaussian-
alike. As can be seen, the 	rst two datasets are severely
imbalanced, especially the 	rst one, as there are far more data
samples in one class than those in another class. On the other
hand, the last two datasets are quite balanced. Regarding
feature distributions, SamplesNew and svmguide3 are appar-
ently non-Gaussian distributed, yet the other two, sonar and
splice, show approximately Gaussian characteristics when the
variables are separately observed.�is is also validated by the
determined Pearson’s moment coe�cient of skewness below
[30], where @� and 0� are the mean and standard deviation
for the �th dimension of the dataset and ;(⋅) refers to
mathematical expectation. When the skewness coe�cients
are determined for each data dimension, the maximum, the
minimum, and the average skewness coe�cients are obtained
and shown in Table 1 for comparisons:

B� = ; (�� − @�)303� . (23)

3.2. �e Approach. In our approach, a combined classi	er
using SVM andMLC is applied, which contains the following
three stages. In Stage 1, SVM is used for initial training
and classi	cation. For the correctly classi	ed results in SVM,
these are employed in Stage 2, where MLC is applied for
probability-based modeling. �e probability-based models
are then utilized in Stage 3 for improved decisionmaking and
better classi	cation. Details of these three stages are discussed
as follows.

Stage 1 (SVM for initial training and classi	cation). �e open
source library libSVM [28] is used for initial training and
classi	cation of the aforementioned four datasets, and both
the linear and the Gaussian radial basis (RBF) kernels are
tested. For each group of datasets, all the data are normalized
to [−1, 1] before SVM is applied. �rough 5-fold cross
validation, the best group of parameters, including the cost
and the gamma value, are optimally determined. Eventually,
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Table 1: Four datasets used in our experiments.

Dataset Features Balance status Distribution of feature values Number of samples (class 0/class 1)
Skewness coe�cients

Max Min Mean

SamplesNew 39 Unbalanced Non-Gaussian Approx. 748 (115/633) 7.577 −3.063 2.343

svmguide3 21 Unbalanced Non-Gaussian Approx. 1284 (947/337) 10.074 −4.653 2.181

Sonar 31 Balanced Approx. Gaussian 209 (97/102) 1.123 −1.019 0.214

Splice 60 Balanced Approx. Gaussian 1269 (653/616) 0.672 −0.490 −0.016
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Figure 1: Comparing training (a) and testing results (b) using linear SVM and the combined classi	er for the four datasets under three
di�erent training ratios.

the optimal parameters are used for classi	cation of our
datasets.

In our experiments, the training ratios are set at three
di�erent levels, that is, 80%, 65%, and 50%. Basically, there
is no overlap between training data and testing data. At a
given training ratio, the training data is randomly selected
and repeated 	ve times, which leads to 5 groups of test results
generated. Finally, the average performance over these 	ve
experiments is used for comparisons.

Stage 2 (using MLC for probability-based modeling). For
those correctly classi	ed samples, which lie in two classes,
that is, class 0 and class 1, they are taken to decide two
probability-based models, in a way as discussed in MLC. In
other words, for samples correctly classi	ed in class 0, they
are used to determine themean vector and the corresponding
covariance matrix within class 0. On the other hand, samples
which are correctly classi	ed in class 1 are used to determine
the mean vector and the corresponding covariance matrix
within class 1. Note that not all samples in class 0 or class 1 are
used in calculating the related MLC models, as those which
cannot be correctly classi	ed by SVM are treated as outliers
and ignored in MLC modeling for robustness.

A
er MLC modeling, for each sample x, the associated
likelihoods that it belongs to the two classes are recalculated
and denoted as �0(x) and �1(x). As a result, the decision for
classi	cation is simpli	ed as

�MLC (x) = {{{
1, if �1 (x) − �0 (x) > I,
0, otherwise,

(24)

where I is a threshold to be optimally determined to generate
the best classi	ed results. Please note that the likelihoods (or
probability values) here can also be taken as a probabilistic
output of the SVM.

Stage 3 (improved classi	cation). With the estimated MLC
models and the optimal threshold I, all samples are then
rechecked for improved classi	cation, using (23) and the
determined likelihoods �0(x) and �1(x), accordingly. Inter-
esting results on these four datasets are given and analyzed in
detail in the next section.

4. Results and Evaluations

For the four datasets discussed in Section 3, the experimental
results are reported and analyzed in this section. Firstly,
we discuss results from a combined classi	er of MLC and
a linear SVM. �en, results from MLC and RBF based
SVM are compared. In addition, how di�erent rebalancing
strategies a�ect the performance of unbalanced datasets is
also discussed.

4.1. Results from a Linear SVM and the MLC. In this group
of experiments, a combined classi	er using a linear SVM and
the MLC is employed, and the relevant results are presented
in Figure 1. In Figure 1, we plot the classi	cation rate as the
prediction accuracy with the change of training ratio, that is,
the percentage of data used for training. �ree training
ratios, 80%, 65%, and 50%, are used. Please note that,
due to degradation of the covariance matrix, the MLC
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Figure 2: Comparing training (a) and testing results (b) using RBF-kernelled SVM and the combined classi	er for the four datasets under
three di�erent training ratios.

cannot be used to improve the results for the SampleNew
dataset. Consequently, the results from the SVM are taken
as the output of the combined classi	er. For the other
three datasets, the results are summarized and compared as
follows.

Firstly, for the three datasets, sonar, splice, and
svmguide3, apparently we can see that the combined solution
yield signi	cantly improved results in training, especially for
the 	rst two datasets. �is demonstrates that the combined
classi	er can indeed achieve more accurate modeling of
the datasets. In addition, possibly due to over	tting, the
experimental results show that a larger training ratio does
not necessarily improve the training performance.

However, the testing results are somehow di�erent. For
the sonar dataset, which is balanced and appears nearly
Gaussian distributed, the combined classi	er yields much
improved results in testing, especially when the training
ratios are 80% and 50%. Such results are not surprising as the
MLC is ideal to model Gaussian-alike distributed datasets.
For the splice dataset, which is balanced and also nearly
Gaussian distributed, slightly improved testing results are also
produced by the combined classi	er at training ratios at 80%
and 50%, but the testing results at the training ratio of 65%
become slightly worse than those from the SVM. For the
more challenging svmguide3 dataset, which is unbalanced
and non-Gaussian distributed, although the combined clas-
si	er yields improved testing results at the training ratio of
50%, the results at the other two training ratios, perhaps
due to over	tting, seem inferior to the results from the
SVM. Actually, in nature the MLC has di�culty in modeling
non-Gaussian distributed datasets, and this explains where
the combined classi	er makes less contribution to these
datasets.

4.2. Results from a RBF-Kernelled SVM and the MLC. In this
group of experiments, the RBF kernel is used for the SVM
in the combined classi	er as it is popularly used in various
classi	cation problems [16, 22]. For the four datasets we used,
again the training results and the testing results under three
di�erent training ratios are summarized and given in Figure 2
for comparisons.

First of all, RBF-kernelled SVM (R-SVM) produces much
improved results compared to those using linear SVM, espe-
cially for the training results. In fact, the combined classi	er
generates better results than the SVM only in the SampleNew
dataset, slightly worse results in sonar and splice datasets, and
much degraded results in the svmguide3 dataset.

Regarding testing results, although the combined clas-
si	er generates comparable or slightly worse results in the
SampleNewdataset and the svmguide3 dataset, R-SVMyields
better results in splice dataset and sonar dataset. �e reason
behind that is that results from the nonlinear kernel in R-
SVM cannot be directly re	ned using MLC. Also, occa-
sionally the results from the combined classi	er seem more
sensitive to the training ratio, especially for the splice dataset,
which is perhaps due to the threshold to be determinedwhich
depends more or less on the training data used.

4.3. Testing on Rebalanced Data. In this group of experi-
ments, using the challenging dataset svmguide3, how various
strategies to rebalance the unbalanced data may a�ect the
classi	cation performance is analyzed. For the unbalanced
dataset, samples from one class may be overrepresented
compared to those in another class. As a result, we can either
oversample the data of minority or subsample the data of
majority to balance the number of samples represented in the
training set for better modeling of the data. On the other
hand, the test samples remain to be unbalanced as it is
assumed we have no label information for the test samples.

For oversampling, data samples which are in minority
class are randomly duplicated and inserted into the dataset.
�e replication of data items continues until the entire
training set becomes balanced. Di�erent from oversampling,
subsampling randomly discards samples from the majority
class until the training set achieves balanced. Since the per-
formancemay be a�ected by samples duplicated or discarded,
this process is repeated for over 10 times and the average
performance is then recorded for comparisons.

Using three di�erent training ratios at 80%, 65%, and
50%, results of balanced learning for the svmguide3 dataset
are summarized in Figure 3. Under a given training ratio,
both training results and testing results are presented in
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Figure 3: Results of balanced learning for the svmguide3 dataset, using linear SVM (a) and R-SVM (b).

groups, where each group contains results from 6 di�erent
experimental scenarios. In addition, the results from liner
SVM and RBF-kernelled SVM are shown for comparisons as
well.

When linear SVM is used, as shown in the 	rst row
of Figure 3, surprisingly, the results from unbalanced data
are much better than those from balanced data. Also in
majority cases, the combined classi	er outperforms the SVM
classi	er in both training and testing, even with balanced
learning introduced. �e testing results from SVM for bal-
anced learning via oversampling seem better than those
from subsampling, yet it seems that the combined classi	er
produces better results from subsampling based balanced
learning.

For RBF-kernelled SVM, apparently, the training results
from SVM via oversampling are among the best, though
the testing results are inferior to those from unbalanced
training. �is indicates that the training process has been
over	tting in this context. In fact, testing results from the
combined classi	er are slightly worse than those from the
SVMclassi	er, that is, somedegradation. Again, this is caused
by the inconsistency of the nonlinear SVM and the linear
nature of the MLC.

5. Conclusions

SVM and MLC are two typical classi	ers commonly used in
many engineering applications. Although there is a trend to
combine MLC with SVM to provide a probabilistic output
for SVM, under what conditions the combined classi	er may
work e�ectively needs to be explored. In this paper, com-
prehensive results are demonstrated to answer the question
above, using four di�erent datasets. First of all, it is found
that the combined classi	er works under certain constraints,
such as a linear SVM, balanced dataset, and near Gaussian-
distributed data. When a RBF-kernelled SVM is used, the

combined classi	er may produce degraded results due to
the inconsistency between the nonlinear kernel in SVM
and linear nature of MLC. In addition, for a challenging
dataset, balanced learningmay improve the results of training
but not necessarily the testing results. �e reason behind
that is that the combined SVM-MLC classi	er works on
three assumptions, that is, Gaussian distributed, interclass
separable, and model consistency between training data and
testing data. Although the third assumption is true in most
cases, the precondition of separableGaussian distributed data
is rather a strict constraint for data and is rarely satis	ed. As a
result, this introduces a fundamental di�culty in combining
these two classi	ers. However, under certain circumstances,
the combined classi	er indeed can signi	cantly improve the
classi	cation performance. It is worth noting that when
more groups are introduced in modelling a given dataset the
e�cacy can be severely degraded due to the inconsistency
of statistical distribution between groups. Future work will
focus on combining other classi	ers such as neural network
for applications in medical imaging [31–33] and recognition
and classi	cation tasks [34, 35].
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