
Combining Monitoring with
Run-time Assertion Checking

Stijn de Gouw

Combining Monitoring with
Run-time Assertion Checking

Proefschrift

ter verkrijging van

de graad van doctor aan de Universiteit Leiden

op gezag van de Rector Magnificus prof. mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties

te verdedigen op woensdag 18 december 2013

klokke 10.00 uur

door

Stijn de Gouw
geboren te ’s-Hertogenbosch, in 1985

PhD committee

Promotor: Prof. Dr. F.S. de Boer
Co-promotor: Dr. M. M. Bonsangue

Other members:
Prof. Dr. F. Arbab
Prof. Dr. J.N. Kok
Prof. Dr. O. Owe University of Oslo, Norway
Prof. Dr. K.R. Apt University of Amsterdam

The work reported in this thesis has been carried out at the
Center for Mathematics and Computer Science (CWI) in Ams-
terdam and Leiden Institute of Advanced Computer Science at
Leiden University, under the auspices of the research school IPA
(Institute for Programming research and Algorithmics). This
research was supported by the European FP7-231620 project
HATS on Highly Adaptable and Trustworthy Software using
Formal Models.

Copyright c© 2013 by Stijn de Gouw. All rights reserved.

Contents

1 Introduction 1

1.1 Prevention, Isolation and Fixing Bugs 1
Type-Checking 2
Static Verification 2
Run-Time Checking 4

1.2 Object Orientation 5
1.3 Extension to Concurrency 8

Outline . 9

2 Specifying Object-Oriented Programs: Formalisms

and Tools 13

3 Trace Specifications for

Control- and Data-Flow 21

3.1 Modeling Framework 23
Communication View 24
Context-Free Grammars 28
Attribute Grammars and Assertions 29

3.2 Discussion . 34

4 Implementation 39

4.1 Instantiating the Tool Architecture 43

5 Case Studies 51

5.1 Design by Contract: Stack 52
5.2 Fredhopper Case-Study 57
5.3 Experiment . 66

6 Concurrent Object Groups 71

4

CONTENTS 5

6.1 Language . 73
6.2 Semantics . 81
6.3 Behavioral Interfaces for Coboxes 89

Communication Views for COGs 90
Attribute Grammars 93

6.4 Implementation 99

7 Related- and Future Work 103

Expressiveness 105
Learnability . 108
Future Work 110

A Input and output of SAGA 113

Samenvatting 121

Curriculum Vitae 123

Bibliography 125

List of Figures 134

List of Tables 136

Introduction 1

According to a study in 2002 commisioned by a US Depart-
ment, software bugs annually costs the US economy an esti-
mated $59 billion1. A more recent study in 2013 by Cambridge
University estimated that the global cost has risen to $312 bil-
lion globally2.

1.1 Prevention, Isolation and Fixing Bugs

There exists various ways to prevent, isolate and fix software
bugs, ranging from lightweight methods that are (semi)-automatic,
to heavyweight methods that require significant user interac-
tion. To put our own proposal in the right context, we first
briefly look at the main existing approaches. The ones we con-
sider all are based on some form of annotation of the source
code of the program by the user. The annotations can also
be used in their own right as a form of documentation of the
source code (to varying levels of detail, depending on the exact
nature of the annotations).

1 http://web.archive.org/web/20090610052743/http://www.nist.

gov/public_affairs/releases/n02-10.htm
2 http://www.prweb.com/releases/2013/1/prweb10298185.htm

1

1. Introduction

Type-Checking

A relatively successfull and widely adopted method is type-
checking [73]. The programmer annotates source-code3, speci-
fying for each variable and function over which values they may
range, this is called the type. Subsequently there is a check, the
‘type check’, which determines whether the values assigned to
the variable matches the type of the variable (and similarly for
functions and expressions in general) and prevents further com-
pilation and displays a type error when they do not. It is clearly
desirable to perform this check early and automate it as much
as possible, so that errors in the development development are
caught at an early stage. The extend to which automation
and early checks are possible depends on the expressiveness of
the type system: what types can be used. Type systems with
limited expressiveness either reject programs which in reality
do not contain errors, or accept programs which actually con-
tain errors, but the type system cannot determine this due to
the limited expressiveness. However, type systems with strong
expressiveness tend to be undecidable, which means roughly
that no terminating algorithm exists to perform the type check.
Compilers for the most used imperative languages, C, C++ and
Java all perform the type checks at compile-time. In general
there is a trade-off between the expressiveness of the type sys-
tem, and the degree of automation of the corresponding type
checks. Current research focuses on finding more expressive
typesystems which are also efficiently decidable.

Static Verification

Given a formal specification of a program, a static verifier
proves (or disproves) whether all executions of the program
satisfy that specification. The specification is a formal descrip-
tion that expresses what the program (or parts of the program)
is supposed to do. There are two main branches of static veri-
fiers: model checkers and theorem provers (though static type
checkers can also been seen as a form of static verification).

3 There are also type systems which automatically infer types, with-
out requiring annotations. Such type inference is typically supported by
compilers for functional languages.

2

1.1. Prevention, Isolation and Fixing Bugs

Model checkers do not check whether the given property holds
on the actual program. Instead, they determine whether it
holds on a (typically finite) model of the program. The most
used specification languages in model checking are based on
temporal logics [74], which express whether a property holds
at certain points in time. A simple example is: whenever a
request is made, eventually access will be granted. The model
is a simplified version of the program and usually only models
are allowed for which it is possible to decide fully automatically
whether the property holds. The reason that model checkers
work on a model of the program instead of the actual program is
that even for seemingly very simple properties (like the halting
problem, which asks whether it is possible to decide whether a
program terminates), it is undecidable whether that property
holds of the actual program. However, since the model is dif-
ferent from the program, this raises the question whether the
program satisfies a given property if the model does. There
is ongoing research on constructing the smallest possible mod-
els which only abstract away parts of the program irrelevant
for the given property [53]. Another challenge in this field is
the development of algorithms which check the properties as
efficiently as possible.

Theorem provers work on the actual program and determine
correctness of the program by repeatedly applying proof rules.
The problem of determining whether the program satisfies a
given property reduces in this setting to checking whether that
property is derivable by applying finitely many proof rules. In
general, even for very weak specification languages, this will
be undecidable (see the next section), though there is a much
wider class of specification languages that are semi-decidable
(i.e. the true properties of the program are recursively enumer-
able). For efficiency reasons, usually much user interaction and
an in-depth knowledge of the program is needed to guide the
proof search. Specification languages used in theorem provers
include first-order logic, higher-order logic, dynamic logic and
separation logic. These are further discussed in Chapter 3.

3

1. Introduction

Run-Time Checking

Given a program and a specification, a run-time verifier inserts
checks in the code which determine whether the specification
is satisfied. The check is triggered during an actual execution
of the program. Thus in contrast to static verification, where
properties are checked with respect to all executions (possibly
there are infinitely many), run-time checkers only consider a
single execution of the program. There is a wide range of spec-
ification languages used in run-time verification. They can be
partitioned into two categories: languages that focus on the
control-flow (these approaches are also called “monitoring”),
and those focussing on data-flow.

As an example, one can use regular expressions to specify
the order in which functions or methods in a program should
be called [21]. Such specifications describe the control-flow of
the program. Other formalisms for specifying control-flow are
temporal logics, various kinds of automata and context-free
grammars. For these formalisms, checking whether a given
property holds of the current execution involves parsing a word
(where the word is some representation of the trace of method
calls in the current execution) in an automata. Generally only
formalisms are chosen with a decidable parsing problem (in
particular, this is the case for regular expressions, context-free
grammars and most automata), so that everything can be au-
tomated. Specification languages for monitoring are discussed
in more detail in the next chapter.

Approaches that specify data-flow usually do so by annotat-
ing the source code with assertions: logical formulas that must
be true whenever control passes them. The formulas constrain
the values of the program variables. If assertions are expressed
in first-order logic with arithmetic, it is in general undecidable
due to unbounded quantification (i.e. ranging over an infinite
number of values) whether the assertion is true, thus usually
the assertions are restricted in some way. For instance, Java
contains an assert-statement which restricts to quantifier-free
formulas (i.e. Boolean expressions). Design by Contract [65]
provides a systematic way of using assertions to specify classes,
interfaces and methods with respectively class invariants and
pre- and postconditions. It was first used in the programming

4

1.2. Object Orientation

language Eiffel, and subsequently has also been applied to many
other programming languages. For example, JML [17] is one of
the most popular specification languages for Java and supports
Design by Contract. JML also supports unbounded quantifi-
cation, though assertions containing unbounded quantifiers are
not checked by the JML run-time assertion checker.

While type checking for the most used imperative languages
is done fully automatically at compile-time, run-time checking
is done (also fully automatically) during execution, and proper-
ties are only checked for the current execution. This generally
allows more expressive specifications compared to type check-
ers. Static verification cannot be automated. In particular,
even if one restricts pre- and postconditions to just the for-
mulas true and false, the resulting specification language is
still undecidable (such assertions suffice to express the halting
problem).

Our own proposal is a method for run-time check-
ing of object-oriented programs. We discuss below
in more detail how run-time checking applies to the
specific context of object-oriented programming, fo-
cussing first on single-threaded Java, and then de-
scribe an extension to concurrency.

1.2 Object Orientation

Two of the basic features of object-oriented programming are
data abstraction and encapsulation. In the design of software,
these features support the methodology of programming to in-
terfaces [40]. This methodology allows the developer of client
code to abstract from irrelevant implementation details. Com-
bined with the design by contract principle [65], programming
by interfaces is one of the main approaches to mastering the
complexity of software today.

One of the main formal behavioral interface specification
languages for Java, the Java Modeling Language (JML) [17],
is inherently state-based ; i.e., JML mainly provides support
for the specification of classes in terms of their fields, includ-
ing so-called model fields that represent certain aspects of the
data structures underlying the implementation. JML does not

5

1. Introduction

provide explicit support for the specification of the interaction
between objects, in contrast to other formalisms such as mes-
sage sequence charts and UML sequence diagrams [27, 50].

On the other hand, the very semantic foundations of object-
oriented programming are defined in terms of sequences of mes-
sages. In [52], a fully abstract trace semantics for a core Java-
like language is given, where traces (or communication histo-
ries) are (finite) sequences of messages. A fully abstract se-
mantics in general captures the observable behavior abstracting
from implementation details. Such an abstraction is required in
for example a proper semantic definition of behavioral subtyping
as is illustrated by the fragile base class problem [66]: Accord-
ing to the initial/final state semantics the class B (Figure 1.1)
and its revised version in Figure 1.2 below are behaviorally
equivalent.

class B {

int x = 0;

void m() {

x = x+1;

}

void n() {

x = x+1

}

}

Figure 1.1: First version of a base class B

However the behavior of the subclass M defined in Figure 1.3
is clearly different for the two versions of the base class. In fact,
when using the revised version of the base class, the definitions
of the methods m and n in the subclass M are mutually recursive,
giving rise to a non-terminating loop.

It is worthwhile to observe the analogy between this anomaly
with repect to the substitutivity of (behaviorally) equivalent
classes and the following basic counter-example to the compo-
sitionality of the initial/final state semantics for multi-threaded
programs. Both threads T 1 and T 2 of Figure 1.4 have the
same initial/final state semantics, however the initial/final state

6

1.2. Object Orientation

class B {

int x = 0;

void m() {

this.n();

}

void n() {

x = x+1;

}

}

Figure 1.2: New version of a base class B

class M extends B {

void n() {

this.m();

}

}

Figure 1.3: Subclass of the base class

semantics of the interleaving of T 1 and thread T clearly differs
from that of T 2 and T, if assignments are treated atomically.

thread T_1 { x=x+1; x=x+1 }

thread T_2 { x= x+2; }

thread T { x=0 }

Figure 1.4: Multi-Threaded Programs

This counter-example shows that for a compositional se-
mantics of multi-threaded programs we need more specific in-
formation about the underlying implementation, namely infor-
mation about how the final state is generated from the initial
state. The minimal information needed is captured by a fully
abstract semantics (see [67] for a definition of the full abstrac-
tion problem). In general fully abstract semantics of concurrent
systems are based on some form of trace semantics. Of interest

7

1. Introduction

here is that the above work on fully abstract semantics for a
core Java-like language shows that some form of trace seman-
tics is needed even for sequential (single threaded) programs.
More specifically, [52] shows that a form of trace semantics for
object-oriented programs indeed guarantees substitutivity as-
suming encapsulation of the object state. Consequently, also
the fragile base class problem, as shown above, can only be
resolved by some form of trace semantics of behavioral subtyp-
ing. In this case, the sequences of internal communication dis-
tinguishes the classes in Figure 1.1 and Figure 1.2. Fischer and
Wehrheim [37] further investigate behavioral subtyping based
on histories for object-oriented languages.

1.3 Extension to Concurrency

The standard Java concurrency model, based on threads and
locks, is too low-level, error-prone and insufficiently modular
for many applications areas [80]. Instead of extending our run-
time checker for single threaded Java programs to the usual
multithreading4, we investigate instead how to run-time check
programs that use the actor-like concurrency model of [80].
In that paper, Schaefer et al. extend Java with a concur-
rency model based on the notion of concurrently running ob-
ject groups, so-called coboxes, which provide a powerful gen-
eralization of the concept of active objects. Coboxes can be
dynamically created and objects within a cobox have only di-
rect access to the fields of the other objects belonging to the
same cobox. Since one of the main requirements of the design
of coboxes is a smooth integration with object-oriented lan-
guages like Java, coboxes themselves do not have an identity,
e.g., all communication between coboxes refer to the objects
within coboxes. Communication between coboxes is based on
asynchronous method calls with standard objects as targets.
An asynchronous method call spawns a local thread within the
cobox to which the targeted object belongs. Such a thread

4A simple way to extend our results to standard mutlithreading would
consider histories per thread (i.e. project the global history upon each
thread). This does not require significant modifications in either the the-
ory or the tool described in the next chapters.

8

1.3. Extension to Concurrency

consists of the usual stack of internal method calls. Coboxes
support multiple local threads which are executed in an inter-
leaved manner. The local threads of a cobox are scheduled
cooperatively, along the lines of the Creol modeling language
described in [55]. This means that at most one thread can be
active in a cobox at a time, and that the active thread has to
give up its control explicitly to allow other threads of the same
cobox to become active.

The following question arises: how to bridge the gap be-
tween the semantic foundations of Java and the abstraction
level of formal behavioral interface specification languages like
JML? To this end we aim to find a formalism and correspond-
ing tool support which:

1. Integrates properties of the control-flow and data-flow.

2. Is at the same abstraction level as the object-oriented
programming model.

3. Is sufficiently expressive.

4. Is user-friendly, i.e., fairly close to the familiar surface
syntax of the programming language.

5. Supports automated run-time checking.

6. Adds as little overhead as possible.

7. Contains some form of error reporting.

Outline

Chapter 2 contains a survey of existing formalisms and tools
for specifying object-oriented programs.

Chapter 3 presents our own formalism for single-threaded
object-oriented programs. The basic notions of a communica-
tion view, attribute grammars and assertions in attribute gram-
mars are introduced. The chapter concludes with a motivation
for the design choices that were taken during the development
of the specification language.

Chapter 4 describes the architecture of SAGA, a tool for
run-time checking the previously presented formalism. First,

9

1. Introduction

the components of a generic tool architecture are identified.
Second, each component is instantiated with different tools
which are then evaluated.

Chapter 5 contains two case studies. First we specify a
small but very common Java library: a Stack. Subsequently we
consider a larger industrial case from the e-commerce company
Fredhopper. The chapter finishes with an evaluation based on
the two cases.

Chapter 6 contains an extension to concurrency. The under-
lying concurrency model is based on concurrent object groups,
also known as coboxes. First, the semantics of concurrent pro-
grams, which is based on histories, is formalized. The rest of
the chapter explains how such programs can be specified and
checked at run-time. To this end, we extend the formalism
in Chapter 3 to deal with concurrency, and discuss the corre-
sponding tool support.

In the final Chapter 7 we specify various properties of the
previous case studies using the tools PQL, Jassda, LARVA and
MOP.We directly compare the results with our own from Chap-
ter 5, dicussing expressivity, learnability and adoptability.

The work reported in this book is based on the following
selection of my publications: [30, 29, 32, 34, 31]. Other publi-
cations [70, 33, 4] are less relevant in the context of this book.

“Run-Time Assertion Checking of Data- and Protocol-
Oriented Properties of Java Programs: An Indus-
trial Case Study” [29]

Is a journal paper which forms the basis of Chapter 3 and Chap-
ter 5. This paper also introduces the implementation based on
aspect-oriented programming as described in Chapter 4.

“Prototyping a tool environment for run-time as-
sertion checking in JML with communication his-
tories” [30]

Reports on the work in Chapter 3 and the Stack case study in
Chapter 5.

“Run-Time Verification of Black-Box Components
using Behavioral Specifications: An Experience Re-
port on Tool Development” [32]

10

1.3. Extension to Concurrency

Forms the basis of Chapter 4.

“Run-time checking of data- and protocol-oriented
properties of Java programs: an industrial case study”
[34]

Reports on the Fredhopper case study and forms the basis of
Chapter 5 and Chapter 7.

“Run-Time Verification of Coboxes” [31]

Describes the extension to concurrency given in Chapter 6.

11

Specifying Object-Oriented Programs:

Formalisms and Tools 2

In this chapter we give an overview of existing specification
languages for object-oriented programs. The specification lan-
guages can be roughly partitioned into those which focus on
formalizing protocol-oriented properties (all but the last three
categories listed below), and those focussing on data. All spec-
ification languages for protocol properties are based on some
form of histories (also known as traces): sequences of method
calls or returns. Languages focussing on data restrict the val-
ues of variables and fields in a program by means of logical
formulas. We describe whether the specification languages are
used in actual tools for static verification or run-time checking.

Sequence Diagrams A sequence diagram1 shows how mul-
tiple objects interact with each other over time. The diagram
depicts the messages exchanged between the objects, and the
order in which they are sent. In the context of object-oriented
programs, the messages in a sequence diagram correspond to
method calls. Since sequence diagrams visualize a single in-

1 See http://www.omg.org/spec/UML/ for the latest UML specification
of sequence diagrams.

13

2. Specifying Object-Oriented Programs: Formalisms

and Tools

teraction, one could select a set of sequence diagrams as a
specification of the behaviour of an object-oriented program,
by requiring that the methods in the program are executed in
the order specified by one of the sequence diagrams in the set.
The resulting specification language describes properties of the
protocol of the program.

While sequence diagrams have been used in theoretical stud-
ies for verification purposes [28, 62], to the best of our knowl-
edge, sequence diagrams as a specification language have not
been used in actual tools for static or run-time verification.
There are several reasons for this. First, any specification based
on visualization tends to become unclear and even infeasible for
describing large interactions. Second, the number of interac-
tions exhibited in programs are often unbounded due to loops
and recursion. Thus one would need an additional language for
characterizing infinite sets of sequence diagrams.

Regular Expressions A regular expression [56] is a declar-
ative notation for a regular language. A language is a set of
words. The words are usually (finite) strings of characters,
though more complex objects can be used as well. The regular
languages are those that can be obtained from a finite language
by union, concatenation and Kleene star (an infinite union of
finite concatenations of a language). If r1 and r2 are regular
expressions, the notation for these three operations is respec-
tively r1 + r2 (union), r1r2 (concatenation) and r1∗ (Kleene
star). As an example, the regular expression (ab)∗ denote the
language of all words starting with “a” in which “a” and “b” al-
ternate. The formal properties of regular languages have been
widely studied in the field of formal languages and theory of
computation, see for example the books [81, 63].

As a specification language for object-oriented programs,
regular expressions can be used to denote valid histories [21].
In this setting, the alphabet symbols correspond to method
names, histories are represented as sequences of such alphabet
symbols, and the valid histories are the words of the regular
language. Note that in contrast to the previous sequence di-
agrams, regular expressions support a convenient notation for
an infinite set of histories with the Kleene star.

14

There are various tools for run-time checking which sup-
port regular expressions: JmSeq [70], Tracematches [3] and
JavaMOP [20]. The run-time check corresponds to solving the
word problem (or parsing problem): decide whether the history
is a word of the language denoted by a given regular expres-
sion. This can be done efficiently. In particular, if a history is
valid according to a given regular expression, then parsing al-
gorithms exist that decide in constant time whether the history
resulting from appending a single call is also valid according to
the regular expression (for the full history, this leads to parsing
algorithms which are linear in the size of the history), see [41].
Moreover one does not need to store the full history, only the
“state” of the parser for the previous history, and the method
call which is added to the previous history are needed to de-
termine validity of the new history.

Context-Free Grammars A context-free grammar G is a
quadruple G = 〈V,Σ, P, S〉 where V is a set of non-terminals, Σ
is a set of terminal symbols, S is the start-symbol of the gram-
mar (a non-terminal), and P is a set of production rules. The
production rules specify how each non-terminal (independent of
the context in which that non-terminal occurs, hence the name
context-free) is allowed to be rewritten into a sequence of termi-
nals and non-terminals. The grammar generates a context-free
language, namely the set of all strings of terminal symbols that
can be obtained by repeatedly applying the production rules of
the grammar, starting from the start symbol of the grammar.
For example, the grammar below (the used notation for the
grammar is BNF [6]) with the non-terminal S as its start sym-
bol, and “a” and “b” as terminal symbols generates all words
of the form akbk, k ≥ 0 (in words: k a’s, followed by k b’s).
The symbol ǫ denotes the empty word.

S ::= a S b
| ǫ

Context-free grammars are strictly more expressive than
regular expressions. Using the so-called pumping lemma [81],
one can prove that there is no regular expression which denotes
the same language as the grammar above. However it is more

15

2. Specifying Object-Oriented Programs: Formalisms

and Tools

complex to parse a string in a given context-free grammar, than
in a regular expression. The currently best known practical
algorithms can parse a string of length n in (worst case) O(n3)
time.

When used as a specification language for object-oriented
programs, the terminal symbols are the method names, and the
grammar specifies the valid orderings in which these methods
are allowed to be called (in other words, the context-free gram-
mar generates the valid histories). The run-time check which
decides whether a history is valid consists of parsing the cur-
rent history in the given grammar. PQL [64] and JavaMOP [20]
are examples of tools that support run-time checking based on
context-free grammars.

Automata There are too many kinds of automata too list
them here exhaustively, but all of them contain at least two
things: a notion of a state, and a transition function between
states. A finite automaton, one of the simplest automata, con-
tains additionally a set of accepting states and a start state,
with the requirement that the set of states must be finite. Fi-
nite automata are equivalent in expressive power to regular ex-
pressions. A push-down automaton is an extension of a finite
automaton with a stack of infinite size. Push-down automata
are equivalent in expressive power to context-free grammars.

In general, automata can be seen as a representation of a
formal language: it takes a string as input, and accepts or
rejects it based on an acceptance condition (the specific accep-
tance condition varies greatly between the different kinds of
automata). However, unlike the above declarative formalisms
of regular expressions and context-free grammars, automata
tend to have an imperative flavor, focussing on how to parse a
formal language, as opposed to directly specifying the language
itself.

As a specification language for object-oriented programs,
JavaMOP [20] supports finite automata. LARVA [26] supports
a kind of automata called timed automata with stopwatches.

Temporal Logics Temporal logic [74] is a variant of Modal
Logic [39]. As the name indicates, the basis for temporal logics

16

is a notion of time on which the truth of a formula may de-
pend. In particular, as the system described a temporal logic
formula evolves from one state to the next, the truth value of
the formula can change. There are many kinds of temporal
logics, but they can roughly be classified as being linear-time
or branching-time. In linear-time logics, time is viewed as a set
of paths (the paths being sequences of “time instances”). LTL
[74] is a widely used linear-time logic. Branching-time logics
represent time as a tree in which the current time is the root,
and the branches are considered as “possible futures”. CTL
[24] is the main branching-time logic.

Temporal logics have been used extensively in model check-
ing [25], for example in the tools (there are too many others
to fully list here): BLAST [46] Java Pathfinder [87] NuSMV
[22] PRISM [60] SPIN [49] UPPAAL [11]. Temporal logics
have also been used in run-time checking, even for the func-
tional language Haskell [83]. Examples of run-time checkers of
temporal logic formulas for Java are JavaMOP [20] and Java
Pathfinder [5].

Process Algebras Process algebras [7, 45] have been used to
formally model concurrent systems. There exist a wide variety
of process algebras (or process calculi), but all approaches share
some basic characteristics.

Each approach has a notion of a basic process from which
larger processes are built using various operators (for example,
for parallel composition, sequential composition and recursion).
Message passing is used as the only way two different actors or
processes can interact (instead of for example, shared variable
concurrency). Finally, all approaches come with a set of alge-
braic laws (hence the name “process algebra”) which for exam-
ple can be used to show that syntactically different processes
are semantically equal (i.e. have the same behavior).

For reference we list some of the most used process algebras
here: CSP [48, 1], LOTOS [86], CCS [68], ACP [14] and the
more recent π-calculus [69, 78]. CSP has been used in the tool
Jass [8] for run-time checking object-oriented programs.

17

2. Specifying Object-Oriented Programs: Formalisms

and Tools

First-Order Logic First-order logic is a formal system for
specifying and reasoning about formulas about objects (or val-
ues) that range over some domain of discourse. All variables
and terms in a first-order formula range over objects of the
domain of discourse.

First-order logic can be used to specify programs by means
of assertions: a logical formula in which the free variables (i.e.
all variables not bound by ∀ and ∃) are program variables. As-
sertions are written in the source code of the program and must
be true whenever control passes over them. Floyd describes in
[38] a method for proving properties using first-order assertions.
His work was extended by Hoare in [47]. First-order logic also
forms the basis for dynamic logic and second- and higher-order
logic described below.

The popular tool-suite for JML [17] supports first-order as-
sertions for both static verification and run-time checking of
Java programs. The run-time checker for JML only checks for-
mulas involving bounded quantifiers: quantified variables that
range over a finite set of values. Validity of formulas involv-
ing unbounded quantifiers is in general undecidable, as already
noted in the previous chapter.

Dynamic Logic Like temporal logic, Dynamic Logic (DL)
[76, 42] is a variant of modal logic [39] which allows the direct
expression of program equivalence and weakest preconditions.
DL extends full first-order logic with two additional (mix-fix)
relations: < . > . (diamond) and [.] . (box). In both cases, the
first argument is a statement, whereas the second argument is
another DL formula. A formula < s > p is true if there exists
a terminating execution of s after which the formula p is true.
A formula [s]p is true after all terminating executions of s, the
formula p is true. For example, the formula <x=x-1;> (x ==
0) is equivalent to x = 1. Dynamic logic has been used as a
specification language in the static verifiers KeY [10] and KIV
[44].

Second- and Higher-Order Logic Second-Order logic is
a highly expressive formalism which allows quantification over
predicates and functions over the values of the underlying do-

18

main. This contrasts with first-order logic, in which only quan-
tification over values of the domain is allowed. The expres-
siveness comes at a price: no sound and complete proof sys-
tems (with decidable proof rules and axioms) can exist for full
second-order logic. Higher-Order logic is a generalization of
second-order and first-order logic which allows quantification
over objects of an arbitrary higher type (i.e. quantification
over predicates of predicates, and so on). There exist various
theorem provers for programs that support higher-order logic:
Isabelle/HOL [57], Why3 [36], PVS [85] and Coq [15].

Another relatively recent approach is Separation Logic [77],
which extensively uses inductively defined predicates (i.e. second-
order logic), but adds several non-standard logical connectives
to reason about heap properties, such as the separating con-
junction and the points-to predicate. These connectives sup-
port modularity, though they complicate proof theory (they
cannot be axiomatized [18]). Tools that support separation
logic for static verification of programs include: VeriFAST [51],
jStar [35], Slayer [13] and Smallfoot [12].

19

Trace Specifications for

Control- and Data-Flow 3

The formalisms described in the previous chapter for specify-
ing object-oriented programs can be categorized in roughly two
categories: those focussing on the control-flow of the program,
and those focussing on the data-flow of the program. For-
malisms focussing on the control-flow specify the allowed order-
ings between method calls, for example using regular expres-
sions, context-free grammars or temporal logics. Formalisms
for describing the data-flow generally use assertions to restrict
the values of fields, parameters or local variables, possibly en-
hanced by constructs such as pre-post conditions and class in-
variants for supporting design by contract. But none of de-
scribed specification languages were developed to combine the
specification of the control-flow with the data-flow in a sin-
gle formalism. In contrast, the behavior of almost all Java
programs depends on both control-flow and data-flow: for ex-
ample, the behavior of a stack is fully characterized by the se-
quence of method calls to push and pop it receives (the control-
flow), together with the parameter and return values (the data-

21

3. Trace Specifications for

Control- and Data-Flow

flow). For Java programs that encapsulate their internal state1

an execution can be represented by the global communication
history of the program: the sequence of messages correspond-
ing to the invocation and completion of (possibly static) meth-
ods, including actual parameters and return values. Similarly,
the execution of a single object can be represented by its local
communication history, which consists of all messages sent and
received by that object. The behavior of a program (or object)
can then be defined as the set of its allowed histories. Jeffrey
and Rathke [52] develop a fully abstract semantics based on
histories which coincides with the standard operational seman-
tics.

Let us call the orderings between method-calls and returns
the control-flow of a history, and the actual parameters and
return values the data-flow of the history. In this chapter
we develop a single formalism which allows combining data-
oriented properties of the history with protocol-oriented prop-
erties. To be of practical use, such a formalism should be user-
friendly, amenable to (at least) automated run-time verification
and sufficiently expressive. Below we propose attribute gram-
mars extended with assertions and conditional productions for
the specification of histories, and compare several alternatives
approaches with respect to expressiveness, usability and au-
tomation.

Specifications can be used in two different ways: as a de-
scription of how an API (in our case, a set of Java classes and
interfaces) must be used by a client (this can be seen as a kind
of formalized user manual), or as an internal specification for
developers of a class to test the class which is being developed.
In the first case, only methods visible to clients can be used
in the specification (i.e. public methods and no self-calls, since
the user has no control over private methods and self-calls), in
the second case for internal use we must also monitor self-calls
and calls to private methods.

1 Encapsulation means that objects do not have direct access to the
fields of other objects. If access to a field x is needed, the programmer
instead adds two methods T getx() and void setX(T val).

22

3.1. Modeling Framework

3.1 Modeling Framework

The modeling framework consists of three basic ingredients:
communication views, grammars with conditional productions,
and assertions. We use the interface of the Java BufferedReader
(Figure 3.1) as a running example to explain these modeling
concepts. In particular, we formalize the following property of
the BufferedReader:

The BufferedReader may only be closed by the
same object which created it, and read actions may
only occur between the creation and closing of the
BufferedReader.

Note that the above property constrains the clients that
use the BufferedReader; in other words, it is a kind of “user
manual” for the reader, but does not guarantee that the reader
itself works properly (since this property does not restrict the
behavior of the reader itself). The property is a little unusual
in that the reader actually cannot even detect whether a client
uses it according to the above specification, since the reader
has no way to detect whether the caller of close is the same
object that constructed it. This last part can be seen as a form
of dynamically checked ownership: the client which created the
reader owns it, and the above property can serve as a first step
to ensure that no information about the reader is leaked to
other clients.

As a naive first step one might be tempted to define the
behavior of BufferedReader objects simply in terms of ‘call-
m(T)’ and ‘return-m(T)’ messages of all methods ‘m’ in its
interface, where the parameter types T are included to distin-
guish between overloaded methods (such as read). However,
interfaces in Java contain only signatures of provided methods:
methods where the BufferedReader is the callee. Calls to
these methods correspond to messages received by the object.
In general the behavior of objects also depends on messages
sent by that object (i.e. where the object is the caller), and on
the particular constructor (with parameter values) that created
the object. Moreover it is often useful to select a particular sub-
set of method calls or returns, instead of using calls and returns

23

3. Trace Specifications for

Control- and Data-Flow

interface BufferedReader {

void close();

void mark(int readAheadLimit);

boolean markSupported();

int read();

int read(char[] cbuf, int off, int len);

String readLine();

boolean ready();

void reset();

long skip(long n);

}

Figure 3.1: Methods of the BufferedReader Interface

local view BReaderView specifies java.util.BufferedReader {

BufferedReader(Reader in) open,

BufferedReader(Reader in, int sz) open,

call void close() close,

call int read() read,

call int read(char[] cbuf, int off, int len) read

}

Figure 3.2: Communication view of a BufferedReader

to all methods (a partial or incomplete specification). Finally
in referring to messages it is cumbersome to explicitly list the
parameter types. A communication view addresses these is-
sues.

Communication View

A communication view is a partial mapping which associates
a name to each message. Partiality makes it possible to filter
irrelevant events and message names are convenient in referring
to messages.

Suppose we wish to formally specify the property on page 23.
This is a property which must hold for the local history of all
instances of java.util.BufferedReader. The communication
view in Figure 3.2 selects the relevant messages and associates
them with intuitive names: open, read and close.

24

3.1. Modeling Framework

All return messages and call messages methods not listed in
the view are filtered. Note how the view identifies two differ-
ent messages (calls to the overloaded read methods) by giving
them the same name read. Though the above communica-
tion view contains only provided methods (those listed in the
BufferedReader interface), required methods (e.g. methods
of other interfaces or classes) are also supported. Since such
messages are sent to objects of a different class (or interface),
one must include the appropriate type explicitly in the method
signature. For example consider the following message:

call void C.m() out

If we would additionally include the above message in the com-
munication view, all call-messages to the method m of class C
sent by a BufferedReader would be selected and named out.
In general, incoming messages received by an object correspond
to calls of provided methods and returns of required methods.
Outgoing messages sent by an object correspond to calls of re-
quired methods and returns of provided methods. Incoming
call-messages of local histories never involve static methods, as
such methods do not have a callee.

Besides normal methods, communication views can contain
signatures of constructors (i.e. the messages named open in
our example view). As such, the set of signatures that occur in
a communication view is not necessarily a subset of the signa-
tures in the interface it specifies (since Java interfaces do not
contain constructors). In this case, the view selects all calls/re-
turns to an object of a class that implements that interface.

Incoming calls to provided constructors raise an interesting
question: what would happen if we select such a message in a
local history? At the time of the call, the object has not even
been created yet, so it is unclear which BufferedReader object
receives the message. We therefore only allow return-messages
of provided constructors (clearly constructors of other objects
do not pose the same problem, consequently we allow selecting
both calls and returns to required constructors), and for conve-
nience omit return. Alternatively one could treat constructors
like static methods, disallowing incoming call-messages to con-
structors in local histories altogether. However this makes it

25

3. Trace Specifications for

Control- and Data-Flow

impossible to express certain properties (including the desired
property of the BufferedReader) and has no advantages over
the approach we take.

Java programs can distinguish methods of the same name
only if their parameter types are different. Communication
views are more fine-grained: methods can be distinguished also
based on their return type or their access modifiers (such as
public). For instance, consider a scenario with suggestively
named classes Base and three subclasses Sub1, Sub2 and Sub3,
all of which provide a method m. The return type of m in the
Base, Sub1 and Sub2 classes is the class itself (i.e. Sub1 for m
provided by Sub1). In the Sub3 class the return type is Sub1.
To monitor calls to m only with return type Sub1, simply include
the following event in the view:

call Sub1 C.m() messagename

One may ask: why allow private methods to appear in spec-
ifications? After all, private methods cannot be used by an
outside client of the class. The same question arises when con-
sidering whether to monitor self-calls or not. By allowing to
monitor private methods and self-calls, the modeling frame-
work and corresponding tool support can also be used by de-
velopers of the class, to test the current implementation of the
class in development. Communication views include an op-
tional excludeSelfCalls keyword which indicates per event
whether self-calls must be tracked (for self-calls, the caller and
the callee are the same). While typically developers do not
want to exclude self-calls for the purpose of internal tests, this
keyword is especially useful in public specifications for other
clients, that describe how the class must be used by the client.

Local communication views, such as 3.2, selects messages
sent and received by a single object of a particular class, indi-
cated by ‘specifies java.util.BufferedReader’. In contrast,
global communication views select messages sent and received
by any object during the execution of the Java program. This
is useful to specify global properties of a program. In addition
to instance methods, calls and returns of static methods can
also be selected in global views. Figure 3.3 shows a global view
which selects all returns of the method m of a class or interface

26

3.1. Modeling Framework

global view PingPong {

return void Ping.m() ping,

call void Pong.m() pong

}

Figure 3.3: Global communication view

Constructors
Inheritance
Dynamic Binding
Overloading
Static Methods
Required Methods
Access Modifiers

Table 3.1: Supported Java features that require special care.

(or any of its subclasses) called Ping, and all calls to m on a
subtype of a class or interface called Pong. Note that communi-
cation views do not distinguish instances of the same class (e.g.
calls to ‘Ping’ on two different objects of class ‘Ping’ both get
mapped to the same terminal ‘ping’). Different instances can
be distinguished in the grammar using the built-in attributes
‘caller’ or ‘callee’, see the next two sections.

In contrast to interfaces of the programming language, com-
munication views can contain constructors, required methods,
static methods (in global views) and can distinguish methods
based on return type or method modifiers such as ‘static’, or
‘public’. See table 3.1 for a list of supported features which
require special care. For example, to support dynamic bind-
ing, the actual run-time type of the callee must be used, in-
stead of the static type of the variable or field in which the
callee is stored. This means that the correspondence between
the messages named in the communication view, and actual
method calls in the program source code must be made at run-
time. The other features listed in the table have been discussed
above.

27

3. Trace Specifications for

Control- and Data-Flow

Context-Free Grammars

Now that we have identified the basic messages using the com-
munication view, the question arises how we can specify the
valid orderings between these messages: the protocol. More
specifically, we want to find a notation for the set of the valid
histories (where a history is a finite sequence of messages).
While the histories in this set will be finite (since at any point
during execution, the then current history is finite), the set
itself usually contains an infinite number of histories due to re-
cursion or loops, so we cannot simply write it down explicitly.
We can consider the set to be a language in which each history
is a word, and each message is an alphabet symbol. This sug-
gests we can use existing formalisms for defining languages, in
particular the ones surveyed in Chapter 2. We use context-free
grammars to specify the protocol behavior of histories.

Definition A history is valid with respect to a given context-
free grammar if and only if all prefixes of the history (including
the history itself) are generated by the grammar.

The discussion in Section 3.2 provides a motivation for choosing
grammars over the other formalisms, and a justification for our
definition of a valid history.

The grammar below specifies the valid histories of the BufferedReader:

S ::= open C
| ǫ

C ::= read C
| close S
| ǫ

Figure 3.4: Context-Free Grammar which specifies that ‘read’
may only be called in between ‘open’ and ‘close’.

This grammar describes the prefix closure of sequences of
the terminals ‘open’, ‘read’ and ‘close’ as given by the regu-
lar expression ((open read ∗ close)∗). In general, the message
names given by a communication view form the terminal sym-
bols of the grammar, whereas the non-terminal symbols specify

28

3.1. Modeling Framework

the structure of valid sequences of messages (in particular, the
start symbol S generates the valid histories).

Attribute Grammars and Assertions

While context-free grammars provide a convenient way to spec-
ify the protocol structure of the valid histories, they do not take
data such as parameters and return values of method calls and
returns into account. Thus the question arises how to specify
the data-flow of the valid histories. To that end, we first extend
the above context-free grammars with so-called attributes.

Definition Terminal Attributes. Given a terminal T , an at-
tribute of T assigns a value to each instance2 of T (i.e. to each
token of T).

For example, consider a terminal INT LITERAL, and sup-
pose the string “33” is an instance of INT LITERAL. One
could define an attribute val for INT LITERAL, which as-
signs the number 33 to the string “33”. Note that terminal
attributes can assign different values to different instances of
the same terminal.

In the previous section we saw that (instances of) terminals
correspond to call or return messages. The question arises:
what are sensible attributes for such terminals? Several ob-
jects are involved in the sending of the messages: the caller,
the callee, and the actual data being sent in the form of ac-
tual parameters or a return value result. We define built-in at-
tributes (named callee, caller, and so on) to capture precisely
those objects involved in the message. In summary, attributes
of terminals are determined (i.e., built-in) from the method
signatures given in the communication view.

Next we define attributes for non-terminals. Unlike at-
tributes for terminals, they are defined by the user in the gram-
mar. Given a context-free grammar G and a non-terminal V ,
let us denote by L(V) the language generated from the non-
terminal V by using the productions of G.

2 A token is a string of symbols. A terminal can be seen as a token
type, whose tokens are considered to be syntactically “similar”

29

3. Trace Specifications for

Control- and Data-Flow

Definition Non-terminal Attributes. Given a set of values
D and a context-free grammar with a non-terminal V , an at-
tribute for V is a function f : L(V) → D.

Intuitively the above definition states that a non-terminal
attribute assigns values to all of the words generated by that
non-terminal. The value of non-terminal attributes is user-
defined: the user must associate with each production, source
code that computes the attribute values of all non-terminals in-
volved in the production. There are two kinds of non-terminal
attributes: synthesized attributes and inherited attributes. In
each production the user defines the value of the synthesized
attributes of the non-terminal on the left-hand side of the pro-
duction, and the values of the inherited attributes of the non-
terminals appearing on the right-hand side of the production.
In general this does not rule out circular attribute definitions
The seminal paper [59] in which Knuth first introduced at-
tribute grammars contains an algorithm which detects circular
definitions. Using actual source code for the attribute defi-
nitions ensures that all attribute values of non-terminals are
computable. Of course this source code may not terminate, we
rely on the user to make sure that it does.

In our setting, the grammar non-terminals generate sequences
of call/return messages. Hence, a non-terminal attribute can
be seen as a property of the data-flow of that sequence and
hence, as an important special case, the attributes of the start
symbol of the grammar can be considered as properties of the
data-flow of the history. We are now ready to define attribute
grammars:

Definition An attribute grammar is a pair (G,F), where G is
a context-free grammar, and F is a set of attributes for G.

Note that the attributes themselves do not alter the lan-
guage generated by the attribute grammar, they only define
properties of data-flow of the history. We extend the attribute
grammar with assertions to specify properties of attributes.
For example, in the attribute grammar in Figure 3.5 a user-
defined synthesized attribute ‘c’ for the non-terminal ‘C’ is
defined to store the identity of the object which closed the

30

3.1. Modeling Framework

S ::= open C1 {assert (open.caller == null ||

open.caller ==C1.c ||

C1.c == null);}
| ǫ

C ::= read C1 (C.c =C1.c;)
| close S (C.c = close.caller;)
| ǫ (C.c = null;)

Figure 3.5: Attribute Grammar which specifies that ‘read’ may
only be called in between ‘open’ and ‘close’, and the reader may
only be closed by the object which opened it.

BufferedReader (and is null if the reader was not closed yet).
Synthesized attributes define the attribute values of the non-
terminals on the left-hand side of each grammar production,
thus the ‘c’ attribute is not set in the productions of the start
symbol ‘S’. The extension of context-free grammars to attribute
grammars with assertions and conditional productions (next
called “extended attribute grammars”) naturally gives rise to
the following modification in the definition of a valid history.

Definition A history is valid with respect to a given extended
attribute-grammar if and only if all prefixes of the history (in-
cluding the history itself) are generated by the grammar, and
all assertions in the grammar were true for every prefix of the
history.

The assertion in the attribute grammar of the BufferedReader
allows only those histories in which the object that opened (cre-
ated) the reader is also the object that closed it. Throughout
the paper the start symbol in any grammar is named ‘S’. For
clarity, attribute definitions are written between parentheses ‘(’
and ‘)’ whereas assertions over these attributes are surrounded
by braces ‘{’ and ‘}’.

Assertions can be placed at any position in a production
rule and are evaluated at the position they were written. Note
that assertions appearing directly before a terminal can be seen
as a precondition of the terminal, whereas post-conditions are
placed directly after the terminal. This is in fact a gener-

31

3. Trace Specifications for

Control- and Data-Flow

alization of traditional pre- and post-conditions for methods
as used in design-by-contract: a single terminal ‘call-m’ can
appear in multiple productions, each of which is followed by
a different assertion. Hence different preconditions (or post-
conditions) can be used for the same method, depending on
the context (grammar production) in which the event corre-
sponding to the method call/return appears. Traditional pre-
and post-conditions are still useful if in every context, the same
assertion must be used: in that case, the assertions in the gram-
mar would be duplicated at every occurence of the appropriate
terminal. In Section 5.1 we show an example which uses tradi-
tional pre- and post-conditions.

It is important to note that for a meaningful semantics we
have to restrict the attribute grammars to those grammars
which are side-effect free (with respect to the heap) so that
they don’t affect the flow of control of the tested program, and
which do not involve dereferencing of the built-in attributes
of the grammar terminal (the formal parameters of the cor-
responding methods as specified by the communication view)
because these refer to the current heap (and not to the past one
corresponding to the occurrence of the message). This latter
restriction is a fairly natural requirement as the method call
which generated the grammar terminal only passed the the ob-
ject identities of the actual parameters, but not the values of
the fields of these objects. Note also that this requirement is
automatically satisfied by using encapsulation.

Attribute grammars in combination with assertions cannot
express protocol that depend on data. To express such proto-
cols we consider attribute grammars enriched by conditional
productions [72]. In such grammars, a production is chosen
only when the given condition (a boolean expression over the
inherited attributes) for that production is true. Hence condi-
tions are evaluated before any of the symbols in the production
are parsed, before synthesized attributes of the non-terminals
appearing in the production are set and before assertions are
evaluated. In contrast to assertions, conditions in productions
affect the parsing process. The Worker grammar in Figure 5.17
in the case study contains a conditional production for the ‘T’
non-terminal.

32

3.1. Modeling Framework

In summary, a communication view selects and names the
relevant messages. Selection allows to focus just on the relevant
messages while names allow the identification of different mes-
sages, and enable the user to refer to the messages in a user-
friendly manner. Context-free grammars specify the allowed
orderings of the messages. The terminals of the grammars are
the names as introduced by the communication view. These
names are not just simple strings, but also contain various at-
tributes such as the sender, receiver and the data sent in the
message. The non-terminals are user-defined and generate sets
of sequences of messages (i.e. histories), as given by the gram-
mar productions. The start symbol of the grammar generates
the valid histories. A context-free grammar can thus be seen
as specifying a kind of invariant of the control-flow. Attribute
grammars allow defining data properties of sequences of termi-
nals, and in particular of the whole history. To this end, the
user defines attributes of the grammar non-terminals in terms
of the attributes of the grammar terminals. The values of non-
terminal attributes are defined by Java code, which ensures
that the attribute definitions are computable. The extension
of attribute grammars with assertions makes it possible to spec-
ify data-oriented properties of the history, by constraining the
value of the non-terminal attributes.

Finally, conditional productions can be used for protocols
that depend on data. In general, it is possible to specify a single
interface or class with multiple communication views (and cor-
responding grammars). This increases expressiveness: it makes
it possible to specify the intersection of two context-free lan-
guages (if the user specifies two grammars, the history must
satisfy both), and context-free languages are not closed under
intersection. Furthermore multiple communication views and
grammars can be used as partial specifications for the class or
interface, to focussing on a particular behavioral aspect. If it is
possible to decompose a single complete specification into mul-
tiple partial specifications, the resulting specifications are often
simpler. This stems from the fact that a complete specification
formalizes various properties, and care must be taken to avoid
unwanted interference between these properties. In contrast,
partial specifications can be used to formalize each property
individually.

33

3. Trace Specifications for

Control- and Data-Flow

3.2 Discussion

We now briefly motivate our choice of attribute grammars ex-
tended by assertions as specifications and discuss its advantages
over alternative formalisms.

Instead of context-free grammars, we could have selected
push-down automata to specify protocol properties (formally
these have the same expressive power). Unfortunately push-
down automata cannot handle attributes. An extension of
push-down automata with attributes results in a kind of Turing
machine. From a user perspective, the declarative nature and
higher abstraction level of grammars (compared to the impera-
tive and low-level nature of automata) makes them much more
suitable than automata as a specification language. In fact,
a push-down automaton which recognizes the same language
as a given grammar is an implementation of a parser for that
grammar.

Both the BufferedReader above and the case study use only
regular grammars. Since regular grammars simplify parsing
compared to context-free grammars, the question arises if we
can reasonably restrict to regular grammars. Unfortunately
this rules out many real-life use cases. For instance, the follow-
ing grammar in EBNF3 specifies the valid protocol behavior of
a stack:

S ::= (push S pop ?)*

It is well-known that the language generated by the above
grammar is not regular (apply the pumping lemma for reg-
ular languages [81]), so regular grammars (without attributes)
cannot be used to enforce the safe use of a stack. It is possible
to specify the stack using an attribute which counts the num-
ber of pushes and pops:

3 EBNF is an extension of the usual BNF notation for context-free
grammars which allows using the operators on regular expressions (such
as the Kleene star ‘*’ and the ‘?’ operator standing for an optional occur-
rence, i.e., ‘r?’ stands for ‘r + ǫ’) directly inside grammars.

34

3.2. Discussion

S ::= S1 push (S.cnt = S_1.cnt+1;)
| S1 pop (S.cnt = S_1.cnt-1;)

{assert S.cnt >=0;}
| ǫ (S.cnt = 0;)

The resulting grammar is clearly less elegant and less read-
able: essentially it encodes (instead of directly expresses, as in
the grammar above) a protocol-oriented property as a data-
oriented one. The same problem arises when using regular
grammars to specify programs with recursive methods. Thus,
although theoretically possible, we do not restrict to regular
grammars for practical purposes.

Ultimately the goal of run-time checking safety properties
is to prevent unsafe ongoing behavior. To do so, errors must be
detected as soon as they occur; this is known as fail-fast, and
the monitor must immediately terminate the system: it cannot
wait until the program ends to detect errors. In other words,
the monitor must decide after every event whether the current
history is still valid. The simplest notion of a valid history (one
which should not generate any error) is that of a word generated
by the grammar. One way of fulfilling the above requirement,
assuming this notion of validity, is to restrict to prefix-closed
grammars. Unfortunately it’s not possible to decide whether
a context-free grammar is prefix-closed. The following lemmas
formalize this result:

Lemma 3.2.1 Let LM be the set of all accepting computation
histories4 of a Turing Machine M. Then the complement LM

is a context-free language.

Proof See [81].

Lemma 3.2.2 It is undecidable whether a context-free language
is prefix-closed.

4 A computation history of a Turing Machine is a sequence
C0#C1#C2# . . . of configurations Ci. Each configuration is a triple con-
sisting of the current tape contents, state and position of the read/write
head. Due to a technicality, the configurations with an odd index must
actually be encoded in reverse.

35

3. Trace Specifications for

Control- and Data-Flow

Proof We show how the halting problem for M (which is un-
decidable) can be reduced to deciding prefix-closure of LM . To
that end, we distinguish two cases:

1. M does not halt. Then LM is empty so LM is universal
and hence prefix-closed.

2. M halts. Then there is an accepting history h ∈ LM (and
h /∈ LM). Extend h with an illegal move (one not permit-
ted by M) to the configuration C, resulting in the history
h#C. Clearly h#C is not a valid accepting history, so
h#C ∈ LM . But since h /∈ LM , LM is not prefix-closed.

Summarizing, M halts if and only if LM is not prefix-closed.
Thus if we could decide prefix-closure of the context-free lan-
guage (lemma 3.2.1) LM , we could decide whether M halts.

Since prefix-closure is not a decidable property of gram-
mars (not even if they don’t contain attributes) we propose
the following alternative definition for the valid histories. A
communication history is valid if and only if all its prefixes are
generated by the grammar. Note that this new definition natu-
rally fulfills the above requirement of detecing errors after every
event. And furthermore this notion of validity is decidable as-
suming the assertions used in the grammar are decidable. As
an example of this new notion of validity, consider the following
modification of the above grammar:

T ::= S {assert S.cnt >=0;}
S ::= S1 push (S.cnt = S_1.cnt+1;)

| S1 pop (S.cnt = S_1.cnt-1;)
| ǫ (S.cnt = 0;)

Note that the history push pop is a word generated by this
grammar, but not its prefix pop, which as such will generate an
error (as required). Note that thus in general invalid histories
are guaranteed to generate errors. On the other hand, if a
history generates an error all its extensions are therefore also
invalid.

36

3.2. Discussion

Observe that our approach monitors only safety properties
(‘prevent bad behavior’), not liveness (‘something good eventu-
ally happens’). This restriction is not specific to our approach:
liveness properties in general cannot be rejected on any finite
prefix of an execution, and monitoring only checks finite pre-
fixes for violations of the specification. Most liveness properties
fall in the class of the non-monitorable properties [75, 9]. How-
ever it is possible to ensure liveness properties for terminating
programs: they can then be reformulated as safety properties.
For instance, suppose we want to guarantee that a method
void m() is called before the program ends. Introduce the
following global view

global view livenessM {

call void C.m() m,

return static void C.main(String[]) main

}

The occurence of the ‘main’ event (i.e. a return of the main
method of the program) signifies the program is about to ter-
minate. Define the EBNF grammar
S ::= ǫ

| m
| m+ main

(where ’+’ stands for one or more repetitions). This grammar
achieves the desired effect since the only terminating executions
allowed are those containing m. In local views a similar effect
is obtained by including the method finalize (which is called
once the object will be detroyed) instead of main.

37

Implementation 4

Given a Java interface specified with an attribute grammar, we
would like to test whether an object implementing the interface
satisfies the properties defined in the grammar at every point in
its lifetime. In this chapter we first describe the generic archi-
tecture of our tool SAGA [34] which achieves this. Four differ-
ent components are combined: a state-based assertion checker,
a parser generator, a debugger and a general tool for meta-
programming. Traditionally these tools are used for very di-
verse purposes and don’t need to interact with each other. We
therefore investigate requirements needed to achieve a seam-
less integration of these components, motivated by describing
the workflow of the run-time checker. In the next section we
instantiate the four components with concrete state-of-the-art
tools.

Suppose that during execution of a Java program, a method
of a class (subsequently referred to as CUT, the ‘class under
test’) which implements an interface specified by an attribute
grammar is called. The new history of the object on which the
method was called should be updated to reflect the addition of
the method call. To represent the history of an object of CUT,
the Meta-Programming tool generates for each method m

in CUT two classes call-m and return-m. These classes con-

39

4. Implementation

Figure 4.1: Generic Tool Architecture

tain the following fields: the object identitity of the callee, the
identity of the caller and the actual parameters. Additionally
return-m contains a field result containing the return value.
A Java List containing instances of call-m and return-m then
stores the history of an object of CUT.

The meta-programming tool further generates code for a
wrapper class which replaces the original main class. We will
refer to this class as the “history class”. This history class
contains a field H, a Java map containing pairs (id, h) of an
object identity id and its local history h. Moreover it stores
the current values of the synthesized attributes of the start
symbol, these can be used in assertion languages supporting
design by contract (See Section 5.1 for an example of this us-
age). The history class executes the original program inside
the Debugger. The Debugger is responsible for monitoring
execution of the program. It must be capable of temporarily

40

‘pausing’ the program whenever a call or return occurs, and ex-
ecute user-defined code to update H appropriately . Moreover
the Debugger must be able to read the identity of the callee,
caller and parameters/return-value.

After the history is updated the run-time checker must de-
cide whether it still satisfies the specification (the attribute
grammar). Observe that a communication history can be seen
as a sequence of tokens (in our setting: communication events).
Since the attribute grammar together with the assertions gen-
erate the language of all valid histories, checking whether a his-
tory satisfies the specification reduces to deciding whether the
history can be parsed by a parser for the attribute grammar,
where moreover during parsing the assertions must evaluate to
true. Therefore the Parser Generator creates a parser for the
given attribute grammar. Since the history is a heterogenous
list of call-m and return-m objects, the parser must support
parsing streams of tokens with user-defined types. Assertions
in general describe properties of Java objects, and the grammar
contains assertions over attributes, the attributes must be nor-
mal Java variables. Consequently the parser generator must al-
low arbitrary user-defined java code (to set the attribute value)
in rule actions. The use of Java code ensures the attribute val-
ues are computable. Since assertions are allowed in-between
any two (non)-terminals, the parser generator should support
user-defined actions between arbitrary grammar symbols. At
run-time, the parser is triggered whenever the history of an
object is updated. The result is either a parse error, which
indicates that the current communication history has violated
the protocol structure specified by the attribute grammar, or
a parse tree with new attribute values. During parsing, the
Assertion Checker evaluates the assertions in the grammar
on the newly computed attribute values. To avoid parsing the
whole history of a given object each time a new call or return is
appended, ideally the parser should support incremental pars-
ing [43]. An incremental parser computes a parse tree for the
new history based on the parse trees for prefixes of the history.
In our setting, the attribute grammar specifies invariant prop-
erties of the ongoing behavior. Hence the parser constructs a
new parse tree after each call/return, consequently parse trees
for all prefixes of the current history can be exploited for in-

41

4. Implementation

cremental parsing.
To illustrate how the tools described above interact with

each other at run-time, the UML sequence diagram in Fig-
ure 4.2 shows the run-time environment of a successful method
invocation of a (single-threaded) Java program, containing a
class Class Under Test (CUT) whose local history is specififed
by an attribute grammar. The actors in the sequence diagrams
are:

• ‘User Prog’: A client class that instantiates and uses
CUT.

• ‘Debugger’: Java debugger that intercepts all method
calls and corresponding returns from ‘User Prog’ to CUT.

• ‘History (instance)’: an instance of the history class. This
class stores the local history of each object of CUT.

• ‘Parser’: an instance of a parser for the given attribute
grammar. The source code of the Parser was generated
by the Parser Generator.

• ‘Assertion Checker’: provides facilities to check assertions
at run-time.

• ‘Class Under Test (CUT)’: The class which was specified
using an attribute grammar.

• ‘stderr’: the standard error stream of the system. Error
reports (such as an assertion failure or protocol violation)
can be sent to this stream.

Figure 4.3 shows a scenario in which a method return causes
the updated history to violate the grammar rules. In this case,
the parser detects a parse error and outputs a protocol violation
to ‘stderr’. The scenario in which parsing is successfull, but the
assertions cause an error, is not shown but very similar.

42

4.1. Instantiating the Tool Architecture

Figure 4.2: Run-time environment of successfull method invo-
cation

4.1 Instantiating the Tool Architecture

The previous section introduced the generic tool architecture,
which was based on four different components: meta-programming,
debugger, parser generator and state-based run-time assertion
checker. Here we instantiate these four components with par-
ticular (state of the art) tools, and report our experiences to
what extent the requirements stated in the previous section
are satisfied by these current tools. The main overhead of the
run-time checker is caused by the parser, hence we discuss per-
formance (both theoretical and in practice) in the paragraph
on parser generators.

Meta-Programming Rascal [58] is a tool-supported domain
specific language for meta programming. We use its pars-
ing, source code analysis, source-to-source transformation and
source code generation features. A ± 1000 line Rascal pro-
gram1 takes care of:

1Excluding the grammar for Java.

43

4. Implementation

Figure 4.3: Run-time environment of successfull method invo-
cation

• parsing and analyzing the Java method signatures in the
communication view.

• generating Java source for a debugger. The debugger
should intercept any method call and return, and inform
the History class that an event occured.

• generating the token classes call-m and return-m for
each call and return event in the view.

• generating the History class, which specifically accepts
new events from the provided methods in the interface
and acts as a token stream for the generated parser.

The full source code which Rascal generates for the above tasks
contains about 50 times the number of events + 100 lines of
code, in other words, the size of the generated code depends
mainly on the number of events in the communication view.

Note that we require general meta programming features
for several input languages, not just Java. This application
of Rascal has three languages as input (ANTLR grammars,
View declarations and Java), and one output language (Java).
Rascal runs on a JVM, such that it integrates into any Java
environment.

44

4.1. Instantiating the Tool Architecture

In the following Rascal snippet we generate update methods
in the history class which are called whenever a method returns.

return "

<for (‘<mods > <return > <id > (<formals >)‘ <- methods) {

r = "return_<id >";>

public void update(return_<id > e) {

<if (r in tokens){>

e.setType(<grammarName >Lexer.<tokens[r] >);

addAndParse(e);<}>

}

<}>";

This return statement contains three levels. The Rascal lan-
guage level (in boldface) provides the return statement, the
string, and embedded in the string expressions marked by
<...> angular brackets. The string that is generated repre-
sent an (unparsed) Java fragment. The fragments embedded
in back ticks (‘) represent parsed Java fragments from the in-
put interface. Inside those fragments Rascal expressions occur
again between angular brackets.

The string template language of Rascal allows us to instan-
tiate a number of methods called update using a for loop and
an if statement. The data that is used in the for loop is ex-
tracted directly from the parse trees of the methods in a Java
interface file. The concrete Java source pattern between the
back ticks (‘) matches the declaration of a method in the inter-
face, extracting the name of the method (<id>). Note that this
snippet uses variables declared earlier, such as tokens which is
a map from method names to token names taken from the view
declaration in the interface and grammarName which was also
extracted from the view earlier. Albeit complex code due to the
many levels required for this task, the code is short and easy
to adapt to other kinds of analysis and generation patterns.

The main disadvantages of Rascal are that it is still in an
alpha stage, it is not fully backwards compatible and we discov-
ered numerous bugs in Rascal during development of the Rascal
program. However overall our experience was quite positive.
The identified bugs were fixed quickly by the Rascal team, and
its powerful parsing, pattern matching and transforming con-
crete syntax features proved indispensable.

45

4. Implementation

Debugger We evaluated Sun’s implementation of the Java
Debugging Interface for the debugger component. It is part of
the standard Java Development Kit, hence maintenance of the
debugger is practically guaranteed. The Sun debugger starts
the original user program in separate a virtual machine which is
monitored for occurences of MethodEntryEvent (method calls)
and MethodExitEvent (method returns). It allows defining
event handlers which are executed whenever such events occur.
It also allows retrieving the caller, callee, parameters values
and return value of events using StackFrames. No actual Java
source code for the class under test is needed for the debug-
ging. The approach is safe in that no source code nor bytecode
is modified for the monitoring. The Sun debugger meets all
requirements for the debugger stated above. As the main dis-
advantage, we found that the current implementation of the
debugger is very slow. In fact it was responsible for the major-
ity of the overhead of the run-time checker. This is not neces-
sarily problematic: as testing is done during development, the
debugger will typically not be present in performance critical
production code. Moreover, one usually wants to test only up
to a certain bound (for instance, in time, or in the number
of events), and report on results once the bound is exceeded.
Nonetheless, for testing up to huge bounds, a different imple-
mentation for the debugger is needed.

As an alternative we have also tested AspectJ, a Java com-
piler which supports aspect-oriented programming. Aspect-
oriented programming is tailored for monitoring. AspectJ can
intercept method calls and returns conveniently with pointcuts,
and weave in user-defined code (advices) which is executed be-
fore or after the intercepted call. In our case the pointcuts
correspond to the calls and returns of the messages listed in
the communication view. The advice consists of code which
updates the history. The code for the aspect is generated from
the communication view automatically by the Rascal meta-
program. Advice can either be woven into Java source code,
byte code or at class load-time fully automatically by AspectJ.
Note that in contrast to the above Java Debugger approach
this step involves changing the source or bytecode, which may
be deemed as less safe. We use the inter-type declarations of
AspectJ to store the local history of an object as a field in the

46

4.1. Instantiating the Tool Architecture

/* call int read(char[] cbuf, int off, int len); */

before(Object clr, BufferedReader cle,

char[] cbuf, int off, in len):

(call(int *.read(char[], int, int))

&& this(clr) && target(cle) && args(cbuf, off, len)

&& if(BReaderHistoryAspect.class.desiredAssertionStatus()))

{

cle.h.update(new call_push(clr, cle, cbuf, off, len));

}

Figure 4.4: Aspect for the event ‘call int read(char[] cbuf, int
off, int len)’

object itself. This ensures that whenever the object goes out
of scope, so does its history and consequently reduces mem-
ory usage. Clearly the same does not hold for global histories,
which are stored inside a separate Aspect class. Figure 4.4
shows a generated aspect. The second and third line specify
the relevant method, in this case BufferedReader.read. The
fourth line binds variables (‘clr’, ‘cle’, ...) to the appropriate
objects. Note that to support dynamic binding, it is not possi-
ble to statically match method calls to in the Java source to the
below pointcut: the dynamic type of the callee, which is deter-
mined at run-time, determines whether the pointcut matches.
The fifth line ensures that the aspect is applied only when Java
assertions are turned on. Assertions can be turned on or off for
each communication view individually. The fifth line contains
the advice that updates the history. Note that since the event
came was defined in a local view, the history is treated as a
field of the callee and will not persist in the program indefi-
nitely but rather is garbage collected as soon as callee object
itself is.

As a third alternative, we also tested the meta-
programming tool Rascal to generate code which intercepts the
method calls and returns appropriately. This can be done by
defining a transformation on the actual Java source code of the
class under test, which requires a full Java grammar (which
must be kept in sync with the latest updates to Java). To
capture the identity of the callee, parameter values and return

47

4. Implementation

value of a method, one only needs to transform that particular
method (i.e. locally). But inside the method there is no way
to access the identity of the caller. Java does offer facilities to
inspect stack frames, but these frames contain only static enti-
ties, such as the name of the method which called the currently
executing method, or the type of the caller, but not the caller
itself. To capture the caller, a global transformation at all call-
sites is needed (and in particular one needs to have access to
the source code of all clients which call the method). The same
problem arises in monitoring calls to required methods.

Finally it proved to quickly get very complex to handle
all Java features listed in Table 3.1. We wrote an initial ver-
sion of a weaver in Rascal which already took over 150 lines
(over half of the full checker at the time) without support-
ing method calls appearing inside expressions, inheritance, dy-
namic binding, constructors and overloading. Moreover the
meta-programming approach is also unsuitable if the Java
source code is not available (which happens frequently for li-
braries) ing where only byte code is available, limiting the ap-
plicability of the tool. In summary, while it is possible to imple-
ment monitoring by defining a code transformation in Rascal,
this rules out bytecode only libraries, and quickly gets complex
due to the need for a full (up to date) Java grammar and the
complexity of the full Java language.

Parser Generator For the the parser generator component
we tested ANTLR v3, a state of the art parser generator.
It generates fast recursive descent parsers for Java and al-
lows grammar actions and custom token streams. It even
supports conditional productions: productions which are only
chosen during parsing whenever an associated Boolean expres-
sion (the condition) is true and allow for a degree of context-
senstitiveness. Attribute grammars with conditional produc-
tions express protocols that depend on data which are typi-
cally not context-free. ANTLR also supports EBNF, a notation
grammars which extends context-free grammars with the op-
erations from regular expressions, for example the Kleene star.
Though EBNF does not strictly increase expressiveness (the
language generated by such grammars is still context-free), it is

48

4.1. Instantiating the Tool Architecture

convenient for practical purposes: sometimes a regular expres-
sion is simpler and more natural than a full-fledged grammar.

Due to the power of general context-free grammars ex-
tended with attributes (as introduced in the seminal paper [59]
by Knuth), they can be quite expensive to parse. In particular,
the currently best known algorithm [84] to parse context-free
grammars has a time complexity of O(n2.38) (with very huge
constants), where n is the number of terminals to parse. The
current best practical algorithms (with reasonably sized con-
stants) require cubic time. Clearly parsing n tokens cannot
be done in less than O(n) steps, since the entire input must
be read. Besides this trivial linear lower bound, no non-trivial
lower bounds are known [41], though Lee [61] showed that mul-
tiplication of two square Boolean matrices can be reduced at
a certain cost to parsing context-free grammars. In particular,
she showed that if parsing n tokens can be done in O(n3−ǫ)
steps, then we can multiple two n by n Boolean matrices in
O(n3−(ǫ/3)) steps, with small constants. This means that any
practical (i.e. small constants) sub-cubic parsing algorithm also
can be used as a practical sub-cubic matrix multiplication al-
gorithm. However no such fast practical algorithm is known
for matrix multiplication.

ANTLR avoids the cubic-time parsing inefficiency by only
supporting LL(*) grammars2. Due to the restriction, the pars-
ing algorithm used by ANTLR is for most grammars linear, and
quadratic in the worst case. A major disadvantage of ANTLR
is that it lacks support for incremental parsing: each time the
history is updated (i.e. a single terminal is added), the full
history has to be reparsed. Additionally the full history has
to be saved. Support for incremental parsing is planned by
the ANTLR developers. We have not been able to find any
Java parser generator which supports incremental parsing of
attribute grammars.

Assertion Checker We tested two state-based assertion lan-
guages: standard Java assertions and the Java Modeling Lan-
guage (JML). Both languages suffice for our purposes. A Java

2A strict subset of the context-free grammars. Left-recursive gram-
mars are not LL(*).

49

4. Implementation

assertions is a statement assert b; where b is a standard
boolean expressions. As a consequence, note that Java as-
sertions can contain calls to methods that return a boolean.
Though Java assertions can not contain quantifiers, it is to
some degree possible to simulate those using a method contain-
ing a loop. Java does not enforce assertions to be side-effect
free: one needs to check manually that only ‘pure’ assertions
are used.

JML is far more expressive than the standard Java asser-
tions. It allows unbounded quantification, in general any first-
order formula can be expressed in JML, and supports Design
by Contract (see also Section 5.1). JML also ensures that
assertions are side-effect free. Unfortunately the JML tool
support is not ready yet for industrial usage. In particular,
the last stable version of the JML run-time assertion checker
dates back over 8 years, when for instance generics were not
supported yet. The main reason is that JML’s run-time as-
sertion checker only works with a proprietary implementation
of the Java compiler, and unsurprisingly it is costly to up-
date the proprietary compiler each time the standard compiler
is updated. This problem is recognized by the JML devel-
opers [19]. OpenJML, a new alpha version of the JML run-
time assertion checker integrates into the standard Java com-
piler, and initial tests with it provided many valuable input for
real industrial size applications. See the Sourceforge tracker
of OpenJML at http://sourceforge.net/tracker/?group_
id=65346&atid=510629 for the kind of issues we have encoun-
tered when using OpenJML.

50

Case Studies 5

In this chapter we use the formalism described in chapter Chap-
ter 3 and the extension to design by contract described in chap-
ter Chapter 4 to specify a Java library, and an industrial-sized
case from the e-commerce company Fredhopper. The Java li-
brary we consider is a (last-in-first-out) Stack. The Stack ex-
ample illustrates how the Design by Contract methodology as
supported by JML can be used to specify the push and pop-
methods purely in terms of histories in an elegant manner. In
particular, this example shows how synthesized attributes of
the start-symbol can be used conveniently inside method pre-
and postconditions. Based on the case study, we discuss our
experiences with SAGA.

51

5. Case Studies

5.1 Design by Contract: Stack

A Stack is an abstract data type which has only two operations
push and pop. The operation push adds an object to the stack,
while pop returns and removes the last element from the stack
which was pushed but not yet removed. The operation pop is
not allowed on an empty Stack. Figure 5.1 shows an interface
for the Stack in Java.

public interface Stack {

void push(Object item);

Object pop();

}

Figure 5.1: Stack Interface

Our task is to find a specification for the Stack which en-
sures that pop is never called by the user on an empty stack,
and moreover that pop returns the right object when called
on a non-empty stack. The communication view in Figure 5.2
selects three events. The returns of push are needed to keep
track of the elements which have been pushed onto the Stack.
Note that it would incorrect be to consider the calls to push

instead: suppose some strange implementation of push would
itself call pop as its first action, before restoring the removed el-
ement and adding the element which was passed to push. Then
calling push on an empty stack would fail (since that results
in calling pop on an empty stack), but the history would be
‘PUSH POP’ (which seemingly looks valid for a Stack). Se-
lecting returns of push avoids this problem. The calls to pop,
which are referred to by the terminal ‘POP’, are needed to en-
sure that pop is never called on an empty Stack. In this case it
would not suffice to track only returns of pop, since whenever
pop is executed on an empty stack, the run-time checker would
only detect the failure after executing of pop (which fails), and
thus does not prevent unsafe behavior.

The protocol behavior of this view can be defined in terms
of sequences of the terminals ’PUSH’ and ’POP’ generated by
the context-free grammar given in Figure 5.3, where ‘s’ is the

52

5.1. Design by Contract: Stack

local view StackHistory specifies Stack {

return push PUSH;

call pop POP;

}

Figure 5.2: Communication View of a Stack

start symbol.

s ::= PUSH s
| s s
| b

b ::= PUSH b POP
| ǫ
| b b

Figure 5.3: Abstract Stack Behavior

The non-terminal ‘s’ generates the prefix closure of the stan-
dard grammar for balanced sequences of ‘PUSH’ and ‘POP’
(which are generated by the non-terminal ‘b’). This ensures
that pop is never called on an empty stack.

In order to specify the relation between the actual
parameters of calls to the push method and the return
values of the pop method, we introduce a synthesized
attribute ‘stack’ of type JMLListValueNode for the non-
terminal ‘s’. JMLListValueNode is a JML class for a
singly-linked list with side-effect free implementations of
the methods JMLListValueNode append(Object item)

, which appends an item to the list, and
JMLListValueNode concat(JMLListValueNode ls2) which
concatenates two lists. The intended value of the ‘stack’
attribute is a list of the elements which are pushed but have
not yet been popped. Since balanced Stacks are empty,
associating the ‘stack’ attribute also to the b-non-terminal
would be redundant. Figure 5.4 shows how ‘stack’ is updated
in each production of the non-terminal s. Intuitively the value
of ‘stack’ at the root of the parse-tree (i.e. an occurence of the
start-symbol s) is a list containing the current contents of the

53

5. Case Studies

Stack. Figure 5.5 shows the parse tree for the history resulting
from the program s.push(5); s.push(7); s.pop();. Note
that this does not mean that an actual implementation of the
stack interface works correctly: the attribute grammar can be
considered as a ‘reference implementation’ of the stack, but
we still need to ensure that an actual implementation of the
Stack matches (in the sense that calling pop returns the right
value) this reference implementation.

s ::= PUSH s1 (stack =s1.stack.append(PUSH.item);)
| s1 s2 (stack =s1.stack.append(s2.Stack);)
| b (stack = stack.clear();)

b ::= PUSH b POP
| ǫ
| b b

Figure 5.4: Attribute Grammar Stack Behavior

In order to specify the method contracts for the Stack, the
JML implementation of SAGA (described in Section 4.1) al-
lows referring to the synthesized attributes of the root of the
parse tree. Since the start symbol in the parse tree gener-

Figure 5.5: Parse tree annotated with attribute values for the
history push(5) push(7) pop() in the grammar of Figure 5.4
(irrelevant attributes ommitted)

54

5.1. Design by Contract: Stack

ates the whole history, intuitively the synthesized attributes
of the start symbol can be thought of as a property of the
entire history. In order to use the attribute ‘stack’ of this
grammar in assertions for specifying the contracts of the push
and pop methods of the ‘Stack’ interface (Figure 5.1) in terms
of communication histories, the modeling framework provides
a class StackHistory which corresponds to the communica-
tion view of Figure 5.2. This class contains a ’getter’ method
JMLListValueNode stack() which retrieves the value of the
attribute ‘stack’ of the root of the parse tree of the current
history.

interface Stack {

//@ public model instance StackHistory history;

//@ ensures history.stack (). equals(

//@ \old(history.stack ()). append(item));

void push(Object item);

//@ ensures history.stack (). equals(

//@ \old(history.stack ()). tail ());

//@ ensures \result == \old(history.stack ()). head ();

Object pop ();

}

Figure 5.6: JML Specification Stack Interface

Figure 5.6 illustrates how the StackHistory class can be
used to specify the desired contracts. The JML keyword model

indicates that history (of type StackHistory) can be used
only in specifications. The keyword instance specifies that
history will be added as a (non-static) field to any class that
implements the Stack interface. The ensures and requires

clauses specify the method contracts in terms of the ‘stack’
attribute (whose value is defined in the attribute grammar).
Summarizingly, the property that pop may not be called on
an empty stack is ensured by the productions of the grammar
(the grammar productions can be considered to be an interface
invariant for the protocol behavior), and the property that pop
returns the right object is guaranteed by the method contracts
and the definition of the attribute ‘stack’.

55

5. Case Studies

Note that alternatively we could have avoided the method
contracts by instead adding appropriate assertions in the at-
tribute grammar before and after every occurence of ‘PUSH’
and ‘POP’ in the grammar. This leads to duplication since
‘PUSH’ occurs multiple times in the grammar. Moreover,
for this alternative solution, we should also have added to
the communication view that we intend to capture returns
of pop: otherwise there would be no way to check that pop

returned the right value. For the above example, we favour
the above design-by-contract solution over the assertions-in-
grammar, since it avoids duplication of specifications and ad-
ditionally avoids adding the extra terminal for returns of pop.
This increases readability of the grammar, and results in less
overhead for the run-time check since the sequence of tokens to
parse is shorter.

56

5.2. Fredhopper Case-Study

Live

Environment

Live

Environment

Data and Config

Updates

Configurations

changes

Staging

Environment

Data

Manager

Internet

...

Client-side

Web App

Client-side

Web App

Client-side

Web App

Data updates Live

Environment... Load

balancer

Figure 5.7: An example FAS deployment

5.2 Fredhopper Case-Study

Fredhopper1 is a search, merchandising and personalization so-
lution provider, whose products are tailored to the needs of on-
line businesses. Fredhopper operates behind the scenes of more
than 100 of the largest online shops 2. It provides the Fred-
hopper Access Server (FAS), which is a distributed concurrent
object-oriented system that provides search and merchandising
services to eCommerce companies. Briefly, FAS provides to its
clients structured search capabilities within the client’s data.
Each FAS installation is deployed to a customer according to
the FAS deployment architecture (See Figure 5.7).

FAS consists of a set of live environments and a single stag-
ing environment. A live environment processes queries from
client web applications via web services. FAS aims at provid-
ing a constant query capacity to client-side web applications. A
staging environment is responsible for receiving data updates in
XML format, indexing the XML, and distributing the resulting
indices across all live environments according to the Replica-

1http://www.sdl.com/products/fredhopper/
2http://www.sdl.com/campaign/wcm/gartner-maqic-quadrant-wcm-2013.

html?campaignid=70160000000fSXu

57

5. Case Studies

Figure 5.8: Replication interaction

tion Protocol. The Replication Protocol is implemented by the
Replication System. The Replication System consists of a Sync-
Server at the staging environment and one SyncClient for each
live environment. The SyncServer determines the schedule of
replication, as well as its content, while SyncClient receives
data and configuration updates according to the schedule.

Replication Protocol

The SyncServer communicates to SyncClients by creating
Worker objects. Workers serve as the interface to the server-
side of the Replication Protocol. On the other hand, Sync-
Clients schedule and create ClientJob objects to handle com-
munications to the client-side of the Replication Protocol.
When transferring data between the staging and the live en-
vironments, it is important that the data remains immutable.
To ensure immutability without interfering the read and write
accesses of the staging environment’s underlying file system,

58

5.2. Fredhopper Case-Study

interface Snapshot {

void refresh();

void clear();

List<Item> items(String sn);

}

interface Worker {

void establish(String sn);

List<Item> reg(String sn);

void transfer(Item item);

SyncServer server();

}

Figure 5.9: SnapShot and Worker interfaces of Replication Sys-
tem

the SyncServer creates a Snapshot object that encapsulates a
snapshot of the necessary part of the staging environment’s file
system, and periodically refreshes it against the file system.
This ensures that data remains immutable until it is deemed
safe to modify it. The SyncServer uses a Coordinator object
to determine the safe state in which the Snapshot can be re-
freshed. Figure 5.8 shows a UML sequence diagram concerning
parts of the replication protocol with the interaction between
a SyncClient, a ClientJob, a Worker, a SyncServer, a Coor-
dinator and a Snapshot. the diagram also shows a Util class
that provides static methods for writing to and reading from
Stream. The figure assumes that SyncClient has already estab-
lished connection with a SyncServer and shows how a ClientJob
from the SyncClient and a Worker from a SyncServer are in-
stantiated for interaction. For the purpose of this paper we
consider this part of the Replication Protocol as a replication
session.

In this section we show how to modularly decompose ob-
ject interaction behavior depicted by the UML sequence dia-
gram in Figure 5.8 using SAGA. Figures 5.9 and 5.10 shows
the corresponding interfaces and classes, note that we do not
consider SyncClient as our interest is in object interactions of a
replication session, that is after ClientJob.start() has been
invoked.

The protocol descriptions and specifications considered in
this case study have been obtained by manually examining the

59

5. Case Studies

interface SyncServer {

Snapshot snapshot();

}

interface Coordinator {

void start(Worker t);

void finish(Worker t);

}

class Util {

static void write(String s) { .. }

}

Figure 5.10: SyncServer and Coordinator interfaces of Repli-
cation System

behavior of the existing implementation, by formalizing avail-
able informal documentations, and by consulting existing de-
velopers on intended behavior. Here we first provide such in-
formal descriptions of the relevant object interactions:

• Snapshot: at the initialization of the Replication System,
refresh should be called first to refresh the snapshot.
Subsequently the invocations of methods refresh and
clear should alternate.

• Coordinator: neither of methods start and finish may
be invoked twice in a row with the same argument, and
method start must be invoked before finish with the
same argument can be invoked.

• Worker: establish must be called first. Furthermore
reg may be called if the input argument of establish
is not “LIST” but the name of a specific replication
schedule, and that reg must take that name as an in-
put argument. When the reg method is invoked and
before the method returns, the Worker must obtain the
replication items for that specific replication schedule via
method items of the Snapshot object. The Snapshot ob-
ject must be obtained via method snapshot of its Sync-
Server, which must be obtained via the method server.
It must notify the name of each replication item to its

60

5.2. Fredhopper Case-Study

local view SnapshotHistory

grammar Snapshot.g

specifies Snapshot {

call void refresh() rf,

call void clear() cl

}

Figure 5.11: Snapshot Communication View

local view CoordinatorHistory

grammar Coordinator.g

specifies Coordinator {

call void start(Worker t) st,

call void finish(Worker t) fn

}

Figure 5.12: Coordinator Communication View

local view WorkerHistory grammar Worker.g

specifies Worker {

call void establish(String sn) et,

call List<Item> reg(String sn) rg,

return List<Item> reg(String sn) is,

call void transfer(Item item) tr

}

Figure 5.13: Worker Communication View

interacting SyncClient. This notification behavior is im-
plemented by the static method write of the class Util.
The method reg also checks for the validity of each repli-
cation item and so the method must return a subset of the
items provided by the method items. Finally transfer

may be invoked after reg, one or more times, each time
with a unique replication item, of type Item, from the list
of replication items, of type List<Item>, returned from
reg.

Figures 5.11 to 5.14 specifies communication views. They
provide partial mappings from message types (method calls and
returns) that are local to individual objects to grammar termi-
nal symbols. Note that the specification of the Worker’s behav-
ior is modularly captured by two views: WorkerHistory and

61

5. Case Studies

local view WorkerRegHistory grammar WorkerReg.g

specifies Worker {

call List<Item> reg(String sn) rg,

return List<Item> reg(String sn) is,

return Snapshot SyncServer.snapshot() sp,

call List<Item> Snapshot.items(String sn) ls,

return List<Item Snapshot.items(String sn) li,

call static void Util.write(String s) wr

}

Figure 5.14: WorkerReg Communication View

S ::= ǫ | rf T
T ::= ǫ | cl S

Figure 5.15: Snapshot Attribute Grammar

S ::= T (T.ts = new HashSet();)
T ::= ǫ | st {assert ! T.ts.contains(st.t);}

(T.ts.add(st.t);) T1 (T1.ts = T.ts;)
| fn {assert T.ts.contains(fn.t);}

(T.ts.remove(fn.t);) T1 (T1.ts = T.ts;)

Figure 5.16: Coordinator Attribute Grammar

WorkerRegHistory. The view WorkerHistory exposes meth-
ods establish, reg and transfer. Using this view we would
like to capture the overall valid interaction in which Worker
is the callee of methods, and at the same time the view helps
abstracting away the implementation detail of individual meth-

S ::= ǫ | et T (T.d = et.sn;)
T ::= ǫ | {!"LIST".equals(T.d);}?

rg {assert rg.sn.equals(T.d);} U
U ::= ǫ | is V (V .m = new ArrayDeque(is.result);)
V ::= ǫ | tr {assert V .m.peek().equals(tr.item);}

(V .m.pop();) V1 (V1.m = V .m;)

Figure 5.17: Worker Attribute Grammar

62

5.2. Fredhopper Case-Study

/*S accepts call to Worker.reg() and, records */

/*the input schedule name, also S allows */

/*arbitary calls to SyncServer.snapshot() */

/*and Util.write() */

S ::= ǫ | wr S | sp S | rg T (T.d = et.sn;)

/*T accepts and stores the return */

/*snapshot object from SyncServer.snapshot() */

T ::= ǫ | sp V (V .d = T.d; U.s = sp.result;)

/*U ensures call items() is called on the same */

/*snapshot object, and the replication items */

/*for the correct schedule are retrieved */

U ::= ǫ | ls {assert ls.callee.equals(U.s);

assert ls.sn.equals(U.d);}
V (V .s = U.s;)

/*V records replication items and their name */

/*returned from item() */

V ::= ǫ | li W (W.is = new HashSet(li.result);
W.ns = new HashSet();

for (Item i :W.is) {

W.ns.add(i.name()); })

/*W ensures all replication */

/*items are processed */

W ::= ǫ | wr (W.ns.remove(wr.s);)
W1 (W1.ns =W.ns; W1.is =W.is;)

| is {assert W.is.containsAll(is.result);
assert W.ns.isEmpty();}

X

X ::= ǫ | sp X | rg X

Figure 5.18: WorkerReg Attribute Grammar

63

5. Case Studies

ods. The view WorkerRegHistory, on the other hand, captures
the behavior inside reg. According to the informal description
above, the view projects incoming method calls and returns of
reg, outgoing method calls to server and items, and as well
as the outgoing static method calls to write.

We now define the abstract behavior of the communication
views, that is, the set of allowable sequences of interactions of
objects restricted to those method calls and returns mapped
in the views. Each local view also defines the file contain-
ing the attribute grammar, whoses terminal symbols the view
maps method invocations and returns to. Specifically, Fig-
ures 5.15 to 5.18 shows the attribute grammars Snapshot.g,
Coordinator.g, Worker.g and WorkerReg.g for views
SnapshotHistory, CoordinatorHistory, WorkerHistory and
WorkerRegHistory respectively.

The simplest grammar Snapshot.g specifies the interaction
protocol of Snapshot. It focuses on invocations of methods
refresh and clear per Snapshot object. The grammar es-
sentially specifies the (prefix-closure of the) regular expression
(refresh clear)∗.

The grammar Coordinator.g specifies the interaction pro-
tocol of Coordinator. It focuses on invocations of methods
start and finish, both of which take a Worker object as the
input parameter. These method calls are mapped to terminal
symbols st and fn, while their inherited attribute is a HashSet,
recording the input parameters, thereby enforcing that for each
unique Worker object as an input parameter only the set of
sequences of method invocations defined by the reqular expres-
sion (start finish)∗ is allowed.

The grammar Worker.g specifies the interaction protocol
of Worker It focuses on invocations and returns of methods
establish, reg and transfer. The grammar specifies that
for each Worker object, establish must be first invoked, then
followed by reg and then zero or more transfer, that is, the
regular expression (establish reg transfer∗). We use the
attribute definition of the grammar to ensure the following:

• The input argument of establish and reg must be the
same;

64

5.2. Fredhopper Case-Study

• reg can only be invoked if the input argument of
establish is not “LIST”;

• The return value of reg is a list of Item objects such that
transfer is invoked with each of Item in that list from
position 0 to the size of that list.

The grammar WorkerReg.g specifies the behavior of the
method reg of Worker. It focuses on the invocations and re-
turns of method reg of Worker as well as the outgoing method
calls and returns of Util.write and SyncServer.snapshot

and Snapshot.items. At the protocol level the grammar spec-
ifies the regular expression (snapshot items write∗) inside
the invocation method reg. We use attribute definition to en-
sure the following:

• Snapshot.items must be called with the input argument
of reg and it must be called on the Snapshot object that
is identical to the return value of SyncServer.snapshot;

• The static method Util.write must be invoked with the
value of Item.name for each Item object in the Collection
returned from Snapshot.items;

• The returned list of Item objects from reg must be a
subset of that returned from Snapshot.items.

Notice that methods Util.write and SyncServer.snapshot

may be invoked outside of the method reg. However, this
particular behavioral property does not specify the protocol for
those invocations. The grammar therefore abstracts from these
invocations by allowing any number of calls to Util.write and
SyncServer.snapshot before and after reg.

65

5. Case Studies

Figure 5.19: Violating histories

5.3 Experiment

We applied SAGA to the Replication System. The current Java
implementation of FAS has over 150,000 lines of code, and the
Replication System has approximately 6400 lines of code, 44
classes and 5 interfaces.

We have successfully integrated SAGA into the quality as-
surance process at Fredhopper. The quality assurance process
includes automated testing that includes automated unit, inte-
gration and system tests as well as manual acceptance tests. In
particular system tests are executed twice a day on instances
of FAS on a server farm. Two types of system tests are sce-
nario and functional testing. Scenario testing executes a set
of programs that emulate a user and interact with the system
in predefined sequences of steps (scenarios). At each step they
perform a configuration change or a query to FAS, make asser-
tions about the response from the query, etc. Functional testing
executes sequences of queries, where each query-response pair
is used to decide on the next query and the assertion to make
about the response. Both types of tests require a running FAS
instance and as a result we may leverage SAGA by augment-
ing these two automated test facilities with runtime assertion
checking using SAGA.

To integrate of SAGA with the system tests, we employ
Apache Maven tool3, an open source Java based tool for man-
aging dependencies between applications and for building de-
pendency artifacts. Maven consists of a project object model

3maven.apache.org

66

5.3. Experiment

class WKImpl extends Thread

implements Worker {

final Coordinator c;

WKImpl(Coordinator c) {

this.c = c; }

public void run() {

try { .. c.start(this); ..

} finally {

c.finish(this); .. }}}

Figure 5.20: Incorrect behavior of WKImpl

(POM), a set of standards, a project lifecycle, and an exten-
sible dependency management and build system via plug-ins.
We use its build system to automatically generate and pack-
age the parser/lexer of attribute grammars as well as aspects
from views and grammars. We expose the packaged aspects,
parser and lexer to FAS instance on the server farm and employ
Aspectj using load-time weaver for monitoring method call-
s/returns during the execution of FAS instances on the server
farm. Table 5.1 shows the number of join point matches dur-
ing the execution of 766 replication sessions over live client
data. Figure 5.21 shows the exection time of the 766 repli-
cation sessions with and without the integration of SAGA in
milliseconds. At some points (for example, around 261 events),
the figure seemingly indicates that the system runs faster with
SAGA than without. In reality this is not the case: the depen-
dence of the case study on user input (i.e., to start replication
sessions) means that it is impossible to replicate an execution
exactly (with the only difference being SAGA turned on and
off respectively) and leads to small errors in the measurements.
However, despite the fact that we cannot control the exact flow
of control of the replication sessions (due to this dependence
on user input), the graph clearly shows that the integration of
SAGA has minimal performance impact on the execution time.

During this session we have found an assertion er-
ror at join point call finish due to the condition
T.ts.contains(fn.t) not being satisfied at non-terminal T
of the grammar Coordinator.g. Specifically, the implemen-
tation of Worker (WKImpl) that invoke finish before start.
Figure 5.19 shows the sequence diagram of an invalid history

67

5. Case Studies

Join point Terminal Match

call static write wr 247446
return snapshot sp 3061
call transferItem tr 1101
return reg (WorkerHistory) is 765
return reg (WorkerRegHistory) is 765
call establish et 766
call reg (WorkerHistory) rg 765
call reg (WorkerRegHistory) rg 765
return items li 765
call start st 766
call finish fn 766
call items ls 765
call refresh rf 766
call clear cl 766

Table 5.1: Join point matches in 766 replication sessions

15000

20000

25000

30000

With SAGA

Without SAGA

0

5000

10000

1

2
1

4
1

6
1

8
1

1
0
1

1
2
1

1
4
1

1
6
1

1
8
1

2
0
1

2
2
1

2
4
1

2
6
1

2
8
1

3
0
1

3
2
1

3
4
1

3
6
1

3
8
1

4
0
1

4
2
1

4
4
1

4
6
1

4
8
1

5
0
1

5
2
1

5
4
1

5
6
1

5
8
1

6
0
1

6
2
1

6
4
1

6
6
1

6
8
1

7
0
1

7
2
1

7
4
1

7
6
1

Figure 5.21: Comparison of the execution time (milliseconds)
of the replication sessions with and without the integration of
SAGA

causing the error, fully automatically generated from the out-
put of SAGA. Figure 5.20 shows part of the implementation of
WKImpl. It turns out that in the run method of WKImpl, the
method start is invoked inside a try block while the method
finish is invoked in the corresponding finally block. As a
result when there is an exception being thrown by the execu-

68

5.3. Experiment

tion preceding the invocation of start inside the try block,
for example a network disruption, finish would be invoked
without start being invoked.

69

Concurrent Object Groups 6

In [80] Java is extended with a concurrency model based on
the notion of concurrently running object groups, so-called
coboxes, which provide a powerful generalization of the con-
cept of active objects. Coboxes can be dynamically created
and objects within a cobox have only direct access to the fields
of the other objects belonging to the same cobox. Since one
of the main requirements of the design of coboxes is a smooth
integration with object-oriented languages like Java, coboxes
themselves do not have an identity, e.g., all communication be-
tween coboxes refer to the objects within coboxes. Communi-
cation between coboxes is based on asynchronous method calls
with standard objects as targets. An asynchronous method call
spawns a local thread within the cobox to which the targeted
object belongs. Such a thread consists of the usual stack of
internal method calls. Coboxes support multiple local threads
which are executed in an interleaved manner. The local threads
of a cobox are scheduled cooperatively, along the lines of the
Creol modeling language described in [55]. This means, that at
most one thread can be active in a cobox at a time, and that
the active thread has to give up its control explicitly to allow
other threads of the same cobox to become active.

ABS (Abstract Behavioral Specification language) is a novel

71

6. Concurrent Object Groups

language based on coboxes for modeling and analysis of com-
plex distributed systems. It is a fully executable language with
code generators for Java, Maude and Scala. In [54] a for-
mal semantics of ABS was introduced based on asynchronous
messages between coboxes. However, as of yet, no formal
method for specifying and run-time verifying traces of such
asynchronous messages has been developed. In this chapter,
we develop tool support for the efficient run-time verification
of asynchronous message passing between coboxes, indepen-
dent from any backend. This latter requirement is important
because in general the analysis of a particular backend is com-
plicated by low-level implementation details. Further, it allows
to generalize the analysis to all (including future) backends.

We show how to use attribute grammars extended with as-
sertions to specify and verify (at run-time) properties of the
messages sent between coboxes. To this end, we first improve
the efficiency of the run-time verification tool SAGA [34], which
smoothly integrates both data- and protocol-oriented proper-
ties of message sequences. Both time and space complexity of
SAGA is linear in the size of the message sequence. Further
we extend it to support design-by-contract for coboxes. We
illustrate the effectiveness of our method by an industrial case
study from the eCommerce software company Fredhopper.

72

6.1. Language

6.1 Language

We formally describe coboxes by means of a modeling language
which is based on the Abstract Behavioral Specification lan-
guage [54]. We refer to our own modeling language by ACOG
(pure Actor-based Concurrent Object Groups). ACOG is de-
signed with a layered architecture, at the base are functional
abstractions around a standard notion of parametric algebraic
data types (ADTs). Next we have an OO-imperative layer
similar to (but much simpler than) Java. ACOG generalizes
the concurrency model of Creol [55] from single concurrent ob-
jects to concurrent object groups (coboxes). As in [80] coboxes
encapsulate synchronous, multi-threaded, shared state compu-
tation on a single processor. In contrast to thread-based con-
currency, task scheduling is cooperative, i.e., switching between
tasks of the same object happens only at specific scheduling
points during the execution, which are explicit in the source
code and can be syntactically identified. This allows writing
concurrent programs in a much less error-prone way than in
a thread-based model and makes ACOG models suitable for
static analysis. In fact, the standard Java concurrency model,
based on threads and locks, is too low-level, error-prone and
insufficiently modular for many applications areas [80]. In our
dialect, unlike in [80], for simplicity we restrict to coboxes that
communicate only via pure asynchronous messages, and as such
form an actor-based model as initially introduced by [2] and
further developed in [82].

Fig. 6.1 shows some data types and parts of interfaces used
in the case study. The interface ClientJob models a Clien-
tJob, the interface Worker models a Worker, and the inter-
face Coordinator models a Coordinator. The algebraic data
types (ADT) Content models the file system of environments
in ACOG. ADTs allow specifying immutable values in func-
tional expressions and to abstract away from implementation
details such as hardware environment, file content, or operat-
ing system specifics. Specifically, Content is either a File,
where an integer (e.g., its size) is taken to represent the con-
tent of a single file, or it is a directory Dir with a mapping of
names to Content, thereby, modelling a file system structure
with hierarchical name space. Note that an ADT may have

73

6. Concurrent Object Groups

data Content = File(Int content)

| Dir(Map<String,Content>);

interface Worker {

Unit acceptCoordinator(Coordinator coord);

Unit sendCurrentId(Int id);

Unit replyRegisterItems(Bool register);

Unit acceptItems(Set<Item> items);

Unit acceptEntries(Set<Map<String,Content>> contents);

}

interface Coordinator {

Unit startReplication(Worker w);

}

interface ClientJob {

Unit registerItems(Worker w, Int id);

}

Figure 6.1: Data types and Interfaces

type parameters. For example, Map is a built-in ADT where its
key and value type parameters are instantiated to String and
Content.

In this subsection we describe the core constructs of our
dialect of the ABS in some detail. Specifically, we describe

• algebraic data types and functions;

• interfaces

• synchronous method calls and objects creation;

• asynchronous method calls and cobox creation;

• cooperative scheduling using await statements.

To illustrate synchronous and asycnhronous communication we
look at the implementation of how a ClientJob connects to a
Worker and receives the next set of replication schedules.

74

6.1. Language

Data types and Functions ACOG supports algebraic data
types (ADT) to model data in a software system. ADTs ab-
stract away from implementation details such as hardware en-
vironment, file content, or operating system specifics. For ex-
ample in the Replication System, the following ADT Content

models the file system of environments.

data Content = File(Int content)

| Dir(Map<String,Content>);

ACOG supports first-order functional programming with ADT.
Functional code is guaranteed to be free of side effects. One
consequence of this is that functional code may not use object-
oriented features. For example, the following function isFile

checks if the given Content value records a file.

def Bool isFile(Content c) =

case {

File(_) => True;

_ => False;

};

Interfaces ACOG has a nominal type system with interface-
based subtyping. Interfaces define types for objects. They
have a name, and define a set of method signatures, that is,
the names and types of callable methods. The following shows
interface Worker that models a Worker.

interface Worker {

Unit execute();

Unit command(Command c);

Unit acceptCoordinator(Coordinator coord);

Unit sendCurrentId(Int id);

Unit replyRegisterItems(Bool register);

Unit acceptItems(Set<Item> items);

Unit acceptEntries(Set<Map<String,Content>> contents);

}

Classes ACOG also supports class-based, object-oriented
programming with standard imperative constructs. Classes de-

75

6. Concurrent Object Groups

fine the implementation of objects. In contrast to Java, for
example, classes do not define a type. Classes can implement
arbitrarily many interfaces. These interfaces define the type
of instances of that class. A class has to implement all meth-
ods of all its implementing interfaces. Classes are instantiated
by constructors. The following class WorkerImpl implements
Worker:

class WorkerImpl(ClientJob job,

SyncServer server,

Coordinator coord)

implements Worker {

Maybe<Command> cmd = Just(ListSchedule);

WorkerImpl(ClientJob job,

SyncServer server,

Coordinator coord) {

...

}

Unit execute() {

...

}

Unit command(Command c) {

...

}

Unit acceptCoordinator(Coordinator coord) {

...

}

Unit sendCurrentId(Int id) {

...

}

Unit replyRegisterItems(Bool register) {

...

}

Unit acceptItems(Set<Item> items) {

...

}

Unit acceptEntries(Set<Map<String,Content>> contents) {

...

}

}

76

6.1. Language

It defines the fields job, server, cmd and coord. Those fields
are typically initialized by a constructor method, or for simple
initializations such as cmd, in the class definition itself.

Thread-based computation Basic statements describing
the flow of control of a single thread include the usual (syn-
chronous) method invocations, object creation, and field and
variable reads and assignments. These statements can be com-
posed by the standard control structures (sequential compo-
sition, conditional and iteration constructs). The following
shows the part of class ClientJobImpl that a ClientJob con-
necting to a Worker and acquiring the next schedules:

class ClientJobImpl(SyncServer server)

implements ClientJob {

Unit sendSchedules(Set<Schedule> ss) {

...

}

Unit executeJob() {

...

}

Unit acceptConnection(Worker w) {

if (w != null) {

...

this.scheduleJob();

}

}

Unit scheduleJobs() {

Scheduler sr = new SchedulerImpl(...);

sr.schedule();

}

}

The method acceptConnection invokes synchronously the
(private) method scheduleJob, which in turn creates an ob-
ject of SchedulerImpl (by invoking the appropriate construc-
tor method) and invokes its method schedule.

Coboxes The concurrency model of ACOG is based on the
concept of Coboxes. A typical ACOG system consists of mul-
tiple, concurrently running coboxes. Coboxes can be regarded

77

6. Concurrent Object Groups

as autonomous run-time components that are executed con-
currently, share no state and communicate via method calls. A
new object cobox is created by using the new cog expression.
It takes as argument a class name and optional parameters
and returns a reference to the initial object of the new cobox.
Communication between coboxes may solely be done via asyn-
chronous method calls. The difference to the synchronous case
is that an asynchronous call immediately returns to the caller
without waiting for the message to be received and handled
by the callee. Asynchronous method calls are indicated by an
exclamation mark (!) instead of a dot.

The following fragment of ClientJobImpl illustrates cobox
creation and asynchronous communications.

class ClientJobImpl(SyncServer server,

SyncClient client,

Schedule s)

implements ClientJob {

Set<Schedule> schedules = EmptySet;

Unit executeJob() {

server!getConnection(this);

}

Unit acceptConnection(Worker w) {

...

}

Unit sendSchedules(Set<Schedule> ss) {

...

}

Unit scheduleJobs() {

...

}

}

class SyncServerImpl(Coordinator coord)

implements SyncServer {

Unit getConnection(ClientJob job) {

Bool shutdown = this.isShutdownRequested();

if (shutdown) {

job!acceptConnection(null);

78

6.1. Language

} else {

Worker w = new cog WorkerImpl(job,

this,

coord);

job!acceptConnection(w);

}

}

}

The class SyncServerImpl implements the SyncServer and
ClientJobImpl implements a ClientJob. ClientJobImpl has
a field server that holds the reference to the SyncServer that
is assigned to a different cobox. The method executeJob in-
vokes SyncServer’s method getConnection asynchronously to
connect with a Worker. In the implementation of SyncServer,
a new object cobox is created with the WorkerImpl object be-
ing the initial object in that cobox.

Cooperative scheduling Each asynchronous method call
results in a task in the cobox of the target object. Tasks are
scheduled cooperatively within the scope of a object cobox. Co-
operative scheduling means that switching between tasks of the
same object cobox happens only at specific scheduling points
during program execution and that at no point two tasks in
the same cobox are active at the same time. Using the await

statement, one can create a conditional scheduling point, where
the running task is suspended until a Boolean condition over
the object state becomes true. The following shows the imple-
mentation of ClientJobImpl after connecting with a Worker.

class ClientJobImpl(SyncServer server,

SyncClient client,

Schedule s)

implements ClientJob {

Set<Schedule> schedules = EmptySet;

Unit sendSchedules(Set<Schedule> ss) {

schedules = ss;

}

Unit acceptConnection(Worker w) {

79

6. Concurrent Object Groups

if (w != null) {

w!command(Schedule(s));

await schedules != EmptySet;

this.scheduleJobs();

}

}

...

}

class WorkerImpl(ClientJob job,

SyncServer server)

implements Worker {

Unit command(Command c) {

...

job!sendSchedules(schedules);

}

}

The method acceptConnection invokes method command

on the worker and suspends using the statement
await schedules != EmptySet to wait for the next set
of schedules to arrive. The next set of schedules is set by
invoking the method sendSchedules on the ClientJob.

Fig. 6.2 shows a part of a class implementation
of Worker that provides an implementation of method
acceptCoordinator. The method takes a reference of
the Coordinator. It first sets the instance variable
coord to the input reference, it invokes the statement
await cmd != Nothing, which suspends the current task un-
til the side-effect free expression cmd != Nothing is satis-
fied. Instance variable cmd is a Maybe value which is either
a Command value representing the next command to the worker
from the ClientJob, or the value Nothing if no command has
yet been given. After this, the method makes an asynchronous
method call either to the server’s requestListSchedules,
requesting to get all configured replication schedules, or
requestSchedule, requesting only the schedule with the name
specified by the given command. Both fromJust and ssname

are functions on data types.

80

6.2. Semantics

class WorkerImpl(ClientJob job,

SyncServer server)

implements Worker {

Maybe<Command> cmd = Nothing;

Coordinator coord = null;

Unit acceptCoordinator(Coordinator coord) {

this.coord = coord;

await cmd != Nothing;

if (cmd == Just(ListSchedule)) {

server!requestListSchedules(this);

} else {

server!requestSchedule(this,

ssname(fromJust(cmd)));

}

}

}

Figure 6.2: Method acceptCoordinator

6.2 Semantics

In this section we describe the formal semantics of systems of
coboxes compositionally in terms of the behavior of the coboxes
individually. The behavior of a cobox itself is described com-
positionally in terms of its threads. In this section we abstract
from the functional part of the modeling language. We further
abstract from variable declarations and typing information, and
simply assume given a set of variables x, y, We distinguish
between simple and instance variables. The set of simple vari-
ables is assumed to include the special variable “this”. Simple
variables are used as formal parameters of method definitions.

Throughout this section we assume a given program which
specifies a set of classes and a (single) inheritance relation.
We start with the following basic semantic notions. For each
class C we assume given a set of OC , with typical element o,
of (abstract) objects which belong to class C at run-time. A
heap h is formally given as a set of (uniquely) labelled object

81

6. Concurrent Object Groups

states o : s, where s assigns values to the instance variables
of the object o. An object o exists in a heap h if and only it
has a state in h, that is, o : s ∈ h, for some object state s.
A heap thus represents the values of the instance variables of
a group of objects. A heap is ”open” in the sense that s(x),
for o : s ∈ h, may refer to an object that does not exist in
h, i.e., that belongs to a different group. We denote s(x), for
o : s ∈ h, by h(o.x). By sinit we denote the object state
which results from the initialization of the instance variables of
a newly created object. Further, by h[o.x = v] we denote the
heap update resulting from the assignment of the value v to the
instance variable x of the object o. Next we introduce a thread
configuration as a pair 〈t, h〉 consisting of a thread t. and heap
h. A thread itself is a stack of closures of the form (S, τ), where
S is a statement and τ is a local environment which assigns
values to simple variables. By τ [x = v] we denote the update
of the local environment τ resulting from the assignment of the
value v to the variable x. We denote by V (e)(τ, h) the value of
a side-effect free expression e in the local environment τ and
global heap h. In particular we have that V (x)(s, h) = s(x),
for a simple variable x, and V (x)(τ, h) = h(τ(this).x), for an
instance variable x. It is important to observe that since heaps
are ”open” (as discussed above) V (e)(τ, h) can be undefined in
case e refers to instance variables of objects that do not belong
to the group represented by h.

Thread Semantics A transition

〈t, h〉 −→ 〈t′, h′〉

between thread configurations 〈t, h〉 and 〈t′, h′〉 indicates

• the execution of an assignment x = e or

• the evaluation of a boolean condition b of an if-then-else
or while statement,

• or the execution of a synchronous call.

A labelled transition

〈t, h〉
l

−→ 〈t′, h′〉

82

6.2. Semantics

indicates for

l = await: the successfull execution of an await statement,

l = o!m(v̄): an asynchronous call of the methodm of the object
o with actual parameters v̄.

In the following structural operational semantics for the exe-
cution of single threads (S, s) · t denotes the result of pushing
the closure (S, s) into the stack t. We omit the transitions for
sequential composition, if-then-else and while statement since
they are standard.

Assignment simple variables

〈(x = e;S, τ) · t, h〉 −→ 〈(S, τ ′) · t, h〉

where τ ′ = τ [x = V (e)(τ, h)].
The assigment to a simple variable thus only affects the (active)
local environment.

Assignment instance variables

〈(x = e;S, τ) · t, h〉 −→ 〈(S, τ) · t, h′]〉

where h′ = h[τ(this).x = V (e)(τ, h)] (assuming that V (e)(τ, h)
is defined).
The assignment to an instance variable only affects the heap.
Note that the assignment thus fails in case V (e)(τ, h) is un-
defined (such failures can be prevented by a suitable typing
system, see [80]).

Await

〈(await b;S, τ) · t, h〉
await
−→ 〈(S, τ) · t, h〉

where V (b)(τ, h) = true .
If the boolean condition of an await statement evaluates to
true this transition thus additionally generates a label which
will be used for synchronization with other threads (see the
corresponding rule in the semantics of coboxes below).

83

6. Concurrent Object Groups

Asynchronous method call

〈(x!m(ē);S, τ) · t, h〉
o!m(v̄)
−→ 〈(S, τ) · t, h〉

where o = V (x)(s, h), ē = e1, . . . , en, v̄ = v1, . . . , vn, and vi =
V (ei)(s, h), for i = 1, . . . , n. An asynchronous call thus simply
generates a corresponding message.

Synchronous method call

〈(y = x.m(ē);S, τ) · t, h〉 −→ 〈(S′, τ ′) · (y = r;S, τ) · t, h〉

where, assuming that V (x)(s, h) ∈ OC , m(x̄){S′} is the cor-
responding method definition in class C. Further, τ ′(this) =
V (x)(τ, h) and τ ′(xi) = V (ei)(τ, h), for i = 1, . . . , n, (here
ē = e1, . . . , en and x̄ = x1, . . . , xn). We implicitly assume here
that τ ′ initializes the local variables of m, i.e., those simple
variables which are not among the formal parameters x̄. Upon
return for each type a distinguished simple variable r (which
is assumed not to appear in the given program) will store the
return value (see the transition below for returning a value).

Class instantiation

〈(y = new C(ē);S, τ)·t, h〉 −→ 〈(y = r.C(ē);S, τ ′)·t, h∪{o′ : sinit}〉

where τ ′ = τ [r = o′], o′ ∈ OC is a fresh object identity (i.e.,
not in h), where C is the type of the variable y. For each
type, the distinguished variable r is used to store temporarily
the identity of the new object. We implicitly assume that the
constructor method returns the identity of the newly created
object (by the statement ”return this”).

Cobox instantiation

〈(y = new cog C(ē);S, τ) · t, h〉 −→ 〈(y = r; y!C(ē);S, τ ′) · t, h〉

where τ ′ = τ [r = o′], o′ ∈ OC is a fresh object identity, (C is
the type of the variable y). As above, the distinguished vari-
able r is used to store temporarily the identity of the new object
(here it allows to circumvent a case distinction on whether y

84

6.2. Semantics

is a simple or an instance variable). Note that the main differ-
ence with class instantiation is that the newly created object is
not added to the heap h and the constructor method is called
asynchronously.

In contrast to [54] and [80] we allow for very flexible schedul-
ing policies (no assumptions are made about scheduling policies
at all, even for constructors, besides the fact that await state-
ments are respected), it is possible that the constructor method
is executed at a later stage than a normal method called on the
newly created object. If this is not desired, the user can syn-
chronize explicitly using await.

Return

〈(return e;S, τ) · (S′, τ ′) · t, h〉 −→ 〈(S′, τ ′[r = v]) · t, h〉

where v = V (e)(τ, h). The distinguished variable r here is used
to store temporarily the return value.

In the above transitions for the creation of a class instance
or a new cobox we assume a thread-local mechanism for the
selection of a fresh object identity which avoids name clashes
between the activated threads, the technical details of which
are straightforward and therefore ommitted.

Semantics of coboxes A cobox is a pair 〈T, h〉 consisting
of a set T of threads and a heap h. An object o belongs to a
cobox 〈T, h〉 if and only if it has a state in h, that is, o : s ∈ h,
for some object state s.

Internal computation step

An unlabelled computation step of a thread is extended to a
corresponding transition of the cobox by the following rule:

〈t, h〉 −→ 〈t′, h′〉

〈{t} ∪ T, h〉 −→ 〈{t′} ∪ T, h′〉

External call

A computation step labelled by an asynchronous method call

85

6. Concurrent Object Groups

is extended to a corresponding transition of the cobox by the
following rule:

〈t, h〉
o!m(v̄)
−→ 〈t′, h′〉

〈{t} ∪ T, h〉
o!m(v̄)
−→ 〈{t′} ∪ T, h′〉

Synchronization

The execution of an await statement by a thread within a given
cobox is formally captured by the rule

〈t, h〉
await
−→ 〈t′, h′〉

〈{t} ∪ T, h〉 −→ 〈{t′} ∪ T, h′〉

provided all threads in T executing an await statement, that
is, the top of each thread in T consists of a closure of the form
(await b;S, τ) (we implicitly assume that terminated threads
are removed). Note that thus the await statement enforces
a barrier synchronization of all the threads of a cobox. This
synchronization ensures that at most one thread in a cobox is
executing.

Input-enabledness

We further have the following transition which describes the
reception of an asynchronous method call to an object o which
belongs to the cobox 〈T, h〉:

〈T, h〉
o?m(v̄)
−→ 〈T ∪ {t}, h〉

where, assuming that o ∈ OC , m(x̄){S} is the corresponding
method definition in class C. Further, t consists of the clo-
sure 〈 await b ;S, τ〉, where V (b)(τ, h) = true and τ assigns
the actual parameters v̄ to the formal parameters x̄ of m (as
above, the object identity o is assigned to the implicit formal
parameter “this”) and initializes all local variables of m.

The added await statement enforces synchronization be-
tween the other threads. Since coboxes are input-enabled this
transition thus models an assumption about the environment.
This assumption is validated in the context of coboxes as de-
scribed next.

86

6.2. Semantics

Semantics of systems of coboxes Finally, a system config-
uration is simply a set G of coboxes. For technical convenience
we assume that all system configurations contain an infinite
set of latent coboxes 〈∅, {o : s init }〉 (for o ∈ OC for all classes
C) which have not yet been activated. The fresh object gen-
erated by the creation of a new cobox, as described above in
the thread semantics (transition 6.2), at this level is assumed
to correspond to a latent cobox.

Interleaving

An internal computation step of a cobox is extended to a cor-
responding transition of the global system as follows.

g −→ g′

{g} ∪G −→ {g′} ∪G

Message passing

Communication between two coboxes is formalized by

g1
o?m(v̄)
−→ g′1 g2

o!m(v̄)
−→ g′2

{g1, g2} ∪G −→ {g′1, g
′

2} ∪G

Here it is worthwhile to observe that for an asynchronous call
o!m(v̄) to an object o belonging to the same cobox there does
not exist a matching reception o?m(v̄) by a different cobox
because coboxes have no shared objects.

Trace Semantics A trace is a finite sequence of input and
output messages, e.g., o?m(v̄) and o!m(v̄), respectively. For
each coboxes g we define its trace semantics T (g) by

{〈θ, g′〉 | g
θ

−→ g′}

where
θ

−→ denotes the reflexive, transitive closure of the above
transition relation between coboxes, collecting the input/out-
put messages. Note that the trace θ by which we can obtain
from g a cobox g′ does not provide information about object
creation or information about which objects belong to the same
cobox. In fact, information about which objects have been

87

6. Concurrent Object Groups

created can be inferred from the trace θ. Further, in general
a cobox does not “know” which objects belong to the same
cobox.

The following compositionality theorem is based on a no-
tion of compatible traces which roughly requires for every input
message a corresponding output message, and vice versa. We
define this notion formally in terms of the following rewrite rule
for sets of traces

{o?m(v̄) · θ, o!m(v̄) · θ′} ∪Θ ⇒ {θ, θ′} ∪Θ

This rule identifies two traces in the given set which have
two matching initial messages which are removed from these
traces in the resulting set. Note that this identification is non-
deterministic, i.e., for a given trace there may be several traces
with a matching initial message. A set of traces Θ is compati-
ble, denoted by Compat (Θ), if we can derive the singleton set
{ǫ} (ǫ denotes the empty trace). Formally, Compat (Θ) if and
only if Θ ⇒∗ {ǫ}, where ⇒∗ denotes the reflexive, transitive
closure of ⇒.

Theorem 6.2.1 Let →∗ denote the reflexive, transitive closure
of the above transition relation between system configurations.
We have

G −→∗ G′

if and only if G = {gi | i ∈ I} and G′ = {g′i | i ∈ I}, for some
index set I such that for every i ∈ I there exists 〈θi, g

′

i〉 ∈ T (gi),
with Compat ({θi | i ∈ I}).

Proof : The proof is straightforward but tedious and pro-
ceeds by induction on the derivation.

The above theorem states that the overall system behavior
can be described in terms of the above trace semantics of the
individual coboxes. This means that for compositionality no
further information is required. Next we show in the following
section how to specify properties of the externally observable
behavior of a cobox, as defined by its traces of input/output
messages.

88

6.3. Behavioral Interfaces for Coboxes

6.3 Behavioral Interfaces for Coboxes

In this section we use the previously introduced attribute gram-
mars extended with assertions to specify and verify properties
of the traces generated between coboxes. As such, extended
attribute grammars provide a new formalism for contracts in
general, and coboxes in particular. In contrast to classes or
interfaces, coboxes are run-time entities which do not have a
single fixed interface1. In particular, newly created objects of
any type can be added dynamically at any time to a group
by executing a new-statement without the cog keyword. The
execution of such a statement expands the group with the new
object, which can be of a type different from all the objects in
the group so far and consequently provides methods not pro-
vided by the other objects in the group.

As a crude approximation of the behavior of a group, we
could just take the behavior of the class C of the object which is
created by a new cog C statement. Such an approach requires
no modification in specification languages (and corresponding
tools) traditionally used for object-oriented languages (be it as-
sertions on states, or trace-based specifications). However this
basically corresponds to the assumption that all groups con-
tain only a single object, bypassing the very concept of groups
of objects and essentially resulting in concurrent objects, not
concurrent object groups. This can be partly alleviated by as-
suming that besides the object of type C, objects of other types
can also be part of the group by having specifications of the
form ‘if an object of type D is part of the group, then φ’. How-
ever, this means that all groups whose first created object is
of type C must satisfy the property (since the group name in
this case does not depend on other objects in the group). We
abandon this idea in favor of a more fine-grained specification
of groups. We first discuss how we can still refer statically, in
the program text, to these run-time entities by communication
views.

1 We consider interfaces here to be a list of all signatures of the meth-
ods supported by some object in the cobox

89

6. Concurrent Object Groups

Communication Views for COGs

To be able to refer to coboxes in syntactical constructs (such
as specifications), we introduce the following (optional) anno-
tation of cobox instantiations:

S ::= y = new cog [Name] C(ē)

The semantics of the language remain unchanged. Note that
the same cobox name can be shared among several coboxes
(i.e. is in general not unique) since different cobox creation
statements can specify the same cobox name. First, the same
group creation statement y = new cog A C can appear mul-
tiple times in the program. Second, a group creation statement
can be surrounded by a loop or recursive method, causing it to
be executed multiple times. In both cases, all groups created
by the statement receive the same name. However in contrast
to the previously sketched abandoned proposal (where differ-
ent named groups are distinguished at the class level of the
first object in the group), in this approach, named groups are
distinguished at the finer-grained statement level.

Now that we can refer to groups syntactically, the question
arises what kind of specification languages would be suitable to
specify the behavior of a named group. Groups communicate
with other groups exclusively using asynchronous method calls,
and there are no returns. Thus, the behavior of a group as ob-
served by its environment (other groups) is simply a sequence
of asynchronous method calls sent and received by objects in
the group. Taking the set of all legal sequences of asynchronous
method calls (also known as traces) of the group as its speci-
fication is a natural choice. We observe asynchronous method
calls directly when the method call statement executes in the
group, not when the actual method body of the called method
begins to execute (note that the latter can happen at a much
later time in our concurrency model, or even not at all in the
absence of fairness assumptions). This convention allows an
orthogonal treatment of scheduling policies. However, we have
to face the following problem: Coboxes do not have a fixed
interface, as the methods which can be invoked on an object
in a cobox (and consequently appear in traces) are not fixed
statically. In particular, during execution objects of any type

90

6.3. Behavioral Interfaces for Coboxes

can be added to a cobox, which clearly affects the possible
traces of the cobox. Additionally, for practical reasons it is
often convenient to focus on a particular subset of methods,
leaving out methods irrelevant for specification purposes. This
is especially useful for incomplete specifications. To solve both
these problems, we use communication views. A communica-
tion view can be thought of as an interface for a named cobox.
Figure 6.3 shows an example communication view associated
with all coboxes named WorkerGroup. Formally a communi-

view WorkerView grammar Worker.g specifies WorkerGroup {

send Coordinator.startReplication(Worker w) st,

send ClientJob.registerItems(Worker w, Int id) pr,

receive Worker.sendCurrendId(Int id) id,

receive Worker.replyRegisterItems(Bool reg) ar,

receive Worker.acceptItems(Set<Item> items) is,

receive Worker.acceptEntries(

Set<Map<String, Content>> contents) es

}

Figure 6.3: Communication View

cation view is a partial mapping from messages to abstract
event names. A communication view thus simply introduces
names tailored for specification purposes (see the next subsec-
tion about grammars for more details on how this event name
is used). Partiality allows the user to select only those asyn-
chronous methods relevant for specification purposes. Names
(such as ‘st’ for the method startReplication) are not strictly
needed, but can be used to identify calls to different methods.
Any method not listed in the view will be irrelevant in the
specification of WorkerGroups.

Note that in this asynchronous setting we can distinguish
three different events: sending a message (at the call-site),
receiving the message in the queue (at the callee-site), and
scheduling the message for execution (i.e. the point in time
when the corresponding method starts executing). By the
asynchronous nature of the ABS, we cannot detect in the ABS
itself when a message has been put into the queue. There-
fore we restrict to the other two events. Since we imple-
ment the run-time checker independently from any back-end

91

6. Concurrent Object Groups

(see also Section 6.4), we are forced to use the ABS itself
for the detection of the observable events. The send key-
word identifies calls from objects in the WorkerGroup to meth-
ods of objects in another cobox (in other words: methods re-
quired by an object in the WorkerGroup). Conversely, the
keyword receive identifies the scheduling of calls from an-
other cobox to an object in a WorkerGroup. It is possible
that methods listed in the view actually can never be called
in practice (and therefore won’t appear in the local trace of
a cobox). For example, if WorkerGroups are created by a
statement y = new cog WorkerGroup Worker2, only objects
of the class Worker2 are guaranteed to be part of the group.
Thus messages of the form receive Worker.* can only be re-
ceived in those WorkerGroups in which a Worker-object was
added. The introduction of names for messages gives rise to a
small refinement of our notion of a specification of a group. A
specification is not a set of sequences of asynchronous method
calls anymore, instead a specification is a set of sequences of
names.

Communication views allow the selection of messages es-
sentially just on the basis of the method name. But messages
also involve and contain data: they are sent between an object
in one group (the caller), to an object in another group (the
callee) with the actual parameter values as the contents of the
message. Thus the question arises what data (caller, callee,
actual parameters) we can observe and use in specifications of
groups. Clearly the parameter values sent in a message influ-
ence the behavior of the group which receives the message. On
the other hand, as can be seen by inspecting the formal (com-
positional) semantics introduced in the previous section, the
identity of the caller of a receive message does not influence
the behavior of a group. In particular, there is no way to detect
whether two messages originate from the same group (or even
the same object). Thus it would be unnatural if one could refer
in a specification to the identity of the caller: this results in
specifications that cannot be satisfied by any implementation.
Consequently we disallow any reference to the identity of the
caller in specifications, and take the callee and the actual pa-
rameter values as the only data that can be observed from a
message. A fully abstract semantics allows to determine the

92

6.3. Behavioral Interfaces for Coboxes

minimum amount of information that needs to be captured.
The introduction of data introduces another refinement of our
notion of a specification. Message names are not just strings
anymore, they also contain the identity of the callee and the
actual parameter values. A specification for a group is still a
set of the legal sequences of names (as above), but since names
now also contain the callee and parameter values, their values
can be restricted by the specification. Note that specifications
combine protocol-oriented properties (such as the legal order-
ings between messages) and data-oriented properties (such as
the allowed parameter values). The next subsection discusses
how specifications can be defined syntactically in a convenient
way.

We are now in the position to formally define when an im-
plementation satisfies a specification.

Definition Let P be a program and S a specification (set of
traces). Then P |= S iff For all sets of groups G = {gi | i ∈
I} : For all i ∈ I : θi ∈ T (gi) and compat({θi|i ∈ I}) implies
ProjV (θi) ∈ S.

In this definition we assume a mechanism ProjV (θi)for pro-
jecting each trace of a named group on the events listed in the
associated communication view V . Informally the definition
says that a P satisfies S if the traces of P are a subset of those
of S.

Attribute Grammars

In this subsection we describe how properties of the set of al-
lowed traces of a cobox can be specified in a convenient, high-
level and declarative manner. We illustrate our approach by
partially specifying the behavior depicted by the UML sequence
diagram in Figure 6.4. Informally the property we focus on is:

The Worker first notifies the Coordinator its inten-
tion to commence a replication session, the Worker
would then receive the last transaction id identi-
fying the version of the data to be replicated, the
Worker sends this id to the ClientJob to see if the

93

6. Concurrent Object Groups

Figure 6.4: Replication interaction

client is required to update its data up to the spec-
ified version. The Worker then expects an answer.
Only if the answer is positive can the Worker re-
trieve replication items from the snapshot, more-
over, the number of files sets to be replicated to the
ClientJob must correspond to the number of repli-
cation items retrieved.

The formalization of the above property uses the commu-
nication view depicted in Figure 6.3. The productions of the
grammar underlying the attribute grammar in Figure 6.5 spec-
ify the legal orderings of these messages named in the view.
For example, the productions

S ::= ǫ
| st T

T ::= ǫ
| id U

94

6.3. Behavioral Interfaces for Coboxes

specify that the message ‘id’ is preceded by the message ‘st’.
The grammars above specify only the protocol structure of

the valid traces, but do not take the data-flow into account.
To that end, we extend the grammar with attributes and as-
sertions over these attributes. Each terminal symbol has built-
in attributes consisting of the parameter names for referring
to the object identities of the actual parameters, and callee

for referencing the identity of the callee (see the end of the
previous subsection for a motivation to include these partic-
ular attributes). Non-terminals have user-defined attributes
to define data properties of sequences of terminals. In each
production, the value of the attributes of the non-terminals
appearing on the right-hand side of the production is defined.2

For example, in the following production, the attribute ‘w’ for
the non-terminal ‘T’ is defined.

S ::= ǫ
| st T (T.w = st.w;)

Attribute definitions are surrounded by ‘(’ and ‘)’. However the
attributes themselves do not alter the language generated by
the attribute grammar, they only define properties of data-flow
of the trace. We extend the attribute grammar with assertions
to specify properties of attributes. For example, the assertion
in the second production of

T ::= ǫ
| id U (U.w = T.w; U.i = id.id;)

U ::= ǫ
| pr {assert U.w == pr.w

&& U.i == pr.id;} V

expresses that the ‘id’ passed as a parameter to the method
‘registerItems’ (represented in the grammar by the terminal
pr.id) must be the same as the one previously passed into
‘sendCurrentId’ (terminal id.id). Assertions are surrounded
by ‘{’ and ‘}’ to distinguish them visually from attribute defi-
nitions.

2 In the literature, such attributes are called inherited attributes.

95

6. Concurrent Object Groups

S ::= ǫ | st T (T.w = st.w;)
T ::= ǫ | id U (U.w = T.w; U.i = id.id;)
U ::= ǫ | pr {assert U.w == pr.w

&& U.i == pr.id;} V
V ::= ǫ | ar W (W.b = ar.reg;)
W ::= ǫ | is {assert W.b;} X (X.s = size(is.items);)
X ::= ǫ | es {assert X.s == size(es.contents);}

Figure 6.5: Attribute Grammars

The full attribute grammar Figure 6.5 formalizes the in-
formal property stated in the beginning of this subsection.
The grammar specifies that for each Worker object, in its own
object cobox, the Coordinator must be notified of the start
of the replication by invoking its method startReplication

(st). Only then can the Worker receive (from an unspeci-
fied cobox) the identifier of the current version of the data
to be replicated (id). Next the Worker invokes the method
registerItems on the corresponding ClientJob about this ver-
sion of the data (pr). The grammar here asserts that the iden-
tifier is indeed the same as that received via the method call
sendCurrendId. The Worker then expects to receive a method
call replyRegisterItems indicating if the replication should
proceed, the Worker then can recieve method call acceptItems
for the data items to be replicated. The grammar here as-
serts that this can only happen if the previous call indicated
the replication should proceed. The Worker then can receive
method call acceptEntries for the set of Directories, each
identified by a data item. Since each data item refers to a di-
rectory, the grammar here asserts the number of items is the
same as the number of directories.

To further illustrate the above concepts, we consider an
additional behavioral interface for the WorkerGroup cobox. To
allow users to make changes to the replication schedules during
the run-time of FAS, every ClientJob would request the next
set of replication schedules and send them to SyncClient for
scheduling. Here is an informal description of the property,
where Figure 6.6 presents the communication view capturing

96

6.3. Behavioral Interfaces for Coboxes

view ScheduleView grammar Schedule.g

specifies WorkerGroup {

receive Worker.command(Command c) cm,

send ClientJob.sendSchedules(Set<Schedule> ss) sn,

send SyncServer.requestListSchedules(Worker w) lt,

send SyncServer.requestSchedule(Worker w, String name)

gt,

send Coordinator.requestStartReplication(Worker w) st

}

Figure 6.6: Communication View for Scheduling

S ::= ǫ | cm T (T.c = cm.c;)
T ::= ǫ | gt {assert T.c != ListSchedule &&

gt.n == name(T.c);} U (U.c = T.c;)
| lt {assert T.c == ListSchedule;} U (U.c = T.c;)

U ::= ǫ | sn {assert sn.ss != EmptySet;} V (V .c = U.c;)
V ::= ǫ | st {assert V .c != ListSchedule;}

Figure 6.7: Attribute Grammar for Scheduling

the relevant messages and Figure 6.7 presents the grammar
that formalizes the property:

A ClientJob may request for either all replication
schedules or a single schedule. The ClientJob does
this by sending a command to the Worker (cm).
If the command is of the value ListSchedule, the
Worker is to acquire all schedules from the Sync-
Server (lt) and return them to the ClientJob (sn).
Otherwise, the Worker is to acquire only the spec-
ified schedule (gt) and return it to the ClientJob
(sn). If the ClientJob asks for all schedules, it must
not proceed further with the replication session and
terminate (st).

In summary, a communication view provides an interface of
a named cobox. The behavior of such an interface is specified

97

6. Concurrent Object Groups

by means of an attribute grammar extended with assertions.
This grammar represents the legal traces of the named cobox as
words of the language generated by the grammar, which gives
rise to a natural notion of the satisfaction relation between
programs and specifications. Properties of the control-flow and
data-flow are integrated in a single formalism: the grammar
productions specify the valid orderings of the messages (the
control-flow of the valid traces), whereas assertions specify the
data-flow.

98

6.4. Implementation

6.4 Implementation

In this section we discuss the architecture of the run-time
checker for coboxes, identify crucial design decisions and its
performance. The cobox version of SAGA is implemented
as a run-time checker for ABS models. ABS is basically an
extension of the modeling language considered in this paper.
It is tool-supported by various analysis tools [88] and auto-
mated code generation has been implemented to various lower-
level languages including Java, Maude and Scala. SAGA tests
whether an actual execution of a given ABS model satisfies its
specification given by attribute grammars, and stops the run-
ning program in case of a violation to prevent unsafe behavior.
It is implemented as a meta-program in Rascal. The full meta-
program consists of approximately 1100 lines of code.

Design The design of the cobox version of SAGA was guided
by several requirements.

1. All back-ends (even future ones) which generate code
from ABS models to lower-level target languages should
be supported, without having to update SAGA when any
of the back-ends is updated (for example, to generate
more efficient code). Consequently we need a parser-
generator which generates ABS code, and therefore can-
not use existing parser generators.

2. The overhead induced by SAGA must be kept to a min-
imum. In particular, whenever the trace of a cobox is
updated with a new message, SAGA should be able to
decide in constant time whether the new trace still sat-
isfies the specification (the attribute grammar). This is
determined by parsing the trace (then considered as a se-
quence of tokens) in a parser for the attribute grammar.

3. Because of the intrinsic complexity of developing efficient
and user-friendly parser generators, we require that the
implementation of the parser-generator should be decou-
pled from the rest of the implementation of SAGA.

These requirements are far from trivial to satisfy. For ex-
ample JML, a state-of-the-art specification language for Java,

99

6. Concurrent Object Groups

has no stable version of the run-time checker which supports all
back-ends (and future ones) for Java, violating the first require-
ment. This is due to the fact that the JML run-time checker
was designed as an extension of a proprietary Java compiler.
Other tools for run-time verification such as MOP and LARVA
satisfy the requirement to a certain extent. Their implementa-
tion is based on AspectJ, a compiler which extends Java with
aspect-oriented programming. AspectJ can transform Java
programs in bytecode form. Hence all back-ends which gen-
erate bytecode compatible with AspectJ are also supported by
MOP and LARVA. This includes most, though not all, ver-
sions of the standard Sun Java compiler. However aspect-
oriented programming is currently not supported by the ABS.
We choose an approach based on pre-processing. Specifications
(consisting of a communication view and attribute grammar)
are not added to the formal syntax of the programming lan-
guage, they are put in separate files. This avoids creating mul-
tiple branches of the ABS language. In JML, specifications are
added to the actual source, but in comments (so they are not
part of the ”logic” of the program). In MOP and LARVA, spec-
ifications are also separated from the programming language.

The input of SAGA consists of three ingredients: a commu-
nication view, an attribute grammar extended with assertions
and an ABS model. The output is an ordinary ABS model
which behaves the same as the input program, except that it
throws an assertion failure when the current execution violates
the specification. Since the resulting ABS model is an ordi-
nary ABS model, all analysis tools[88] (including a debugging
environment with visualization and a state-of-the-art cost ana-
lyzer) and back-ends which exist for the ABS can be used on it
directly. The third requirement (a separation of concerns be-
tween the parser-generator and the rest of the implementation)
has lead to a component-based design consisting of a parser-
generator component and source-code weaving component. We
discuss these components, and the second requirement on per-
formance of the generated parser, in more detail below.

Parser generator component The parser-generator com-
ponent processes only the attribute grammar and generates a

100

6.4. Implementation

parser for it, with ABS as the target language. Parsers for
attribute grammars in general take a stream of terminals as
input, and output a parse tree according to the grammar pro-
ductions (where non-terminal nodes are annotated with their
attribute values). In our case, the attribute grammars also con-
tains assertions, and the generated parser additionally checks
that all assertions in the grammar are true.

In our case, whenever a new message (asynchronous call)
is added to the trace, all parse trees of all prefixes have been
computed previously. The question arises how efficient the new
parse trees can be computed by exploiting the parse trees of
the prefixes. Unfortunately, for general context-free grammars,
this cannot be done in constant time using currently known al-
gorithms (violating the second requirement on performance).
For if this was possible in constant time, parsing the full trace
results in a parser which works in linear time (n terminals which
all take a constant amount of time), and no linear time algo-
rithm for general context-free grammars is known. We there-
fore restrict to deterministic regular attribute grammars with
only inherited attributes. All grammars used in the case study
have this form and parsing the new trace in such grammars can
be done in constant time, since they can be translated to a finite
automaton with conditions (assertions) and attribute updates
as actions to execute on transitions. Parsing the new message
consists of taking a single step in this automaton. Moreover for
such grammars, the space complexity is also very low: it is not
necessary to store the entire trace, only the attribute values of
the previous trace must be stored.

Source-code weaving component The weaving compo-
nent processes the communication view and the given ABS
model, and outputs a new ABS model in which each call to
a method appearing in the view is transformed. The trans-
formation checks whether the method call which is about to
be executed is allowed by the attribute grammar, and if this
is not the case, prevents unsafe behavior by throwing an as-
sertion failure. This transformation is invasive, in the sense
that it cannot be done only locally in the body of those meth-
ods actually appearing in the view, but instead it has to be

101

6. Concurrent Object Groups

done at all call-sites (in client code). To see this, suppose that
the transformation was done locally, say in the beginning of
the method body. Due to concurrency and scheduling policies,
other methods which were called at a later time could have been
scheduled earlier. In such a scenario, these other methods are
checked earlier than the order in which they are actually called
by a client, which violates the decision (see also the previous
section) to treat scheduling policies orthogonally.

The transformation is done in two steps. First, all calls to
methods that occur in a communication view are isolated using
pattern matching in the meta-program. We created a Rascal
ABS grammar for that purpose. The ABS grammar contains
around 240 non-terminals: for comparison, the Java grammar
in Rascal has about 120. The main reason for the significantly
larger size is that the ABS contains an internal sublanguage (for
feature models and delta programming [79, 23]) for designing
software product lines. The following snippet from the Rascal
ABS grammar descibes the syntax for asynchronous method
calls (i.e. om(e1, ..., en)!).

syntax AsyncCall

= PureExpPrefix ! IDENTIFIER (DataExp ","*);

In the second step, all asynchronous call-statements are pre-
ceded by code which checks that the current object is part of
a named cobox (note that this check really has to be done at
run-time due to the dynamic nature of coboxes). If this is the
case, the trace is updated by taking a step in the finite au-
tomaton where additionally the assertion is checked. If there is
no transition for the message from the current state, we throw
an assertion error. Intuitively such an error corresponds to a
protocol violation. There is one subtle point about updating
the trace. If no assumptions are made about the scheduling
of received messages, only updates to the trace of the calling
cobox (i.e. ‘send’ messages in the view) can be guaranteed
to be executed directly before the actual call happens. For
‘receive’ messages the history is updated whenever the cor-
responding method begins executing. Thus this assymmetry
between ‘send’ and ‘receive’ events is natural when one takes
into account that the actual behavior of the program only de-
pends on the order in which the ‘receive’ events (or rather, the
associated methods) are actually executed.

102

Related- and Future Work 7

In this chapter we present a direct comparison of our own
framework and corresponding tool support with PQL [64],
Jassda [16], LARVA [26] and MOP [20]. We model the prop-
erties of the Fredhopper case study described in the previous
section in these respective tools. We consider the learnabil-

ity of the frameworks: that is, does the framework provide a
specification language with a surface syntax close to existing
formal/modeling languages? Is the semantics of the specifica-
tions properly documented? We test how easily the frameworks
can be adopted or integrated into the the software develop-
ment cycle in an industrial context such as at Fredhopper. This
includes operational steps like installation, execution, and doc-
umentation and support.

We now provide a brief overview of these three frameworks.

PQL Program Query Language, PQL, is developed by Mar-
tin et al. [64], it is a query language for pattern matching (pos-
sibly recursive) sequences of method invocations of Java pro-
grams. Unlike all the other approaches in the evaluation, PQL
queries express invalid behavior rather than all possible valid
behavior. Figure 7.1 shows a PQL query expressing part of the
Worker property. Specifically, it matches invalid behavior of in-

103

7. Related- and Future Work

voking reg after invoking establish with the input argument
“LIST”.

Jassda Java with assertions Debugger Architecture, Jassda,
is a framework developed by Brörkens et al. [16]. Trace as-
sertions are given in a CSP-like notation. The CSP-like nota-
tion maps invocations and returns of method calls of Java pro-
grams as events. For example, Figure 7.2 shows that the event
w.rg.begin is mapped to the invocation of method Worker.reg

The framework takes such assertions, combined with the Java
Debugger Architecture to monitor calls and returns of meth-
ods. It then generates a program for a state machine, and at-
taches to the Java Virtual Machine running the system under
test that is accepting debug connections. The framework then
monitors invocations and returns of method calls and output
log messages to a separate file on state transitions.

LARVA Logical Automata for Runtime Verification and
Analysis, LARVA, is developed by Colombo et al. [26]. LARVA
provides a modeling language for specifying both valid and
invalid method invocations of Java programs by enumerating
transitions in a state transition function of an abstract machine.
Each transition is conditioned on an event, where an event
maps to one or more invocations and returns of method calls.
The modeling language also permits declaring global variables
of any visible Java types (class/interface), and at each transi-
tion an optional condition can be made about values of these
variables against input arguments or return values of methods
as well as any number of Java statements on these variables
and values. Figure 7.3 shows how to partially model Worker
property in LARVA.

JavaMOP Monitoring-Oriented Programming, MOP [20], is
a run-time monitoring tool based on aspect-oriented program-
ming which uses context-free grammars to describe properties
of the control flow of histories. Properties on the data-flow are
predefined built-in functions (basically AspectJ functions such
as a ’target’ to bind the callee and ’this’ to bind the caller, com-
parable to built-in attributes of terminals in our setting). This

104

limits the expression of data properties: there is no support for
defining properties of sequences of terminals. To circumvent
this limitation one may however hack general properties into
the tool implementation. Figure 7.4 formalizes the protocol
behavior of the Worker.

In contrast, our approach supports a general methodology
to introduce systematically user-defined properties, by means
of attributes of non-terminals. Furthermore SAGA supports
conditional productions which are essential to specify protocols
dependent on data in a declarative manner. Finally, JavaMOP
does not directly support the specification of local histories (i.e.
monitoring the messages sent and received by a single object).

Expressiveness

Snapshot Coordinator Worker

PQL yes no no
Jassda yes no no
LARVA yes yes yes
MOP yes yes yes
SAGA yes yes yes

Table 7.1: Comparison of Expressiveness

We investigated the expressiveness of the specification lan-
guages of these tools by attempting to express and check the
SnapShot, Worker and Coordination properties (see Chap-
ter 5). The resulting specifications are given in Figures 7.1
to 7.4.

Table 7.1 summarizes the results. Neither PQL nor
Jassda can express the Coordinator and Worker proper-
ties since neither allows user-defined properties of data. In
both Coordinator and Worker properties, the validity of a
method invocation is dependent on the value of the input
arguments as well as the return values. For example in
PQL snippet in Figure 7.1, to model the invalid sequence of
method invocations establish("LIST") followed by reg(_),
we had to encapsulate the string value "LIST" into the method
SyncServer.getList() as PQL does support object manipu-

105

7. Related- and Future Work

Specification Execution

PQL 5 2
Jassda 4 2
LARVA 2 1
MOP 5 1
SAGA 3 1

Table 7.2: Duration per Activity in hours

query main ()

uses object Worker w; object String s;

matches {

w = Acceptor.getWorker();

s = SyncServer.getList();

w.establish(s); w.reg(s); }

executes Util.printStackTrace(*);

Figure 7.1: PQL

trace worker {

eventset w { class="Worker" }

eventset r { method="reg"}

...

process main() {

w.ls.begin -> w.ls.end ->

w.et.begin -> w.et.end -> STOP

[]

w.os.begin -> w.os.end ->

w.et.begin -> w.et.end ->

w.rg.begin -> STOP }}

Figure 7.2: JASS

lation. LARVA and MOP, on the other hand, support execut-
ing arbitrary Java statements when an event occurs, hence it is
possible to define data-oriented properties such as Coordinator
and Worker. As such, user-defined properties of the data of a
single event are possible to express. It is not possible to di-

106

IMPORTS{ import java.util.*; }

GLOBAL {

FOREACH (Worker w) {

VARIABLES { String c = null; ArrayDeque q = null;}

EVENTS{

et(String s, Worker w1) = {

w1.establish(s);} where {w = w1;}

is(String s, List is, Worker w1) = {

w1.reg(s)uponReturning(is);} where {w = w1;}

tr(Item i, Worker w1) = {

w1.transfer(i);} where {w = w1;}}

PROPERTY workers{

STATES {

STARTING{ start{} }

BAD{ regL{} transW{} }

NORMAL{ est{} regS{} transC{} }}

TRANSITIONS{

start -> est [et()\\c = s;]

est -> regL [is()\"LIST".equals(c)]

est -> regS [is()\! "LIST".equals(c)\q =

new ArrayDeque(is);]

regS -> transW [tr()\q.pop() != i]

regS -> transC [tr()\q.pop() == i] }}}}

Figure 7.3: LARVA

rectly express properties of sequences of events (i.e. the data-
flow of the history). In LARVA, non-regular context-free pro-
tocols cannot be expressed directly : one would have to write
the parser for a context-free grammar oneself. The user would
then essentially be writing their own run-time checker in Java,
bypassing MOP and Larva. This is clearly unfeasible, and the
resulting specifications are not declarative anymore. Most im-
portantly, in that degenerative sense of expressiveness, AspectJ
(on which MOP and LARVA are based) would already be suf-
ficient.

Moreover, since LARVA supports the manipulation of ar-
bitrary Java objects as global variables, it is as expressive as
SAGA. However, unlike SAGA, LARVA requires the specifi-

107

7. Related- and Future Work

import java.io.*; import java.util.*;

suffix HasNext(Worker w) {

event et before(Worker w):

call(* Worker.establish(String)) && target(w) {}

event rg before(Worker w):

call(* Worker.reg(String)) && target(w) {}

event is after(Worker w) returning(List result):

call(* Worker.reg(String)) && target(w) {}

event tr before(Worker w):

call(* Worker.transfer(int)) && target(w) {}

cfg : S -> epsilon | et U, U -> epsilon | rg V,

V -> epsilon | is W, W -> epsilon | tr W

@fail { System.err.println("Protocol violation"); }}

Figure 7.4: MOP

cation to be explicit on both valid and invalid method call
sequences. For example, the specification in Figure 7.3 would
allow reg() to be invoked immediately at the start state, as
the transition from the start state is not defined, it is simply
ignored by the monitoring framework.

Learnability

Learnability is the capability of a software product to enable
the user to learn how to use it. Table 7.2 shows the number of
hours spent on activities to specify and monitoring properties
defined in Figure 6.5.

The most time spent at specification was for PQL; PQL
defines a new specification language for expressing queries for
(recursively) matching sequences of method invocations. We
find the language to be counter-intuitive as it does not match
any existing modeling or programming languages. Moreover, it
requires the user to specify invalid behavior rather than valid
ones and it is unclear how to specify method invocations with
specific input values. Similarly Jassda lacks an integration into
the general context of assertion checking, which is needed to
specify properties of variable values.

108

Documentation Maintenance Support

PQL 1 paper, examples 2006 Minimal
Jassda papers, (German)

thesis, examples
2006 Minimal

LARVA papers, manuals,
examples

2011 Immediate

MOP papers, manuals,
examples

2011 Immediate

SAGA papers, examples 2012 Immediate

Table 7.3: Adoptability

LARVA provides an intuitive language for specifying reg-
ular protocols. Specifications are finite state automata with
optionally actions (arbitrary Java code) on the transitions of
the automaton. Actions can be used to express data-oriented
properties, though in an imperative style. Context-free proto-
cols are however much more cumbersome to express as noted
previously. Despite the fact that the Worker property has only
been formalized partially in LARVA due to requirements to
express all invalid sequences of method invocations, the full
specification in SAGA is much more concise.

Though it is no so difficult in MOP to formalize the proto-
col behavior of the Worker, Figure 7.4 (data-oriented properties
are more problematic, as these cannot be expressed directly as
mentioned), the meaning of the grammars in MOP is unclear:
the failure handler was triggered by MOP even for correct pro-
grams. Whether this is due to misunderstanding on our part
of the meaning of MOP specifications, or due to a bug in MOP
remains unclear even after a thorough reading of the documen-
tation.

For PQL, most time is spent identifying which Java state-
ments are supported and how variables can be manipulated.
The actual set-up of the run-time checking (compilation, in-
strumentation etc.) are carried by mirroring the setting in the
toy examples provided by the installation package. For Jassda,
time is spent at understanding the Java Debugger Architec-
ture, and in particular the proper settings in the configuration
files.

109

7. Related- and Future Work

We evaluated how easily the frameworks can be adopted

or integrated into the the software development cycle in an
industrial context such as at Fredhopper. This includes op-
erational steps like installation, execution, and documentation
and support. The quality assurance process at Fredhopper (as
in many other software companies) includes automated testing.
This type of testing requires a running FAS instance and can be
augmented with run-time assertion checking techniques. Lack
of support and maintenance (Table 7.3) reduces the confidence
in PQL and Jassda.

Future Work

The concurrent version of our run-time checker which is de-
scribed in Chapter 6 currently supports only regular grammars
and all attributes must be inherited. As described, this restric-
tion allows efficient run-time checking since one does not need
to store the full history (just storing the attribute values of the
‘previous’ history suffices), and one does not need to re-parse
the full history when a message is added to it (instead, one
simply executes a single step in a finite automaton). The sin-
gle threaded version allows more general grammars, but at the
cost of a more expensive parsing process (the entire history is
stored, and completely re-parsed whenever an event occurs).
This suggests a possible direction of future work: investigate
if and how more general grammars can be parsed incremen-
tally, and implement efficient parsers for that class of gram-
mars. Some initial theoretical work has already been done in
this direction by Hedin [43].

Another direction of future work concerns error reporting
(by error, we mean here that a history has been reached dur-
ing execution which violated a specification as given by the
grammars). If the run-time checker detects an error, what
information is reported, and how is it presented? Clearly it
is cumbersome to read through long stacktraces and low-level
details of Java virtual machines that one gets by simply ex-
ecuting the program inside a debugger. On the other hand,
the reported error should be sufficient to isolate the incorrect
part of the source-code if it is to be of use for fixing the er-
ror. As a first step, the current version of the run-time checker

110

outputs a UML sequence diagram depicting an invalid history
upon detection, but much work remains to be done. For in-
stance, it is clearly infeasable to visualize large histories (or
even any history containing more than 10.000 messages). Thus
suitable abstractions must be found. In particular, the ques-
tion arises: which of the messages in the history are actually
relevant for the error that was found? Once this is known, the
other messages can simply be filtered away.

A third opportunity for future work concerns off-line mon-
itoring. The current run-time checker parses the current his-
tory during execution of the program in real-time and stops (or
possibly corrects) the original program once a violation of the
specification is caught. Therefore the run-time checker induces
an overhead during execution. This can partly be alleviated
on multicore machines by running the run-time checker in a
separate virtual machine (this is done by default if one uses
the Java debugger, as explained in Chapter 4), and running
that virtual machine on another processor. However there will
still be some communication to report the next method call to
be executed between the two virtual machines, and communi-
cation between two processes generally decreases performance.
An alternative would be to develop a run-time checker which
writes the history to disk. This allows to investigate any po-
tential errors at another time, potentially even on a physically
completely separate machine! One possible downside of this al-
ternative is that since errors are only detected at a later time,
the running system is not prevented from unsafe behavior. To
keep the sizes of the stored histories manageable, it is in this
regard clearly also important to find efficient representations
or abstractions of the history.

While our formalism was based on context-free grammars
(extended with attributes and assertions), there are more ex-
pressive grammar formalisms, such as Boolean grammars [71]
or context-sensitive grammars (see for example [63]). These
formalisms still have a decidable parsing problem. Future work
in this direction can be done by investigating if (and how) these
formalisms can be extended by some form of attributes, simi-
larly to how attribute grammars are an extension of context-
free grammars.

A perhaps simpler line of future work would be to ex-

111

7. Related- and Future Work

tend the tool, for example with wildcards in communication
views, or associating some form of time to each communica-
tion event. Wildcards are useful for specifying patterns (or
sets) of method calls. For instance, if a class contains multiple
overloaded methods, and one wants identify all of them in the
attribute grammar, using a wildcard as the list of parameters
would be a simple solution which avoids explicitly listing all
variants of the overloaded method in the comunication view.
As another feature, one could store the time at which a method
call occured as an additional built-in attribute in the grammar
terminals. This additional attribute could be used to specify
non-functional properties such as resource requirements. For
instance, it allows to express properties like ‘the method m
should not be called within 1 second after n was called’. In
this respect it would be interesting to compare the resulting
attribute grammars with existing temporal logics.

112

Input and output of SAGA A

We show here an example of the input to SAGA (a communi-
cation view), and the corresponding generated Java code which
SAGA generates for the History class. Figure A.1 shows the
communication view of the Stack, which will serve as the ex-
ample input.

The next pages show the corresponding automatically gen-
erated Java output.

local view StackHistory grammar Stack.g

specifies StackInterface {

call void push(int item) PUSH,

return int pop() POP

}

Figure A.1: Input to the tool: communication view of the Stack

113

A. Input and output of SAGA

import java.util.IdentityHashMap; // stores local

histories and objToId

import org.antlr.runtime .*; // for use in

StackHistory

import java.util.ArrayList; // for use in

StackHistory

import java.util.Iterator; // for use in

StackHistory

import java.util.HashSet; // for use in StackHistory

import java.util.HashMap; // for use in StackHistory

aspect StackHistoryAspect {

private StackHistory h = new StackHistory ();

//

///

// ///////////////////// Event classes

/////////////////

//

///

public class call_push extends org.antlr.runtime

.CommonToken {

private static final long serialVersionUID = 3

L;

private final Object caller;

public Object caller () {

return this.caller;

}

private final StackInterface callee;

public StackInterface callee () {

return this.callee;

}

private final int item;

public int item() {

return this.item;

}

public String toString () {

return "o" + StackHistory.objToId.get(caller

) + ":o" + StackHistory.objToId.get(

callee) + ".push(" + item + ")";

}

114

public call_push(Object caller , StackInterface

callee , int item) {

super (-1);

this.caller = caller;

this.callee = callee;

this.item = item;

}

}

public class return_pop extends org.antlr.

runtime.CommonToken {

private static final long serialVersionUID = 3

L;

private final Object caller;

public Object caller () {

return this.caller;

}

private final StackInterface callee;

public StackInterface callee () {

return this.callee;

}

private final int result;

public int result () {

return this.result;

}

public String toString () {

return "o" + StackHistory.objToId.get(caller

) + ":o" + StackHistory.objToId.get(

callee) + ".pop(" + result + ")";

}

public return_pop(Object caller ,

StackInterface callee , int result) {

super (-1);

this.caller = caller;

115

A. Input and output of SAGA

this.callee = callee;

this.result = result;

}

}

//

///

// ///////////////////// History class

/////////////////

//

///

public static class StackHistory implements

TokenSource {

public static IdentityHashMap <Object , Integer

> objToId = new IdentityHashMap <Object ,

Integer >();

public static HashMap <Integer , Object >

idToObj = new HashMap <Integer , Object >();

private HashSet <Integer > actors = new HashSet <

Integer >();

private ArrayList <CommonToken > _L = new

ArrayList <CommonToken >();

private Integer _currentToken;

private StackParser.start_return _start; //

Synthesized attributes of start non -

terminal

public StackHistory () {

_L.add(new CommonToken(Token.EOF));

_L.add(new CommonToken(Token.EOF));

parse (); // the empty history

}

// Implemented for TokenSource interface

public String getSourceName () {

return null;

}

public void print () {

System.err.println("=== ERROR! Local history

116

 of view StackHistory (events: " +

Integer.toString(_L.size() -2) + ") of

StackInterface object violates protocol

structure specified in Stack.g === \n");

// Print actors of the sequence diagram

Iterator <Integer > it = actors.iterator ();

while(it.hasNext ()) {

Integer objId = it.next();

if(idToObj.get(objId) != null) {

System.out.println("o" + objId + "

:" + idToObj.get(objId).

getClass ().getName ());

} else {

System.out.println("o" + objId + "

:Object");

}

}

// Print messages between actors

System.out.println("");

for(int i=0; i<_L.size() -2; i++) {

System.out.println(_L.get(i).toString ());

}

}

public CommonToken nextToken () {

return _L.get(_currentToken ++);

}

// Parse the history in antlr and set

attribute values

private void parse () {

_currentToken = 0;

CommonTokenStream tokens = new

CommonTokenStream(this);

StackParser parser = new StackParser(tokens)

;

try {

_start = parser.start ();

} catch(RecognitionException r) {

print ();

assert false; // Assertion Failure

} catch(AssertionError r) {

print ();

assert false; // Assertion Failure

}

117

A. Input and output of SAGA

}

public EList <Object > stack () {

return _start.stack;

}

public int bla() {

return _start.bla;

}

public void update(call_push e) {

e.setType(StackLexer.PUSH);

_L.add(_L.size() -2, e);

if(! objToId.containsKey(e.caller ())) { //

for printing

objToId.put(e.caller (), objToId.size

());

idToObj.put(idToObj.size(),e.caller ()

);

}

if(! objToId.containsKey(e.callee ())) { //

for printing

objToId.put(e.callee (), objToId.size

());

idToObj.put(idToObj.size(),e.callee ()

);

}

if(! objToId.containsKey(e.item())) { //

for printing

objToId.put(e.item(), objToId.size())

;

idToObj.put(idToObj.size(),e.item());

}

actors.add(objToId.get(e.caller ()));

actors.add(objToId.get(e.callee ()));

parse ();

}

public void update(return_pop e) {

e.setType(StackLexer.POP);

_L.add(_L.size() -2, e);

118

if(! objToId.containsKey(e.caller ())) { //

for printing

objToId.put(e.caller (), objToId.size

());

idToObj.put(idToObj.size(),e.caller ()

);

}

if(! objToId.containsKey(e.callee ())) { //

for printing

objToId.put(e.callee (), objToId.size

());

idToObj.put(idToObj.size(),e.callee ()

);

}

if(! objToId.containsKey(e.result ())) { //

for printing

objToId.put(e.result (), objToId.size

());

idToObj.put(idToObj.size(),e.result ()

);

}

actors.add(objToId.get(e.caller ()));

actors.add(objToId.get(e.callee ()));

parse ();

}

}

//

///

// ///////////////////// Aspects

///////////////////////

//

///

/* call void push(int item) */

before(Object clr , StackInterface cle , int item)

:

(call(void *.push(int)) && this(clr) &&

target(cle) && args(item)

119

A. Input and output of SAGA

&& if(StackHistoryAspect.class.

desiredAssertionStatus ())) {

cle.h.update(new call_push(clr , cle , item));

}

before(StackInterface cle , int item): // from

static method

(call(void *.push(int)) && !this(Object) &&

target(cle) && args(item)

&& if(StackHistoryAspect.class.

desiredAssertionStatus ())) {

cle.h.update(new call_push(null , cle , item))

;

}

/* return int pop () */

after(Object clr , StackInterface cle) returning(

int ret):

(call(int *.pop()) && this(clr) && target(cle

) && args()

&& if(StackHistoryAspect.class.

desiredAssertionStatus ())) {

cle.h.update(new return_pop(clr , cle , ret));

}

after(StackInterface cle) returning(int ret): //

from static method

(call(int *.pop()) && !this(Object) && target

(cle) && args()

&& if(StackHistoryAspect.class.

desiredAssertionStatus ())) {

cle.h.update(new return_pop(null , cle , ret))

;

}

}

120

Samenvatting

Fouten in software veroorzaken jaarlijks een schade van 312 mil-
jard dollar volgens een recent onderzoek aan Cambridge Uni-
versity. Type Checking, Static Verification en Run-time Check-
ing zijn bekende manieren om softwarefouten te voorkomen, te
isoleren, en op te lossen. Alle drie methoden bepalen of de
software naar verwachting werkt op basis van annotaties: een
formele beschrijving van de door de gebruiker gewilde werking
van de software.

In dit proefschrift hebben we een nieuwe techniek voor
Run-Time Checking voor twee object-georiënteerde talen on-
twikkeld: Java en de ABS. De ABS is een taal die ontwikkeld
is in het Europese HATS project en concurrency ondersteund in
de vorm van groepen van objecten, waarbij meerdere groepen
tegelijkertijd actief kunnen zijn. In object-georiënteerde talen
communiceren objecten door elkaar berichten te sturen. Het
gedrag van objecten is volledig bepaald door de volgorde en
inhoud van deze berichten. Traditionele methoden voor Run-
time Checking focussen ofwel exclusief op het beschrijven en
testen van deze volgordes (Monitoring), ofwel op de beschrijv-
ing en het testen van de de gegevens in de berichten (Run-time
Assertion Checking, Design by Contract). De methode gëıntro-
duceerd in dit proefschrift combineert Monitoring met Run-
time Assertion Checking.

Het basisidee van onze techniek is dat het gedrag van ob-
jecten formeel beschreven kan worden door een attribuutgram-
matica uitgebreid met asserties. De onderliggende (context-
vrije) grammatica specificeert de toegestane volgordes van de
berichten, de attributen definiëren eigenschappen van de in-
houd van de berichten, en de asserties beschrijven de toeges-

121

Samenvatting

tane waarden van deze eigenschappen. Als de asserties geen
kwantoren bevatten dan is het beslisbaar of een executie van
een programma voldoet aan de specificatie gegeven door zo
een attribuutgrammatica. Wij hebben een nieuwe Run-time
Checker voor attribuutgrammatica’s ontwikkeld in de vorm van
een meta-programma in de taal Rascal. Vervolgens hebben we
de Run-time Checker toegepast op een industriële case van het
bedrijf Fredhopper. Op basis van deze case study hebben we
de efficiëntie van de Run-time Checker onderzocht en met suc-
ces een aantal fouten in de Fredhopper software ontdekt en
opgelost.

122

Curriculum Vitae

123

Bibliography

[1] A. E. Abdallah, C. B. Jones, and J. W. Sanders, editors.
Communicating Sequential Processes: The First 25 Years,
Symposium on the Occasion of 25 Years of CSP, London,
UK, July 7-8, 2004, Revised Invited Papers, volume 3525
of Lecture Notes in Computer Science. Springer, 2005.

[2] G. A. Agha. Actors: A model of concurrent computation
in distributed systems. MIT Press, Cambridge, MA, USA,
1990.

[3] C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren,
S. Kuzins, O. Lhoták, O. de Moor, D. Sereni, G. Sittam-
palam, and J. Tibble. Adding trace matching with free
variables to AspectJ. In OOPSLA, pages 345–364, 2005.

[4] K. R. Apt, F. S. de Boer, E.-R. Olderog, and S. de Gouw.
Verification of Object-Oriented programs: A transforma-
tional approach. J. Comput. Syst. Sci., 78(3):823–852,
2012.

[5] C. Artho, D. Drusinsky, A. Goldberg, K. Havelund, M. R.
Lowry, C. S. Pasareanu, G. Rosu, and W. Visser. Experi-
ments with test case generation and runtime analysis. In
Abstract State Machines, pages 87–107, 2003.

[6] J. W. Backus. The syntax and semantics of the pro-
posed international algebraic language of the Zurich ACM-
GAMM conference. In IFIP Congress, pages 125–131,
1959.

[7] J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Al-
gebra: Equational Theories of Communicating Processes.

125

Bibliography

Cambridge University Press, New York, NY, USA, 1st edi-
tion, 2009.

[8] D. Bartetzko, C. Fischer, M. Möller, and H. Wehrheim.
Jass - Java with assertions. Electr. Notes Theor. Comput.
Sci., 55(2), 2001.

[9] A. Bauer, M. Leucker, and C. Schallhart. Comparing
LTL semantics for runtime verification. J. Log. Comput.,
20(3):651–674, 2010.

[10] B. Beckert, R. Hähnle, and P. H. Schmitt, editors.
Verification of Object-Oriented Software: The KeY Ap-
proach, volume 4334 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2007.

[11] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and
W. Yi. Uppaal — a tool suite for automatic verification of
real–time systems. In Proc. of Workshop on Verification
and Control of Hybrid Systems III, number 1066 in Lec-
ture Notes in Computer Science, pages 232–243. Springer–
Verlag, Oct. 1995.

[12] J. Berdine, C. Calcagno, and P. W. O’Hearn. Small-
foot: Modular automatic assertion checking with Sepa-
ration Logic. In FMCO, pages 115–137, 2005.

[13] J. Berdine, B. Cook, and S. Ishtiaq. SLAyer: Memory
safety for systems-level code. In CAV, pages 178–183,
2011.

[14] J. A. Bergstra and J. W. Klop. Acttau: A universal axiom
system for process specification. In Algebraic Methods,
pages 447–463, 1987.

[15] Y. Bertot, P. Castran, G. Huet, and C. Paulin-Mohring.
Interactive theorem proving and program development :
Coq’Art : the calculus of inductive constructions. Texts in
theoretical computer science. Springer, Berlin, New York,
2004.

[16] M. Brörkens and M. Möller. Dynamic event generation
for runtime checking using the JDI. Electr. Notes Theor.
Comput. Sci., 70(4), 2002.

126

Bibliography

[17] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An overview of
JML tools and applications. International Journal on Soft-
ware Tools for Technology Transfer, 7(3):212–232, 2005.

[18] C. Calcagno, H. Yang, and P. W. O’Hearn. Computability
and complexity results for a spatial assertion language for
data structures. In FSTTCS, pages 108–119, 2001.

[19] P. Chalin, P. R. James, and G. Karabotsos. JML4: To-
wards an industrial grade IVE for java and next generation
research platform for JML. In VSTTE, pages 70–83, 2008.

[20] F. Chen and G. Rosu. MOP: an efficient and generic run-
time verification framework. In OOPSLA, pages 569–588,
2007.

[21] Y. Cheon and A. Perumandla. Specifying and checking
method call sequences of Java programs. Software Quality
Journal, 15(1):7–25, 2007.

[22] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri.
Nusmv: A new symbolic model verifier. In CAV, pages
495–499, 1999.

[23] D. Clarke, M. Helvensteijn, and I. Schaefer. Abstract delta
modeling. In GPCE, pages 13–22, 2010.

[24] E. M. Clarke and E. A. Emerson. Design and synthesis of
synchronization skeletons using branching-time temporal
logic. In Logic of Programs, pages 52–71, 1981.

[25] E. M. Clarke, O. Grumberg, and D. Peled. Model checking.
MIT Press, 2001.

[26] C. Colombo, G. J. Pace, and G. Schneider. LARVA —
safer monitoring of real-time java programs (tool paper).
In SEFM, pages 33–37, 2009.

[27] W. Damm and D. Harel. LSCs: Breathing life into mes-
sage sequence charts. Formal Methods in System Design,
19(1):45–80, 2001.

127

Bibliography

[28] F. S. de Boer, M. M. Bonsangue, M. Steffen, and
E. Ábrahám. A fully abstract semantics for UML com-
ponents. In FMCO, pages 49–69, 2004.

[29] F. S. de Boer, S. de Gouw, E. B. Johnsen, A. Kohn, and
P. Y. H. Wong. Run-time assertion checking of data- and
protocol-oriented properties of Java programs: An indus-
trial case study. Transactions on Aspect-Oriented Software
Development, 11 (to appear), 2013.

[30] F. S. de Boer, S. de Gouw, and J. Vinju. Prototyping a
tool environment for run-time assertion checking in JML
with communication histories. In Proceedings of the 12th
Workshop on Formal Techniques for Java-Like Programs,
FTFJP ’10, pages 6:1–6:7, New York, NY, USA, 2010.
ACM.

[31] F. S. de Boer, S. de Gouw, and P. Y. H. Wong. Run-time
verification of coboxes. In SEFM, 2013.

[32] S. de Gouw and F. S. de Boer. Run-time verification of
black-box components using behavioral specifications: An
experience report on tool development. In FACS, 2012.

[33] S. de Gouw, F. S. de Boer, W. Ahrendt, and R. Bubel.
Weak arithmetic completeness of Object-Oriented first-
order assertion networks. In SOFSEM, pages 207–219,
2013.

[34] S. de Gouw, F. S. de Boer, E. B. Johnsen, and P. Y. H.
Wong. Run-time checking of data- and protocol-oriented
properties of Java programs: an industrial case study. In
SAC, pages 1573–1578, 2013.

[35] D. Distefano and M. J. Parkinson. jStar: towards practical
verification for Java. In OOPSLA, pages 213–226, 2008.

[36] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Ca-
duceus platform for deductive program verification. In
CAV, pages 173–177, 2007.

[37] C. Fischer and H. Wehrheim. Behavioural subtyping rela-
tions for Object-Oriented formalisms. In AMAST, pages
469–483, 2000.

128

Bibliography

[38] R. W. Floyd. Assigning meanings to programs. In J. T.
Schwartz, editor, Mathematical Aspects of Computer Sci-
ence, volume 19 of Proceedings of Symposia in Applied
Mathematics, pages 19–32, Providence, Rhode Island,
1967. American Mathematical Society.

[39] D. M. Gabbay, A. Kurucz, F. Wolter, and M. Za-
kharyaschev. Many-Dimensional Modal Logics: Theory
and Applications. Elsevier, 2003.

[40] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[41] D. Grune and C. J. Jacobs. Parsing Techniques - A Prac-
tical Guide (Second Edition). Springer-Verlag, 2008.

[42] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT
Press, Cambridge, MA, 2000.

[43] G. Hedin. Incremental attribute evaluation with side-
effects. In D. Hammer, editor, Compiler Compilers and
High Speed Compilation, 2nd CCHSC Workshop, Berlin
GDR, October 10-14, 1988, Proceedings, volume 371
of Lecture Notes in Computer Science, pages 175–189.
Springer, 1988.

[44] M. Heisel, W. Reif, and W. Stephan. Implementing ver-
ification strategies in the KIV-system. In CADE, pages
131–140, 1988.

[45] M. Hennessy. Algebraic theory of processes. MIT Press
series in the foundations of computing. MIT Press, 1988.

[46] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Software verification with BLAST. In SPIN, pages 235–
239, 2003.

[47] C. A. R. Hoare. An axiomatic basis for computer pro-
gramming. Commun. ACM, 12(10):576–580, 1969.

[48] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

129

Bibliography

[49] G. J. Holzmann. The model checker SPIN. IEEE Trans.
Software Eng., 23(5):279–295, 1997.

[50] International Telecommunication Union. ITU-T Recom-
mendation Z.120: Message Sequence Chart (MSC). Tech-
nical report, ITU, Geneva, 2001.

[51] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Pen-
ninckx, and F. Piessens. VeriFast: a powerful, sound, pre-
dictable, fast verifier for C and Java. In Proceedings of the
Third international conference on NASA Formal methods,
NFM’11, pages 41–55, Berlin, Heidelberg, 2011. Springer-
Verlag.

[52] A. Jeffrey and J. Rathke. Java Jr: Fully abstract trace
semantics for a core Java language. In S. Sagiv, editor,
14th European Symposium on Programming (ESOP’05),
volume 3444 of Lecture Notes in Computer Science, pages
423–438. Springer-Verlag, 2005.

[53] R. Jhala and R. Majumdar. Software model checking.
ACM Comput. Surv., 41(4), 2009.

[54] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and
M. Steffen. ABS: A core language for abstract behavioral
specification. In B. Aichernig, F. S. de Boer, and M. M.
Bonsangue, editors, Proc. 9th International Symposium
on Formal Methods for Components and Objects (FMCO
2010), volume 6957 of LNCS, pages 142–164. Springer-
Verlag, 2011.

[55] E. B. Johnsen and O. Owe. An asynchronous communi-
cation model for distributed concurrent objects. Software
and System Modeling, 6(1):35–58, Mar. 2007.

[56] S. C. Kleene. Representation of events in nerve nets and
finite automata. Automata Studies, 1956.

[57] G. Klein and T. Nipkow. A machine-checked model for a
Java-like language, virtual machine, and compiler. ACM
Trans. Prog. Lang. Syst., 28(4):619–695, 2006.

130

Bibliography

[58] P. Klint, T. van der Storm, and J. J. Vinju. Rascal: a
domain specific language for source code analysis and ma-
nipulation. In A. Walenstein and S. Schupp, editors, Pro-
ceedings of the IEEE International Working Conference
on Source Code Analysis and Manipulation (SCAM 2009),
pages 168–177, 2009.

[59] D. E. Knuth. Semantics of context-free languages. Math-
ematical Systems Theory, 2(2):127–145, 1968.

[60] M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism:
Probabilistic symbolic model checker. In Computer Per-
formance Evaluation / TOOLS, pages 200–204, 2002.

[61] L. Lee. Fast context-free grammar parsing requires fast
boolean matrix multiplication. J. ACM, 49(1):1–15, 2002.

[62] X. Li, Z. Liu, and J. He. A formal semantics of UML se-
quence diagram. In Australian Software Engineering Con-
ference, pages 168–177, 2004.

[63] J. C. Martin. Introduction to Languages and The Theory
of Computation. McGraw-Hil, 2010.

[64] M. Martin, B. Livshits, and M. S. Lam. Finding applica-
tion errors and security flaws using PQL: a Program Query
Language. In OOPLSLA, 2005.

[65] B. Meyer. Object-Oriented Software Construction. Pren-
tice Hall, 2 edition, 1997.

[66] L. Mikhajlov and E. Sekerinski. A study of the fragile base
class problem. In ECOOP, 1998.

[67] R. Milner. Fully abstract models of typed λ-calculi. The-
oretical Comput. Sci., 4:1–22, 1977.

[68] R. Milner. A Calculus of Communicating Systems, vol-
ume 92 of Lecture Notes in Computer Science. Springer,
1980.

[69] R. Milner. Communicating and Mobile Systems: The π-
Calculus. Cambridge University Press, New York, NY,
USA, 1999.

131

Bibliography

[70] B. Nobakht, M. M. Bonsangue, F. S. de Boer, and
S. de Gouw. Monitoring method call sequences using an-
notations. In FACS, pages 53–70, 2010.

[71] A. Okhotin. Conjunctive and Boolean grammars: The
true general case of the context-free grammars. Computer
Science Review, 9:27–59, 2013.

[72] T. J. Parr and R. W. Quong. Adding semantic and syntac-
tic predicates to LL(k): pred-LL(k). In In Computational
Complexity, pages 263–277. Springer-Verlag, 1994.

[73] B. C. Pierce. Types and programming languages. MIT
Press, 2002.

[74] A. Pnueli. The temporal logic of programs. In Foundations
of Computer Science, 1977., 18th Annual Symposium on,
pages 46–57, 1977.

[75] A. Pnueli and A. Zaks. PSL model checking and run-time
verification via testers. In FM, pages 573–586, 2006.

[76] V. R. Pratt. Semantical considerations on Floyd-Hoare
logic. In FOCS, pages 109–121, 1976.

[77] J. C. Reynolds. Separation logic: A logic for shared mu-
table data structures. In LICS, pages 55–74, 2002.

[78] D. Sangiorgi and D. Walker. The Pi-Calculus - a theory
of mobile processes. Cambridge University Press, 2001.

[79] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tan-
zarella. Delta-oriented programming of software product
lines. In SPLC, pages 77–91, 2010.

[80] J. Schäfer and A. Poetzsch-Heffter. JCoBox: Generaliz-
ing active objects to concurrent components. In European
Conference on Object-Oriented Programming (ECOOP)
(ECOOP’10), volume 6183 of Lecture Notes in Computer
Science, pages 275–299. Springer-Verlag, June 2010.

[81] M. Sipser. Introduction to the theory of computation. PWS
Publishing Company, 1997.

132

Bibliography

[82] M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer.
Modeling and verification of reactive systems using Re-
beca. Fundam. Inform., 63(4):385–410, 2004.

[83] V. Stolz and F. Huch. Runtime verification of concur-
rent Haskell programs. Electr. Notes Theor. Comput. Sci.,
113:201–216, 2005.

[84] L. G. Valiant. General context-free recognition in less than
cubic time. J. Comput. Syst. Sci., 10(2):308–315, 1975.

[85] J. van den Berg and B. Jacobs. The LOOP Compiler for
Java and JML. In TACAS, pages 299–312, 2001.

[86] P. H. J. van Eijk, C. Vissers, and M. Diaz, editors. Formal
Description Technique Lotos: Results of the Esprit Sedos
Project. Elsevier Science Inc., New York, NY, USA, 1989.

[87] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda.
Model checking programs. Autom. Softw. Eng., 10(2):203–
232, 2003.

[88] P. Y. H. Wong, E. Albert, R. Muschevici, J. Proença,
J. Schäfer, and R. Schlatte. The ABS tool suite: mod-
elling, executing and analysing distributed adaptable
Object-Oriented systems. STTT, 14(5):567–588, 2012.

133

List of Figures

1.1 First version of a base class B 6

1.2 New version of a base class B 7

1.3 Subclass of the base class 7

1.4 Multi-Threaded Programs 7

3.1 Methods of the BufferedReader Interface 24

3.2 Communication view of a BufferedReader 24

3.3 Global communication view 27

3.4 Context-Free Grammar which specifies that ‘read’
may only be called in between ‘open’ and ‘close’. . 28

3.5 Attribute Grammar which specifies that ‘read’ may
only be called in between ‘open’ and ‘close’, and
the reader may only be closed by the object which
opened it. 31

4.1 Generic Tool Architecture 40

4.2 Run-time environment of successfull method invo-
cation . 43

4.3 Run-time environment of successfull method invo-
cation . 44

4.4 Aspect for the event ‘call int read(char[] cbuf, int
off, int len)’ . 47

5.1 Stack Interface . 52

5.2 Communication View of a Stack 53

5.3 Abstract Stack Behavior 53

5.4 Attribute Grammar Stack Behavior 54

134

List of Figures

5.5 Parse tree annotated with attribute values for the
history push(5) push(7) pop() in the grammar of
Figure 5.4 (irrelevant attributes ommitted) 54

5.6 JML Specification Stack Interface 55
5.7 An example FAS deployment 57
5.8 Replication interaction 58
5.9 SnapShot andWorker interfaces of Replication System 59
5.10 SyncServer and Coordinator interfaces of Replica-

tion System . 60
5.11 Snapshot Communication View 61
5.12 Coordinator Communication View 61
5.13 Worker Communication View 61
5.14 WorkerReg Communication View 62
5.15 Snapshot Attribute Grammar 62
5.16 Coordinator Attribute Grammar 62
5.17 Worker Attribute Grammar 62
5.18 WorkerReg Attribute Grammar 63
5.19 Violating histories 66
5.20 Incorrect behavior of WKImpl 67
5.21 Comparison of the execution time (milliseconds) of

the replication sessions with and without the inte-
gration of SAGA 68

6.1 Data types and Interfaces 74
6.2 Method acceptCoordinator 81
6.3 Communication View 91
6.4 Replication interaction 94
6.5 Attribute Grammars 96
6.6 Communication View for Scheduling 97
6.7 Attribute Grammar for Scheduling 97

7.1 PQL . 106
7.2 JASS . 106
7.3 LARVA . 107
7.4 MOP . 108

A.1 Input to the tool: communication view of the Stack 113

135

List of Tables

3.1 Supported Java features that require special care. . 27

5.1 Join point matches in 766 replication sessions . . . 68

7.1 Comparison of Expressiveness 105
7.2 Duration per Activity in hours 106
7.3 Adoptability . 109

136

Titles in the IPA Dissertation Series since 2007

H.A. de Jong. Flexi-
ble Heterogeneous Software
Systems. Faculty of Nat-
ural Sciences, Mathemat-
ics, and Computer Science,
UvA. 2007-01

N.K. Kavaldjiev. A run-
time reconfigurable Network-
on-Chip for streaming DSP
applications. Faculty of Elec-
trical Engineering, Mathe-
matics & Computer Science,
UT. 2007-02

M. van Veelen. Considera-
tions on Modeling for Early
Detection of Abnormalities
in Locally Autonomous Dis-
tributed Systems. Faculty of
Mathematics and Computing
Sciences, RUG. 2007-03

T.D. Vu. Semantics and
Applications of Process and
Program Algebra. Faculty of
Natural Sciences, Mathemat-
ics, and Computer Science,
UvA. 2007-04

L. Brandán Briones. The-
ories for Model-based Test-
ing: Real-time and Cov-
erage. Faculty of Elec-
trical Engineering, Mathe-
matics & Computer Science,
UT. 2007-05

I. Loeb. Natural Deduc-
tion: Sharing by Presenta-
tion. Faculty of Science,

Mathematics and Computer
Science, RU. 2007-06

M.W.A. Streppel. Mul-
tifunctional Geometric Data
Structures. Faculty of Math-
ematics and Computer Sci-
ence, TU/e. 2007-07

N. Trčka. Silent Steps
in Transition Systems and
Markov Chains. Faculty of
Mathematics and Computer
Science, TU/e. 2007-08

R. Brinkman. Searching
in encrypted data. Fac-
ulty of Electrical Engineer-
ing, Mathematics & Com-
puter Science, UT. 2007-09

A. van Weelden. Putting
types to good use. Fac-
ulty of Science, Mathemat-
ics and Computer Science,
RU. 2007-10

J.A.R. Noppen. Imperfect
Information in Software De-
velopment Processes. Fac-
ulty of Electrical Engineer-
ing, Mathematics & Com-
puter Science, UT. 2007-11

R. Boumen. Integration
and Test plans for Com-
plex Manufacturing Systems.
Faculty of Mechanical Engi-
neering, TU/e. 2007-12

A.J. Wijs. What to do
Next?: Analysing and Op-

timising System Behaviour
in Time. Faculty of Sci-
ences, Division of Mathemat-
ics and Computer Science,
VUA. 2007-13

C.F.J. Lange. Assessing
and Improving the Quality
of Modeling: A Series of
Empirical Studies about the
UML. Faculty of Mathemat-
ics and Computer Science,
TU/e. 2007-14

T. van der Storm.
Component-based Configu-
ration, Integration and De-
livery. Faculty of Nat-
ural Sciences, Mathemat-
ics, and Computer Sci-
ence,UvA. 2007-15

B.S. Graaf. Model-Driven
Evolution of Software Archi-
tectures. Faculty of Electri-
cal Engineering, Mathemat-
ics, and Computer Science,
TUD. 2007-16

A.H.J. Mathijssen. Log-
ical Calculi for Reasoning
with Binding. Faculty of
Mathematics and Computer
Science, TU/e. 2007-17

D. Jarnikov. QoS frame-
work for Video Streaming in
Home Networks. Faculty of
Mathematics and Computer
Science, TU/e. 2007-18

M. A. Abam. New Data
Structures and Algorithms

for Mobile Data. Faculty of
Mathematics and Computer
Science, TU/e. 2007-19

W. Pieters. La Volonté
Machinale: Understanding
the Electronic Voting Con-
troversy. Faculty of Science,
Mathematics and Computer
Science, RU. 2008-01

A.L. de Groot. Practical
Automaton Proofs in PVS.
Faculty of Science, Mathe-
matics and Computer Sci-
ence, RU. 2008-02

M. Bruntink. Renova-
tion of Idiomatic Crosscut-
ting Concerns in Embedded
Systems. Faculty of Electri-
cal Engineering, Mathemat-
ics, and Computer Science,
TUD. 2008-03

A.M. Marin. An Integrated
System to Manage Cross-
cutting Concerns in Source
Code. Faculty of Electri-
cal Engineering, Mathemat-
ics, and Computer Science,
TUD. 2008-04

N.C.W.M. Braspenning.
Model-based Integration and
Testing of High-tech Multi-
disciplinary Systems. Fac-
ulty of Mechanical Engineer-
ing, TU/e. 2008-05

M. Bravenboer. Exercises
in Free Syntax: Syntax Defi-
nition, Parsing, and Assimi-

lation of Language Conglom-
erates. Faculty of Science,
UU. 2008-06

M. Torabi Dashti. Keep-
ing Fairness Alive: De-
sign and Formal Verification
of Optimistic Fair Exchange
Protocols. Faculty of Sci-
ences, Division of Mathemat-
ics and Computer Science,
VUA. 2008-07

I.S.M. de Jong. In-
tegration and Test Strate-
gies for Complex Manufac-
turing Machines. Faculty
of Mechanical Engineering,
TU/e. 2008-08

I. Hasuo. Tracing
Anonymity with Coalgebras.
Faculty of Science, Mathe-
matics and Computer Sci-
ence, RU. 2008-09

L.G.W.A. Cleophas. Tree
Algorithms: Two Tax-
onomies and a Toolkit.
Faculty of Mathematics
and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Check-
ing Markov Chains: Tech-
niques and Tools. Fac-
ulty of Electrical Engineer-
ing, Mathematics & Com-
puter Science, UT. 2008-11

M. Farshi. A Theo-
retical and Experimental

Study of Geometric Net-
works. Faculty of Mathemat-
ics and Computer Science,
TU/e. 2008-12

G. Gulesir. Evolvable
Behavior Specifications Us-
ing Context-Sensitive Wild-
cards. Faculty of Elec-
trical Engineering, Mathe-
matics & Computer Science,
UT. 2008-13

F.D. Garcia. Formal
and Computational Cryptog-
raphy: Protocols, Hashes
and Commitments. Fac-
ulty of Science, Mathemat-
ics and Computer Science,
RU. 2008-14

P. E. A. Dürr. Resource-
based Verification for Robust
Composition of Aspects. Fac-
ulty of Electrical Engineer-
ing, Mathematics & Com-
puter Science, UT. 2008-15

E.M. Bortnik. For-
mal Methods in Support
of SMC Design. Faculty
of Mechanical Engineering,
TU/e. 2008-16

R.H. Mak. Design and Per-
formance Analysis of Data-
Independent Stream Process-
ing Systems. Faculty of
Mathematics and Computer
Science, TU/e. 2008-17

M. van der Horst. Scal-
able Block Processing Algo-

rithms. Faculty of Math-
ematics and Computer Sci-
ence, TU/e. 2008-18

C.M. Gray. Algorithms for
Fat Objects: Decompositions
and Applications. Faculty of
Mathematics and Computer
Science, TU/e. 2008-19

J.R. Calamé. Testing Re-
active Systems with Data
- Enumerative Methods and
Constraint Solving. Fac-
ulty of Electrical Engineer-
ing, Mathematics & Com-
puter Science, UT. 2008-20

E. Mumford. Drawing
Graphs for Cartographic Ap-
plications. Faculty of Math-
ematics and Computer Sci-
ence, TU/e. 2008-21

E.H. de Graaf. Min-
ing Semi-structured Data,
Theoretical and Experimen-
tal Aspects of Pattern Eval-
uation. Faculty of Mathe-
matics and Natural Sciences,
UL. 2008-22

R. Brijder. Models of Nat-
ural Computation: Gene As-
sembly and Membrane Sys-
tems. Faculty of Mathe-
matics and Natural Sciences,
UL. 2008-23

A. Koprowski. Termina-
tion of Rewriting and Its
Certification. Faculty of

Mathematics and Computer
Science, TU/e. 2008-24

U. Khadim. Process Al-
gebras for Hybrid Systems:
Comparison and Develop-
ment. Faculty of Mathemat-
ics and Computer Science,
TU/e. 2008-25

J. Markovski. Real and
Stochastic Time in Process
Algebras for Performance
Evaluation. Faculty of Math-
ematics and Computer Sci-
ence, TU/e. 2008-26

H. Kastenberg. Graph-
Based Software Specification
and Verification. Faculty
of Electrical Engineering,
Mathematics & Computer
Science, UT. 2008-27

I.R. Buhan. Cryptographic
Keys from Noisy Data The-
ory and Applications. Fac-
ulty of Electrical Engineer-
ing, Mathematics & Com-
puter Science, UT. 2008-28

R.S. Marin-Perianu.
Wireless Sensor Networks
in Motion: Clustering Al-
gorithms for Service Discov-
ery and Provisioning. Fac-
ulty of Electrical Engineer-
ing, Mathematics & Com-
puter Science, UT. 2008-29

M.H.G. Verhoef. Mod-
eling and Validating Dis-
tributed Embedded Real-

Time Control Systems. Fac-
ulty of Science, Mathemat-
ics and Computer Science,
RU. 2009-01

M. de Mol. Reasoning
about Functional Programs:
Sparkle, a proof assistant for
Clean. Faculty of Science,
Mathematics and Computer
Science, RU. 2009-02

M. Lormans. Manag-
ing Requirements Evolu-
tion. Faculty of Electri-
cal Engineering, Mathemat-
ics, and Computer Science,
TUD. 2009-03

M.P.W.J. van Osch. Au-
tomated Model-based Testing
of Hybrid Systems. Faculty
of Mathematics and Com-
puter Science, TU/e. 2009-04

H. Sozer. Architecting
Fault-Tolerant Software Sys-
tems. Faculty of Elec-
trical Engineering, Mathe-
matics & Computer Science,
UT. 2009-05

M.J. van Weerdenburg.
Efficient Rewriting Tech-
niques. Faculty of Mathe-
matics and Computer Sci-
ence, TU/e. 2009-06

H.H. Hansen. Coalge-
braic Modelling: Applica-
tions in Automata Theory
and Modal Logic. Faculty of

Sciences, Division of Math-
ematics and Computer Sci-
ence, VUA. 2009-07

A. Mesbah. Analysis and
Testing of Ajax-based Single-
page Web Applications. Fac-
ulty of Electrical Engineer-
ing, Mathematics, and Com-
puter Science, TUD. 2009-08

A.L. Rodriguez Yaku-

shev. Towards Getting
Generic Programming Ready
for Prime Time. Faculty of
Science, UU. 2009-9

K.R. Olmos Joffré. Strate-
gies for Context Sensi-
tive Program Transforma-
tion. Faculty of Science,
UU. 2009-10

J.A.G.M. van den Berg.
Reasoning about Java pro-
grams in PVS using JML.
Faculty of Science, Mathe-
matics and Computer Sci-
ence, RU. 2009-11

M.G. Khatib. MEMS-
Based Storage Devices.
Integration in Energy-
Constrained Mobile Sys-
tems. Faculty of Electri-
cal Engineering, Mathemat-
ics & Computer Science,
UT. 2009-12

S.G.M. Cornelissen. Eval-
uating Dynamic Analysis
Techniques for Program
Comprehension. Faculty

of Electrical Engineering,
Mathematics, and Computer
Science, TUD. 2009-13

D. Bolzoni. Revisit-
ing Anomaly-based Network
Intrusion Detection Sys-
tems. Faculty of Electri-
cal Engineering, Mathemat-
ics & Computer Science,
UT. 2009-14

H.L. Jonker. Security
Matters: Privacy in Voting
and Fairness in Digital Ex-
change. Faculty of Math-
ematics and Computer Sci-
ence, TU/e. 2009-15

M.R. Czenko. TuLiP
- Reshaping Trust Manage-
ment. Faculty of Elec-
trical Engineering, Mathe-
matics & Computer Science,
UT. 2009-16

T. Chen. Clocks, Dice and
Processes. Faculty of Sci-
ences, Division of Mathemat-
ics and Computer Science,
VUA. 2009-17

C. Kaliszyk. Correctness
and Availability: Building
Computer Algebra on top of
Proof Assistants and mak-
ing Proof Assistants available
over the Web. Faculty of Sci-
ence, Mathematics and Com-
puter Science, RU. 2009-18

R.S.S. O’Connor. Incom-
pleteness & Completeness:

Formalizing Logic and Anal-
ysis in Type Theory. Fac-
ulty of Science, Mathemat-
ics and Computer Science,
RU. 2009-19

B. Ploeger. Improved Ver-
ification Methods for Con-
current Systems. Faculty of
Mathematics and Computer
Science, TU/e. 2009-20

T. Han. Diagnosis, Syn-
thesis and Analysis of Prob-
abilistic Models. Faculty
of Electrical Engineering,
Mathematics & Computer
Science, UT. 2009-21

R. Li. Mixed-Integer Evolu-
tion Strategies for Parameter
Optimization and Their Ap-
plications to Medical Image
Analysis. Faculty of Mathe-
matics and Natural Sciences,
UL. 2009-22

J.H.P. Kwisthout. The
Computational Complex-
ity of Probabilistic Net-
works. Faculty of Science,
UU. 2009-23

T.K. Cocx. Algorith-
mic Tools for Data-Oriented
Law Enforcement. Faculty
of Mathematics and Natural
Sciences, UL. 2009-24

A.I. Baars. Embedded
Compilers. Faculty of Sci-
ence, UU. 2009-25

M.A.C. Dekker. Flexi-
ble Access Control for Dy-
namic Collaborative Envi-
ronments. Faculty of Elec-
trical Engineering, Mathe-
matics & Computer Science,
UT. 2009-26

J.F.J. Laros. Met-
rics and Visualisation for
Crime Analysis and Ge-
nomics. Faculty of Mathe-
matics and Natural Sciences,
UL. 2009-27

C.J. Boogerd. Focus-
ing Automatic Code Inspec-
tions. Faculty of Electri-
cal Engineering, Mathemat-
ics, and Computer Science,
TUD. 2010-01

M.R. Neuhäußer. Model
Checking Nondeterministic
and Randomly Timed Sys-
tems. Faculty of Electri-
cal Engineering, Mathemat-
ics & Computer Science,
UT. 2010-02

J. Endrullis. Termination
and Productivity. Faculty of
Sciences, Division of Math-
ematics and Computer Sci-
ence, VUA. 2010-03

T. Staijen. Graph-Based
Specification and Verification
for Aspect-Oriented Lan-
guages. Faculty of Elec-
trical Engineering, Mathe-
matics & Computer Science,
UT. 2010-04

Y. Wang. Epistemic Mod-
elling and Protocol Dynam-
ics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstrac-
tion, Prices and Probabil-
ity in Model Checking Timed
Automata. Faculty of Sci-
ence, Mathematics and Com-
puter Science, RU. 2010-06

A. Nugroho. The Effects of
UML Modeling on the Qual-
ity of Software. Faculty
of Mathematics and Natural
Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra.
Faculty of Science, Mathe-
matics and Computer Sci-
ence, RU. 2010-08

J.S. de Bruin. Service-
Oriented Discovery of
Knowledge - Foundations,
Implementations and Appli-
cations. Faculty of Mathe-
matics and Natural Sciences,
UL. 2010-09

D. Costa. Formal Models
for Component Connectors.
Faculty of Sciences, Division
of Mathematics and Com-
puter Science, VUA. 2010-10

M.M. Jaghoori. Time at
Your Service: Schedulability
Analysis of Real-Time and
Distributed Services. Faculty
of Mathematics and Natural
Sciences, UL. 2010-11

R. Bakhshi. Gossiping
Models: Formal Analysis of
Epidemic Protocols. Fac-
ulty of Sciences, Depart-
ment of Computer Science,
VUA. 2011-01

B.J. Arnoldus. An Il-
lumination of the Tem-
plate Enigma: Software
Code Generation with Tem-
plates. Faculty of Mathemat-
ics and Computer Science,
TU/e. 2011-02

E. Zambon. Towards Opti-
mal IT Availability Planning:
Methods and Tools. Fac-
ulty of Electrical Engineer-
ing, Mathematics & Com-
puter Science, UT. 2011-03

L. Astefanoaei. An Ex-
ecutable Theory of Multi-
Agent Systems Refine-
ment. Faculty of Mathe-
matics and Natural Sciences,
UL. 2011-04

J. Proença. Synchronous
coordination of distributed
components. Faculty of
Mathematics and Natural
Sciences, UL. 2011-05

A. Moralı. IT Architecture-
Based Confidentiality Risk
Assessment in Networks
of Organizations. Faculty
of Electrical Engineering,
Mathematics & Computer
Science, UT. 2011-06

M. van der Bijl. On chang-
ing models in Model-Based
Testing. Faculty of Elec-
trical Engineering, Mathe-
matics & Computer Science,
UT. 2011-07

C. Krause. Reconfig-
urable Component Connec-
tors. Faculty of Mathe-
matics and Natural Sciences,
UL. 2011-08

M.E. Andrés. Quanti-
tative Analysis of Informa-
tion Leakage in Probabilistic
and Nondeterministic Sys-
tems. Faculty of Science,
Mathematics and Computer
Science, RU. 2011-09

M. Atif. Formal Mod-
eling and Verification of
Distributed Failure Detec-
tors. Faculty of Mathemat-
ics and Computer Science,
TU/e. 2011-10

P.J.A. van Tilburg. From
Computability to Executabil-
ity – A process-theoretic view
on automata theory. Faculty
of Mathematics and Com-
puter Science, TU/e. 2011-11

Z. Protic. Configura-
tion management for models:
Generic methods for model
comparison and model co-
evolution. Faculty of Math-
ematics and Computer Sci-
ence, TU/e. 2011-12

S. Georgievska. Probabil-
ity and Hiding in Concurrent
Processes. Faculty of Math-
ematics and Computer Sci-
ence, TU/e. 2011-13

S. Malakuti. Event Com-
position Model: Achieving
Naturalness in Runtime En-
forcement. Faculty of Elec-
trical Engineering, Mathe-
matics & Computer Science,
UT. 2011-14

M. Raffelsieper. Cell
Libraries and Verification.
Faculty of Mathematics
and Computer Science,
TU/e. 2011-15

C.P. Tsirogiannis. Anal-
ysis of Flow and Visibil-
ity on Triangulated Ter-
rains. Faculty of Mathemat-
ics and Computer Science,
TU/e. 2011-16

Y.-J. Moon. Stochastic
Models for Quality of Ser-
vice of Component Connec-
tors. Faculty of Mathe-
matics and Natural Sciences,
UL. 2011-17

R. Middelkoop. Captur-
ing and Exploiting Abstract
Views of States in OO Ver-
ification. Faculty of Math-
ematics and Computer Sci-
ence, TU/e. 2011-18

M.F. van Amstel. As-
sessing and Improving the

Quality of Model Transfor-
mations. Faculty of Math-
ematics and Computer Sci-
ence, TU/e. 2011-19

A.N. Tamalet. Towards
Correct Programs in Prac-
tice. Faculty of Science,
Mathematics and Computer
Science, RU. 2011-20

H.J.S. Basten. Ambiguity
Detection for Programming
Language Grammars. Fac-
ulty of Science, UvA. 2011-21

M. Izadi. Model Check-
ing of Component Connec-
tors. Faculty of Mathe-
matics and Natural Sciences,
UL. 2011-22

L.C.L. Kats. Building
Blocks for Language Work-
benches. Faculty of Electri-
cal Engineering, Mathemat-
ics, and Computer Science,
TUD. 2011-23

S. Kemper. Modelling and
Analysis of Real-Time Coor-
dination Patterns. Faculty
of Mathematics and Natural
Sciences, UL. 2011-24

J. Wang. Spiking Neural P
Systems. Faculty of Mathe-
matics and Natural Sciences,
UL. 2011-25

A. Khosravi. Opti-
mal Geometric Data Struc-
tures. Faculty of Mathemat-

ics and Computer Science,
TU/e. 2012-01

A. Middelkoop. Inference
of Program Properties with
Attribute Grammars, Revis-
ited. Faculty of Science,
UU. 2012-02

Z. Hemel. Methods and
Techniques for the De-
sign and Implementation
of Domain-Specific Lan-
guages. Faculty of Electri-
cal Engineering, Mathemat-
ics, and Computer Science,
TUD. 2012-03

T. Dimkov. Alignment
of Organizational Security
Policies: Theory and Prac-
tice. Faculty of Electri-
cal Engineering, Mathemat-
ics & Computer Science,
UT. 2012-04

S. Sedghi. Towards
Provably Secure Efficiently
Searchable Encryption. Fac-
ulty of Electrical Engineer-
ing, Mathematics & Com-
puter Science, UT. 2012-05

F. Heidarian Dehkordi.
Studies on Verification of
Wireless Sensor Networks
and Abstraction Learning for
System Inference. Fac-
ulty of Science, Mathemat-
ics and Computer Science,
RU. 2012-06

K. Verbeek. Algorithms
for Cartographic Visualiza-
tion. Faculty of Mathemat-
ics and Computer Science,
TU/e. 2012-07

D.E. Nadales Agut. A
Compositional Interchange
Format for Hybrid Systems:
Design and Implementation.
Faculty of Mechanical Engi-
neering, TU/e. 2012-08

H. Rahmani. Analysis
of Protein-Protein Interac-
tion Networks by Means of
Annotated Graph Mining Al-
gorithms. Faculty of Mathe-
matics and Natural Sciences,
UL. 2012-09

S.D. Vermolen. Software
Language Evolution. Fac-
ulty of Electrical Engineer-
ing, Mathematics, and Com-
puter Science, TUD. 2012-10

L.J.P. Engelen. From Nap-
kin Sketches to Reliable Soft-
ware. Faculty of Mathemat-
ics and Computer Science,
TU/e. 2012-11

F.P.M. Stappers. Bridging
Formal Models – An Engi-
neering Perspective. Faculty
of Mathematics and Com-
puter Science, TU/e. 2012-12

W. Heijstek. Software Ar-
chitecture Design in Global
and Model-Centric Software
Development. Faculty of

Mathematics and Natural
Sciences, UL. 2012-13

C. Kop. Higher Order Ter-
mination. Faculty of Sci-
ences, Department of Com-
puter Science, VUA. 2012-14

A. Osaiweran. Formal De-
velopment of Control Soft-
ware in the Medical Systems
Domain. Faculty of Math-
ematics and Computer Sci-
ence, TU/e. 2012-15

W. Kuijper. Composi-
tional Synthesis of Safety
Controllers. Faculty of Elec-
trical Engineering, Mathe-
matics & Computer Science,
UT. 2012-16

H. Beohar. Refinement of
Communication and States
in Models of Embedded Sys-
tems. Faculty of Mathemat-
ics and Computer Science,
TU/e. 2013-01

G. Igna. Performance Anal-
ysis of Real-Time Task Sys-
tems using Timed Automata.
Faculty of Science, Mathe-
matics and Computer Sci-
ence, RU. 2013-02

E. Zambon. Abstract
Graph Transformation –
Theory and Practice. Fac-
ulty of Electrical Engineer-
ing, Mathematics & Com-
puter Science, UT. 2013-03

B. Lijnse. TOP to the
Rescue – Task-Oriented Pro-
gramming for Incident Re-
sponse Applications. Fac-
ulty of Science, Mathemat-
ics and Computer Science,
RU. 2013-04

G.T. de Koning Gans.
Outsmarting Smart Cards.
Faculty of Science, Mathe-
matics and Computer Sci-
ence, RU. 2013-05

M.S. Greiler. Test Suite
Comprehension for Modular
and Dynamic Systems. Fac-
ulty of Electrical Engineer-
ing, Mathematics, and Com-
puter Science, TUD. 2013-06

L.E. Mamane. Inter-
active mathematical docu-
ments: creation and presen-
tation. Faculty of Science,
Mathematics and Computer
Science, RU. 2013-07

M.M.H.P. van den

Heuvel. Composition and
synchronization of real-time
components upon one proces-
sor. Faculty of Mathemat-
ics and Computer Science,
TU/e. 2013-08

J. Businge. Co-evolution
of the Eclipse Framework
and its Third-party Plug-
ins. Faculty of Mathemat-
ics and Computer Science,
TU/e. 2013-09

S. van der Burg. A
Reference Architecture for
Distributed Software Deploy-
ment. Faculty of Electri-
cal Engineering, Mathemat-
ics, and Computer Science,
TUD. 2013-10

J.J.A. Keiren. Advanced
Reduction Techniques for
Model Checking. Faculty of
Mathematics and Computer
Science, TU/e. 2013-11

D.H.P. Gerrits. Push-
ing and Pulling: Computing
push plans for disk-shaped
robots, and dynamic labelings
for moving points. Faculty of
Mathematics and Computer
Science, TU/e. 2013-12

M. Timmer. Efficient
Modelling, Generation and
Analysis of Markov Au-
tomata. Faculty of Elec-
trical Engineering, Mathe-

matics & Computer Science,
UT. 2013-13

M.J.M. Roeloffzen. Ki-
netic Data Structures in the
Black-Box Model. Faculty of
Mathematics and Computer
Science, TU/e. 2013-14

L. Lensink. Applying For-
mal Methods in Software De-
velopment. Faculty of Sci-
ence, Mathematics and Com-
puter Science, RU. 2013-15

C. Tankink. Documen-
tation and Formal Mathe-
matics — Web Technology
meets Proof Assistants. Fac-
ulty of Science, Mathemat-
ics and Computer Science,
RU. 2013-16

C. de Gouw. Combining
Monitoring with Run-time
Assertion Checking. Faculty
of Mathematics and Natural
Sciences, UL. 2013-17

