
Combining Monocular Geometric Cues with Traditional

Stereo Cues for Consumer Camera Stereo

Adarsh Kowdle, Andrew Gallagher, and Tsuhan Chen

Cornell University, Ithaca, NY, USA

Abstract. This paper presents an algorithm for considering both stereo cues and

structural priors to obtain a geometrically representative depth map from a narrow

baseline stereo pair. We use stereo pairs captured with a consumer stereo camera

and observe that traditional depth estimation using stereo matching techniques

encounters difficulties related to the narrow baseline relative to the depth of the

scene. However, monocular geometric cues based on attributes such as lines and

the horizon provide additional hints about the global structure that stereo match-

ing misses. We merge both monocular and stereo matching features in a piecewise

planar reconstruction framework that is initialized with a discrete inference step,

and refined with a continuous optimization to encourage the intersections of hy-

pothesized planes to coincide with observed image lines. We show through our

results on stereo pairs of manmade structures captured outside of the lab that our

algorithm exploits the advantages of both approaches to infer a better depth map

of the scene.

Keywords: narrow baseline stereo, consumer stereo camera.

1 Introduction

Recent developments in consumer electronics have paved the way for handheld stereo

cameras such as Fujifilm FinePix 3D® and Sony Bloggie 3D®, which allow users to

capture stereo pairs in the wild (i.e. outside the lab). Using a single stereo pair captured

with such a camera, we observe that while standard depth-from-stereo allows us to

observe the ordering of various objects in the scene, even the state-of-art algorithms

fail to give a good depth map that captures the geometry of the scene such as, the

3D structure of the facades of distant buildings and the depth of homogeneous surfaces

(Fig. 3). The problems with stereo matching include: narrow baseline (typically 77 mm,

similar to our eyes) that limits the depth from parallax [9], camera properties such as

image resolution, and mismatches between sensors in terms of contrast, exposure, and

focus, that lead to heavy distortion. In addition, problems due to scene irregularities

such as ill-effects of lighting, specularities and homogeneous surfaces make the stereo

matching task challenging.

However, humans (with eyes arranged similar to the cameras of a stereo camera),

effectively use monocular cues from the scene to infer the 3D structure of the scene as

illustrated in Fig. 1a. While the depth perception from stereo of the human visual system

is also restricted to only a few meters, we have enough cues from monocular geometric

cues and prior learning to obtain the global geometric structure of say, a building beyond

the maximum depth from stereo. A number of recent works on depth from a single

image have shown that one can obtain a fairly detailed depth map using trained models
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(a) (b)

Fig. 1. (a) Monocular geometric cues: (Left) Müller-Lyer illusion: Equal line segments appear

different since we tend to interpret them from a 3D geometry point of view; (Right) Prominent

monocular geometric cues like vanishing points not captured in generic stereo matching reveal

the structure of a scene even in the absence of texture cues; (b) Stereo cues: Ames room, a famous

illusion gives you the above illusion when you look though a peephole (or a monocular image).

Viewing it as a stereo pair, would rid of the illusion revealing that the girl on the left is far away

compared to the girl on the right.

(a) (b) (c) (d)

Fig. 2. Overview: (a) Input stereo pair with the lines detected and superpixel map which help

capture some of the monocular cues; (b) Resulting labeling using proposed algorithm; (c) Syn-

thesized depth map (white is close, black is far); (d) 3D reconstruction from novel viewpoints.

[8,16,17,25]. Prior work on single-view 3D reasoning [7,22] and cognitive science have

shown monocular geometric cues like lines and edges to be a critical aspect of human

vision [3, 15]. While these help obtain a globally consistent structure, stereo cues can

further disambiguate details or the depth ordering of objects in the scene as illustrated

in Fig. 1b.

An overview of our approach and sample results are shown in Fig. 2 and Fig. 3. The

main contributions of this paper are:

– We propose an algorithm to combine stereo cues with monocular structural priors

(e.g. lines, horizon and plane intersections) that are not considered in generic stereo

matching and prior works that combine monocular and stereo cues [24].

– We introduce monocular cues in two ways:

1) By proposing possible parameterized planes. Stereo matching is used to then

find the cost of assigning each plane to each superpixel. This is the discrete step.

2) By continuous optimization that performs fine adjustment to encourage planes

to meet at observed lines in the scene.

– We propose a novel use of distance transforms to encode monocular information

from image lines within the discrete and continuous optimization steps.

– We show the effectiveness of the algorithm via a thorough comparison of the 3D

reconstruction using a user study allowing users to fly-through the 3D rendering.
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2 Related Work

3D reconstruction of a scene is an active field in the community. Given a a single stereo

pair of images, we give an overview of prior work to reconstruct the scene.

Depth from a Single Image. On one end of the spectrum is single-view modeling,

which exploits solely monocular image cues [7, 8, 16, 17, 22, 25]. Some of these use

trained models based on image features [16, 17, 25], under weak assumptions such as

colinearity or coplanarity. A key idea that pervades single image reconstruction work is

that some scene compositions (e.g. ground plane with perpendicular vertical planes) are

more likely than others. We build on these by adding stereo analysis to our algorithm.

(a) (b) (c)

Fig. 3. Comparison with stereo matching (white is close, black is far for the depth maps): (a) Left

image of stereo pair; (b) Depth map from stereo matching [29] shows errors such as the depth of

the ceiling, and the depth of the piano; (c) Our result is geometrically representative of the scene.

Multiview Stereo. On the other end of the spectrum for 3D reconstruction is multiview

stereo. A number of these approaches work with many images to obtain a fairly dense

reconstruction [13,27]. Recent works propose piecewise planar multiview stereo by us-

ing a discrete labeling over a set of hypothesized planes [11, 12, 14, 23, 28]. However,

with a consumer stereo camera we face two problems: hypothesizing planes using a

depth map is unreliable, and using multi-view stereo approaches using only photocon-

sistency across views does not perform well.

Depth from Stereo. A natural approach to obtain depth from a stereo pair is to use

dense stereo matching [1, 26]. While the stereo matching algorithms have been exten-

sively evaluated on benchmarking datasets, we find that these algorithms are very sensi-

tive to the data. Saxena et. al. [24] proposed making a depth map from traditional stereo

matching. Holes in this map were filled using his learned single-view depth estimate. In

practice, this tends to prefer a smooth reconstruction and given the poor performance of

stereo matching on the consumer stereo pairs it would not recover geometric structures

(intersecting planar surfaces).

In this work, we show that irrespective of inaccurate depth from stereo obtained due

to scene irregularities, we can leverage the monocular geometric cues with the stereo

cues to obtain a better, geometrically representative depth map.
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3 Algorithm

In this section, we describe our algorithm in detail. We obtain the depth map of the

scene in a two-step process. The first step is a discrete optimization that estimates a

coarse structure of the scene, followed by a continuous optimization that refines the

structure to render a geometrically representative depth map.

3.1 Discrete Optimization

Motivated by recent works in piecewise planar stereo [12,14,23,28] we try to achieve a

globally consistent depth map of the scene by formulating depth estimation as a discrete

optimization problem, where each pixel belongs to one of many hypothesized planes.

Plane Hypothesis. We first calibrate the stereo camera to obtain the camera parameters

(relative translation and rotation) of the two cameras. Given the camera parameters and

matched SIFT features on the stereo pair, we estimate the 3D positions of the points re-

sulting in a sparse point cloud. We hypothesize a set of dominant planes (L) by analyz-

ing the distribution of depths of the 3D points along each hypothesized normals ( [28]).

Note that other plane hypotheses approaches can be used for this initial step [4, 14].

Energy Minimization Formulation. Let i ∈ S denote superpixels in an image com-
puted using color features from [10]. We describe an energy minimization formulation
to estimate a labeling l, where each superpixel i is given a label li ∈ L. We define an
MRF with the set of superpixels S as nodes, and all adjacent superpixels denoted as N
as edges. We compute the labeling l that minimizes the following energy:

E(l) =
∑

i∈S

Ei(li) +
∑

(i,j)∈N

Ei,j (li, lj) , (1)

whereEi(li) is the unary term indicating the cost of assigning a superpixel i to a label li,

andEi,j (li, lj) is the pairwise term for penalizing label disagreement when neighboring

superpixels i and j take the labels li and lj , respectively.

Unary Term. Piecewise planar stereo algorithms typically capture this using a photo-
consistency term measured over the multiple views. However, in case of a single nar-
row baseline stereo pair, a unary cost alone does not suffice. We model the term using
monocular geometric cues in addition to the stereo photoconsistency term:

Ei(li) = Ψ(i, li) ∗
(

E
P
i (li) + E

N
i (li)

)

, (2)

whereEP
i (li) is the photoconsistency term,EN

i (li) is a surface normal term and Ψ(i, li)
are additional monocular hard constraints we add to the unary term. We now explain

these terms in detail.

Photoconsistency Term (EP ). The photoconsistency term is similar to that used in re-

cent multiview stereo algorithms. For each superpixel on the left image (say), for every

plane hypothesis we estimate the warp error (via homography) from the right to the left

view, quantified using normalized cross correlation (NCC). We refer the reader to [28]

for more details. We compute the NCC using the superpixel as support at each pixel as

opposed to a constant window.
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Input image 

Line segments   
grouped according to the VD 

Vanishing directions 

Fig. 4. Illustration of the surface normal term. Given the lines in the image, they are first grouped

according to the vanishing directions (three in this case). The distance map for each vanishing

direction is an ensemble of distance transforms with respect to the lines grouped to that direction.

For example, the figure in the bottom shows the distance map for the green vanishing direction

where, blue is a small distance transform value and red is large. Details in Section 3.1.

Surface Normal Term (EN ). With a narrow baseline stereo pair, the two cameras lack

enough parallax to differentiate planes beyond a certain depth. Monocular cues such

as the lines and vanishing directions provide support to penalize the planes that would

result in a globally inconsistent reconstruction.
We estimate the likelihood of each pixel belonging to a particular surface normal

direction by developing a novel approach to exploit this information using the lines
detected in the image. These lines were used to estimate the vanishing directions and
hence hypothesize plane normals spanning the scene1. The lines are first assigned to
one of the vanishing directions {VD} as shown in Fig. 4. For each vanishing direction

vp ∈ {VD}, we compute a distance map
(

δvp
)

using all the lines assigned to vp.

δvp = min
line∈vp

DT (line), (3)

where, DT (line) is the normalized distance transform, i.e., the distance of a pixel to

the nearest point on the line. Now, considering the normal nli of a plane li obtained

using the cross product of two vanishing directions vp and vq . The per-pixel distance

likelihood map for the surface normal nli is estimated as:

Dnli =
(δvp + δvq )

2
, (4)

The surface normal term represents the cost of superpixel i taking plane label li and is:

EN
i (li) = median

(

Dnli

(

pi
)

)

, (5)

where pi represents all pixels within superpixel i.

1 Vanishing points and horizon were computed using the algorithm by Kosecka et. al. [20]
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Fig. 5. Result of the discrete optimization. The discrete optimization stage assigns the correct

normal, but it fails to distinguish between two parallel planes at different depths splitting the left

wall into two regions (as shown by the two different shades of green) at different depths.

Monocular Constraints (Ψ). The monocular constraints for each superpixel i, Ψ(i, li)
gives the cost of choosing a plane that leads to an improbable scene. This depends on the

normal of the hypothesized plane. We estimate the position of the horizon [17]. We add

a large penalty for a superpixel above the horizon from choosing a plane with normal

pointing upwards and for a superpixel below the horizon choosing a plane with normal

downwards. For the space below the horizon, the penalty linearly decreases from 1.0 at

the horizon to 0.0 at the bottom of the image. In case we fail to detect the horizon then

this penalty is always 1.

Pairwise Term. We model the pairwise term using the well-known contrast-sensitive
Potts model.

Ei,j (li, lj) = I (li �= lj) exp(−βdij), (6)

where I (·) is an indicator function that is 1(0) if the input argument is true(false), dij is

the contrast between superpixels i and j and β is a scale parameter.

Modeling the Contrast Term. (dij ) The contrast is modeled as,

dij = Oij ∗
(

λS d
S
ij + λC d

C
ij

)

, (7)

The first term (dSij) is the stereo matching term. While the depth from stereo is not ac-

curate, the precision is good to capture depth discontinuities. We model dSij as
|di−dj|

dj

where di and dj are the mean disparities of the pixels within superpixel i and j respec-

tively. The neighboring superpixels with disparity discontinuity are penalized if they

take the same plane (and vice-versa). The second term (dCij) is the normalized score

from a coplanar classifier that captures the contrast between the features of adjacent su-

perpixels [21]. If the coplanar classifier gives a high score for neighboring superpixels,

it is penalized for not taking the same plane (and vice-versa). In order to handle inaccu-

racies in the contrast terms we obtain a soft normalized occlusion map [18]. We weight

the pairwise term by the occlusion map, which intuitively captures the ambiguity of

stereo matching algorithms in case of occlusions and allows label discontinuity across

occlusions. The occlusion weight Oij between superpixels i and j is given by the max-

imum occlusion confidence along the boundary between the two superpixels. λS and

λC are regularization parameters that are manually tuned by observing the result on one

stereo pair but are constant across all the datasets. In practice, equal weights gave good

results on all stereo pairs.
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Given the unary term and the pairwise term, we use graph-cuts with α-expansion

to compute the MAP labels, using the implementation provided by Bagon [2] and

Boykov et. al. [5, 6, 19]. The result on our sample stereo pair is shown in Fig. 5.

3.2 Continuous Optimization

The discrete optimization quantizes the 3D space into meaningful planes that allow us

to obtain a geometrically pleasing reconstruction. With a single stereo pair, the lack

of parallax at large depths results in errors in the reconstruction; for example, it does

not help distinguish between parallel planes at different depths (Fig. 5). We counter this

problem by again using monocular cues, via a continuous optimization. This refinement

stage will try to enforce the monocular constraint that we observe strong edges (or lines)

when two non-coplanar surfaces meet.

(a) (b) (c) (d) (e)

Fig. 6. Continuous optimization: (a) shows the result from discrete optimization; (b) highlights

two regions that after the discrete step are labeled with the correct normals, but incorrect depths

such that they are not connected (at the apparent intersection in the image); (c) shows the 2D

projection of the line of intersection of planes represented by the highlighted regions (in red); (d)

shows the target line of intersection which obeys image cues (in blue); (e) shows the final result,

after the continuous optimization and refining the segmentation

Algorithm 1. Continuous optimization algorithm

1) Consider each region rm where, m ∈ {1, 2, . . . , N} with plane parameters, πm =
(n̂m, p(0,m))
2) Fix the normal n̂m and optimize for p(0,m)

3) Start from region ri with highest number of non-parallel neighbors say nei(ri) =
nei1, nei2, . . .

Do for each region ri: {
Optimize for the vector of parameters,

p0 = [p(0,i), p(0,nei1), p(0,nei2), . . . ]
′

Constrained continuous optimization - bound the deviation of neighboring planes

argmin
p∗
0

∑

j∈nei(ri)

err(πi, πj)

s.t :∀j �= i, p0,j − γ < p0,j < p0,j + γ

where, γ decides the amount of deviation allowed for the neighboring planes.

}



110 A. Kowdle, A. Gallagher, and T. Chen

Consider the erroneous region shown in Fig. 6b. We observe that the two adjacent

planar regions say, πm and πn are segmented in the 2D fairly accurately. However,

on projecting the 3D line of intersection onto the image, we observe that the plane

estimate is inaccurate, Fig. 6c. We denote the projected line of intersection by the two

points where the line meets the image boundary (xmn,1, ymn,1) and (xmn,2, ymn,2).
We fix the plane normals, and using the 2D edge between the two segments we search

the space of possible lines of intersection using the lines detected in the image. Once

we obtain a target line of intersection defined by (x′
mn,1, y

′
mn,1) and (x′

mn,2, y
′
mn,2),

(Fig. 6d) we optimize the plane parameters by minimizing the error function,

err(πm, πn) = |xmn,1 − x′
mn,1| (8)

+ |ymn,1 − y′mn,1|+ |xmn,2 − x′
mn,2|+ |ymn,2 − y′mn,2|

The continuous optimization algorithm summarized in Algorithm 1. Fig. 6e shows the

final result obtained by refining the segmentation using the new plane parameters.

4 Results and Discussions

We perform our experiments on stereo pairs2 captured using a recent consumer stereo

camera, Fujifilm FinePix 3D W1®, which has a narrow baseline of 77mm. Given a

stereo pair, we apply our algorithm to obtain plane parameters for each pixel. Given the

2D labeling and the plane parameters, we back-project to estimate the 3D position of

each pixel. This allows us to synthesize the depth map, as well as render fly-throughs

of the scene. We show the results of the algorithm in Fig. 7.

The importance of the continuous optimization stage can be shown with statistics.

On an average, the algorithm resulted in eight unique plane labels for each scene in

our dataset of ten stereo pairs. Each of these regions share support from an average

of three non-parallel regions that contributes to refining the structure in the continuous

optimization stage. The average error per region being optimized, computed using (8)

decreased 72% from 87.1 to 24.0 pixels as a result of our continuous optimization stage.

4.1 Comparisons

We compare our work with other possible approaches to obtain the depth map of the

scene with a single stereo pair.

We first compare the depth from stereo matching using [29] against our result in

Fig. 3 and note that we perform better. Recent works have shown that we can obtain a

reasonable depth map from a single image with prior trained models [8, 16, 17, 25]. We

show some results in columns 1 and 2 of Fig. 8, and compare with our result. While

Saxena et. al. enforce a smooth reconstruction without respecting the monocular geom-

etry, Hoiem et. al. tend to rely on the ground segmentation, which results in inaccurate

cutting and folding; we perform better than depth from a single image, which serves as

a sanity check. While we do not re-implement work by Saxena et. al. [24], we note that

2
http://chenlab.ece.cornell.edu/projects/ConsumerCamStereo

http://chenlab.ece.cornell.edu/projects/ConsumerCamStereo
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Plane labeling 3D rendering from novel viewpoints 
Synthesized  
depth map 

Stereo pair g

Fig. 7. Results (white=close and black=far for depth maps). Note that while the depth of the scene

is more than 3 - 4 meters, given a single stereo pair of each scene we obtain depth maps that are

geometrically representative. Row 2: while the stereo cues helped infer the porch being in front

of the main facade, it is not strong enough (due to the depth of the scene) to infer the details of

the porch. Row 4: the bench is correctly inferred as a horizontal region above the ground.

due to the inaccurate depth map we would obtain a smooth reconstruction similar to col-

umn 1 in Fig. 8. Multi-view stereo approaches strongly rely on the photo-consistency

constraint, and fails to differentiate between differently oriented planes as as shown in

column 3 in Fig. 8. Micusik et. al. [23] encode some normal information using the spa-

tial structure of the superpixels but without the continuous optimization. Their results

are less accurate, as shown in Fig. 5.

Qualitative Comparison: User Study We perform a qualitative comparison of our re-

sult, with single view modeling and multiview stereo via a psycho-visual study using 7

subjects. Each subject was presented results on ten stereo pairs without giving any indi-

cation about which of the three results they were looking at. They were given complete

control to fly through the reconstructed scene and instructed to rank the three results

from 1 (best) to 3 (worst) based on the geometric accuracy of the reconstruction. We

expect the responses to be more consistent with relative ranking because absolute scores

are hard to give, and need calibration across subjects. The average rank for single view

modeling3, multiview stereo and the proposed approach were obtained. The proposed

approach was ranked as the best 69% of the time, more than triple the next best. This

provides strong evidence that indicates the effectiveness of our approach.

3 The subject used the better result between [17] and [25] for ranking.
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Fig. 8. Comparison with other approaches

5 Conclusions

We propose an algorithm to combine stereo cues with monocular structural priors to

obtain geometrically accurate depth maps using stereo pairs captured in the wild using

consumer stereo cameras. We introduce the idea of using both discrete and continuous

optimization for 3D reasoning. Our approach leverages the use of monocular cues and

exploits the benefits of discrete optimization to obtain a superpixel-to-plane labeling,

followed by continuous optimization for refinement. We show through our results and

comparisons that the proposed approach works well even in presence of homogeneous

surfaces and specularities. The algorithm we propose can be used with any existing

stereo matching algorithm, and additional monocular cues can easily be added to the

same algorithm. For example, we can incorporate monocular cues such as depth from

focus as a prior over the depth of different regions of the scene.
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