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Abstract: This paper considers extinction coefficient changes with height caused by the inhomoge-
neous distribution of scatterers in heterogeneous forests and uses the InSAR phase center height
histogram and Gaussian function to fit the normalized extinction coefficient curve so as to reflect
the vertical structure of the heterogeneous forest. Combining polarization decomposition based on
the physical model and the PolInSAR parameter inversion method, the ground and volume coher-
ence matrices can be separated based on the polarization characteristics and interference coherence
diversity. By combining the new abovementioned parameters, the semi-empirical improved RVoG
inversion model can be used to both quantify the effects of temporal decorrelation on coherence and
phase errors and avoid the effects of small vertical wavenumbers on the large temporal baseline
of spaceborne data. The model provided robust inversion for the height of the coniferous forest
and enhanced the parameter estimation of the forest structure. This study addressed the influence
of vertical structure differences on the extinction coefficient, though the coherence of the ground
and volume in sparse vegetation areas could not be accurately estimated, and the oversensitivity of
temporal decorrelation caused by inappropriate vertical wavenumbers. According to this method we
used spaceborne L-band ALOS-2 PALSAR data on the Saihanba forest in Hebei Province acquired
in 2020 for the purpose of height inversion, with a temporal baseline range of 14–70 days and the
vertical wavenumber range of 0.01–0.03 rad/m. The results are further validated using sample data,
with R2 reaching 0.67.

Keywords: forest height; extinction coefficient; polarimetric decomposition; PolInSAR; RVoG model

1. Introduction

In recent decades, the rising levels of CO2 in the atmosphere and their effects on the
environment have drawn public attention and been addressed as a worldwide problem.
Forest areas play a significant role in measuring the global carbon cycle and climate change
in this context [1]. Forest is the most structurally complex and functionally rich terrestrial
ecosystem and constitutes the regions with some of the richest natural resources in the
world [2]. The forest height is an important parameter characterizing the forest vertical
structure, which has an important reference value for the estimation of forest carbon stocks
and plays a key role in evaluating the quality of forest stands and climate impacts [3]. By
penetrating the forest canopy at a specific depth and collecting data on the stems, branches,
and understory, radar data, particularly long-wavelength radar, can provide further details
on the vertical forest structure for different vegetation types [4].

The combination of polarimetry, which is sensitive to the shape and orientation of the
scatterer, and interferometry, which is sensitive to the spatial distribution and height of the
scatterer, enables polarimetric interferometric SAR (PolInSAR) to use differences in polar-
ization characteristics to identify scattering mechanisms in natural media [5,6]. Although
PolInSAR has limitations in terms of the interference baselines, temporal decorrelation
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and other noise sources, in conceptual terms, forest height retrieval based on PolInSAR
is a promising indicator for predicting tree height [7]. The RVoG is a widely used and
successful model of forest vertical parameter inversion based on PolInSAR technology,
which was established by Papathanassiu and Cloude to interpret coherence as a function
of the vertical backscattering profiles and scattering models of differences in scattering
regimes between vegetation and ground layers [8,9]. The RVoG model explains complex
interference coherence and forest parameters based on a physical model by describing
forests as randomly oriented scatterers that are randomly distributed on the canopy of
the impenetrable surface [10]. The ground phase, average extinction coefficient, ground-
to-volume scattering ratio (GVR) and forest height are all considered in the RVoG model
when investigating complex coherence in each polarization state [11]. In order to mitigate
the impact of erroneous starting sets on nonlinear optimization, Cloude et al. presented
a three-stage inversion approach for the parameter inversion of the RVoG model, which
was initially conceived as a six-dimensional nonlinear optimization problem [12]. The
three-stage inversion approach is highly valued for its ease of use and high degree of
accuracy, and it has been successfully used for the parameter inversion of various forest
types and wavelengths [13]. However, the RVoG model only applies to PolInSAR data
without temporal decorrelation because it is a volume decorrelation model. The dynamic
changes resulting from wind, precipitation, seasonal changes and human activities further
lead to decorrelated interferometric radar echoes that alter the amplitude and phase of
the observed coherence on a scale of magnitude comparable to volume decorrelation in
more typical repeat-pass interference scenarios [14]. As a result, disregarding temporal
decorrelation will lead to considerable bias in the estimation of the PolInSAR parameter
and low accuracy in the results of the height inversion.

Temporal decorrelation, which is inevitable in repeat-pass interferometric systems,
results in significant biases in the inversion of the forest height that are often unavoidable.
It has been suggested that the RVoG+VTD model, which is based on the RVoG model and
considers variations in the temporal decorrelation coefficient of the scalar, can reduce the
impact of temporal decorrelation [15]. The TD-RVoG model was created to consider the im-
pacts of wind-induced temporal decorrelation and variation in the dielectric constant vector
on interferometry in vegetation-covered regions [16]. The RMoG model, which represents
the first effort to directly extract the forest height from the combined effects of temporal and
volume decorrelation, was developed based on the assumption that wind-induced decor-
relation changes with the forest height, in order to further study wind-induced temporal
decorrelation [14]. Although these models can reduce the impact of temporal decorrelation
on the inversion of the RVoG model, changes in the dielectric constant can result in unstable
or inaccurate answers. Yang Lei combined the concepts of the abovementioned models by
introducing the factor of dielectric constant variation in the canopy and soil water content
to create a temporal decoherent semi-empirical model, by simplifying the inversion method
in the whole interference scenarios to create highly sensitive measurements, but ignoring
the volume decorrelation caused by the vertical structure of the forest and the horizontal
movement of vegetation caused by the wind [17]. Due to the complexity of the model pa-
rameters and the superiority of the temporal baseline of airborne data, the abovementioned
models disregard the influences of temporal decorrelation or volume decorrelation factors
to a certain extent, which can lead to large errors when applied to satellite-based data with a
long temporal baseline. Additionally, due to the range of the effective vertical wavenumber
(kz), the interference phase of repeat-pass spaceborne SAR is more significantly affected by
temporal decorrelation. The forest height and interferometry are connected via the effective
kz. A value of kz that is either too high or too low causes more decorrelation interference,
which causes the inversion results to deviate greatly [18–20]. It can be challenging to utilize
the RVoG model to invert the forest height using repeat-pass spaceborne PolInSAR data, it
since the kz values are frequently lower than the inversion range.

Assuming a uniform canopy distribution and a constant extinction coefficient for
forest height inversion, the current temporal decorrelation models simplify the forest as
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a homogenous volume formed of random uniform particles, overlooking the function
of the extinction coefficient in the inversion. Constant extinction coefficient models do
not adequately reflect the forest structure and may lead to inaccurate height estimates
because different types of forest structure have different vertical structures and extinction
coefficients that vary vertically in relation to the forest volume [21]. Tayebe Managhebi
used the penetration depth, which is influenced by the forest parameters, to limit the range
of the average extinction coefficient, defining a new index related to the relative position of
volume decorrelation on the coherence line as the extinction coefficient [22]. Wenxue Fu
used the Gaussian function for vertical profile fitting and expressed the vertical variation
in the extinction coefficient as a function of height [21]. Garestier proposed calculating
the interference coherence associated with the vertically varying extinction coefficient,
assuming that the mean extinction coefficient changes linearly along the vertical axis, in the
case of both zero and above zero extinction at the top of the canopy [23]. Tayebe Managhebi
further combined the Gaussian error function and linearly varying extinction coefficient to
establish a variable extinction coefficient model (VERVoG) [10]. All of the abovementioned
models use the variation in the extinction coefficients in the volume layer, related to the
improvement of the vertical structure, to reduce the effects caused by vertical structure
heterogeneity in the vegetation layer.

To retrieve forest heights using fully polarized single-baseline data, a unique solution
is often derived from the RVoG model, which is based on the null GVR assumption (one
polarization channel has a zero GVR). This hypothesis is difficult to test because strong
scattering contributions of the ground are present in all polarizations. Another constraint is
that the maximum forest height that can be inverted is limited by the penetration depth
of the SAR signal and depends on sufficient scattering phase center separation for each
pixel in order to derive an accurate canopy height estimate [24]. The GVR obtained by
model inversion frequently underestimates the attenuation of electromagnetic waves in
the ground medium and is unable to accurately estimate the volume-only and ground-
only coherence, leading to significant errors in the separated ground phase. In fact, the
inversion errors caused by the incorrect ground phase can be even larger than those caused
by temporal decorrelation [25]. The PolInSAR decomposition technique combined with the
polarization decomposition concept describes each complex coherence as direct, double-
bounce, and random volume scattering contribution to the sum of the contributions. This
method retrieves the magnitudes associated with each mechanism and their positions in
the vertical dimension, distinguishes the direct scattering responses from the ground or
vegetation layer, which enables one to accurately distinguish between direct and volume
contributions, and perform phase separation. Previous studies have combined three
polarization decomposition methods, namely Freeman two-component [26], Freeman three-
component [27] and Yamaguchi four-component decomposition [28], with the PolInSAR
theory to separate ground-only and volume-only coherence using different forest height
inversion models and to improve the accuracy of the inversion of the forest height [29].
However, the problem of excessive ground scattering in sparse vegetation areas has not yet
been solved.

The existing models based on PolInSAR inversion of the forest height do not consider
the effects of different forest structures on the extinction coefficient and GVR with temporal
decoherence, which are the primary factors limiting the accuracy of forest height inversion.
In this context, this paper was designed to achieve the following aims:

(1) Using the semi-empirical improved RVoG inversion model to analyze the impact of
temporal decorrelation on the inversion performance of repeat-pass spaceborne ALOS-
2 data, introduce correction factors to reduce the coherence and phase errors caused
by temporal decorrelation and other factors, use empirical iterations to achieve high-
precision forest height inversion, and resolve the problem of precisely quantifying
the errors in the coherence and phase caused by temporal decorrelation, which is
generated by the small vertical wavenumber and long temporal baseline of satellite-
based data.
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(2) The interference phase histogram and Gaussian function were used to fit the normal-
ized extinction coefficient curve by considering the heterogeneous vertical structure
indicated by the vertically variable extinction coefficient curve in the volume layer of
the forest. The value of the extinction coefficient function with respect to height was
established, reflecting the variation in the vegetation profiles and preventing the as-
sumption of a homogeneous vegetation layer in the existing models from influencing
the accuracy of the forest height inversion results. This was achieved by combining
the structures of the vertical reflectance profiles to analyze the influence of vertical
heterogeneity on the variation in the extinction coefficient.

(3) The polarization decomposition technique of the physical model was introduced to
investigate surface scattering as the ground contribution and double-bounce scattering
and volume scattering as the contribution of the vegetation layer. By modeling the
ground and volume contributions separately, the model estimation errors frequently
induced by excessive ground scattering were avoided, and better ground and volume
phase separation results were obtained, indicating that the physical model is more
appropriate for forest height inversion of complex forest structures.

This paper is organized as follows: the processing of the L-band data is covered in
Section 2, together with some basic information on the sample sites and the measured
data. In Section 3, the theory of the RVoG model is briefly explained, and the theory of
the proposed method is explained in Section 4. Section 5 describes the evaluation of the
results, and Section 6 explores the effects of the extinction coefficient, GVR and temporal
decorrelation at different kz and hv. Section 7 is the conclusion.

2. Study Area and Data
2.1. Study Area and Sample Plot Data

The study area is located in the largest plantation forest in the northern hemisphere,
the Saihanba Forest, situated in Weichang Manchu and Mongolian Autonomous County,
Chengde City, Hebei Province (42◦02′N–42◦36′N, 116◦51′E–117◦39′E), which is the intersec-
tion of the Yinshan Mountains and Daxinganling and Hunsandak Sands, with a temperate
continental monsoon climate. The climate of the forest area is cold, with long winters, short
springs and autumns and indistinguishable summers, and the growing season is short. The
forest coverage rate of the Saihanba Forest is 85%, and the tree species are mainly Larix
principis-rupprechtii Mayr, Pinus sylvestris var. mongholica Litv and Picea asperata Mast, among
which Larix principis-rupprechtii Mayr is the most dominant forest type.

To ensure that the sample plots were an accurate representation of the actual state of
the surrounding forest, we avoided the forest margins and large empty windows, instead
selecting relatively central areas of the forest. As a result of tending and thinning, the stand
density of most forests gradually decreases with the forest’s age. To restore the real forest
condition, some sample plots with the characteristics of low, sparse, high and dense forest
were selected in the sampling process so that the sample plots would represent the overall
condition of the forest area and achieve accurate regional extrapolation results. A total of
65 sample plots over an area of 0.06 ha were established. The subjects were all coniferous
forests, and the main tree species were Larix gmelinii (Rupr.) Kuzen and Pinus sylvestris var.
mongholica Litv. The field survey included the tree species composition, DBH, tree height
and the height of the lowest live branch. Using the number of trees per hectare as the
forest stand density, the difference between the tree height and the height of the lowest live
branch was determined as the canopy thickness (Figure 1).
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Figure 1. The map of the study area. The area is located in the Saihanba Forest, China. The
distribution of the real sample locations is indicated by the red dots. The image of the study area is
derived from SAR data under HV polarization.

Table 1 provides information about the sample plots, including the maximum, min-
imum, mean and standard deviation of the forest stand density, mean tree height, mean
DBH and mean canopy thickness. Table 2 shows the Spearman correlation coefficient
between the sample plots, and Figure 2 expresses the scatter plot distribution of the sample
data, in which the DBH and forest height showed a strongly positive correlation. Moreover,
while the forest stand density decreased exponentially with the increasing DBH, the range
of the forest stand density varied significantly around the DBH of 10 cm. Although there
was a weak, positive link between the forest height and canopy thickness, overall, the
canopy thickness gradually increased as the forest height increased.

Table 1. Information on the sample plots, including the maximum (Max), minimum (Min), mean and
standard deviation (STD) of the forest stand density, mean tree height, mean DBH and mean canopy
thickness.

Parameter Max Min Mean STD

Forest stand density
(stems/ha) 5100 133 960 1083

Mean tree height (m) 27.8 5.81 17.3 4.88
Mean DBH (cm) 33.1 7.2 22.74 7.3

Mean canopy thickness (m) 17.9 4.6 9.5 2.8
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Table 2. Correlation coefficients between the biophysical forest parameters (forest stand density,
mean tree height, mean DBH, mean canopy thickness), measured and derived at the stand level.

Parameter

r2—Spearman

Forest Stand
Density

Mean Tree
Height Mean DBH Mean Canopy

Thickness

Forest stand density 1 - - -
Mean tree height −0.69 1 - -

Mean DBH −0.8 0.89 1 -
Mean canopy thickness −0.55 0.72 0.75 1
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Figure 2. Relationship between the forest structure parameters at the plot level. (a) Mean DBH vs.
mean tree height, (b) mean DBH vs. forest stand density and (c) mean tree height vs. mean canopy
thickness.

2.2. Satellite Data

The ALOS-2 PALSAR data used in this study were based on L-band high-resolution
synthetic aperture radar, which provides full-polarization 1.1-level SLC data and can obtain
observation data independent of the climate conditions and time. Six interference pairs with
different spatial and temporal baselines were established using five-view fully polarized
data collected from July to September 2020 (Table 3), with a range resolution of 5.66 m
and azimuth resolution of 2.86 m. GAMMA software was used to conduct geometric
decorrelation preprocessing, such as radiometric calibration and filter denoising [30], and
SRTM DEM data were used for the topographic correction and geocoding. Figure 3
shows the HV polarization coherence image (a), the local incident angle image (b) and the
vertical wavenumber image (c) of the 0711-0725 interference pair obtained after the image
preprocessing stage.

Table 3. Information on the ALOS-2 PALSAR data.

Master Image Slave Image Temporal
Baseline (Days)

Vertical
Wavenumber

(rad/m)

Incidence Angle
at the Scene
Center (◦)

0711 0725 14 0.013–0.018 27.8054
0725 0808 14 0.010–0.015 27.8029
0905 0919 14 0.015–0.020 27.7991
0725 0905 42 0.010–0.016 27.8029
0808 0919 42 0.016–0.020 27.8012
0711 0919 70 0.019–0.027 27.8054
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3. Theoretical Background of the RVoG Model

PolInSAR combines the characteristics of InSAR and PolSAR to provide sensitivity to
the vertical distribution of different scattering mechanisms and to improve the accuracy
of forest vertical structure inversion. For the two SAR images s1

(→
w
)

and s2

(→
w
)

acquired

by interference with polarization
→
w, the complex interferometric coherence (including the

amplitude and phase) can be expressed as:

γ =

〈
s1

(→
w
)

s∗2
(→

w
)〉

√〈
s1

(→
w
)

s∗1
(→

w
)

s2

(→
w
)

s∗2
(→

w
)〉 (1)

where * is the conjugate of the SAR image, and 〈〉 is the expected value.
Coherence reflects the degree of consistency of the radar signals received by the

primary and secondary antennas for the same target, which is determined by the temporal
stability of the ground and vegetation scatterers in the resolution cell. It ranges from 0 to 1
and describes the degree of similarity between the homonymous regions of the two images.
For completely coherent scatterers, γ = 1. However, any variation between the two images
results in decorrelation, and the observed interference coherence can be represented by the
following contributions [31,32]:

γ = γSNRγTemporalγVolume (2)

where γSNR is decorrelation caused by system noise, γTemporal is the reduction in interfer-
ometric coherence caused by changes in the scatterer during two repeated observations,
and γVolume is volume decorrelation, which usually occurs in the vegetation region and
provides information on the vertical structure of the scatterer. It is usually expressed as the
Fourier transform of the vertical structure profile function of the effective scatterer [33,34].

To estimate the forest height, the RVoG inversion model is frequently used, as it is
fundamentally a physical model. The model relates the forest vertical structure param-
eters to complex interferometric coherence observations. In this model, the canopy is a
homogeneous volume consisting of particles that are randomly oriented and have constant
wave attenuation in a medium on the ground [9], as shown in Figure 4. The interference
scattering process of the forest scene, which consists of a volume layer on the underlying
surface, is described by the two-layer RVoG model. Volume decorrelation γVolume is directly
related to the vertical distribution of the scatterer through the (normalized) Fourier trans-
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form relation, which can be written as a function of the volume coherence γV , expressed
as:

γVolume = ejϕ γV + m
1 + m

(3)

γV =

∫ hv
0 e

2σ
cosθ zejkzZdz∫ hv

0 e
2σ

cosθ zdz
=

e
2σ

cosθ hv+jkzhv − 1(
e

2σ
cosθ hv − 1

) 2σ

2σ + jkzcosθ
(4)

m =
ω∗TTGω

ω∗TTVω
(5)

where m represents the ground-to-volume scattering ratio, ϕ is the ground phase, and θ is
the incident angle of the radar. γV is pure volume scattering complex coherence, which is a
function of the vegetation layer thickness hv and the mean extinction coefficient σ, TG and
TV are the echo signal intensity of the ground and vegetation layers, respectively, and ∗T
represents the conjugate transpose.
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kz is the vertical wavenumber, which is a function of the deviation of the incidence
angle caused by the baseline. The kz value is higher near the small incident angle, and it
decreases when it is far from the increasing incident angle [35], as follows:

kz = m
2π

λ

B⊥
R sin(η)

(6)

where m is an integer constant, which is equal to 2 in the case of monostatic acquisition and
1 in the case of a bistatic acquisition. λ is the wavelength, B⊥ is the vertical component of
the spatial baseline, R is the radar slope distance, and η is the local incidence angle.

The three-stage inversion method is an improved forest height inversion technique
based on the RVoG model. The complexity of the model is simplified by fixing the ex-
tinction coefficient value, which includes three main steps. Firstly, the complex coherence
coefficients of the different polarization interference combinations are calculated, and then
a line of coherence coefficients is obtained on the complex unit circle by fitting the real and
imaginary parts of the coherence coefficients by the least squares so as to realize the least
squares fitting of the multi-polarization interference coherence coefficients in the complex
plane. After that, maximum vegetation deviation removal and ground phase estimation are
performed, according to the principle of the maximum deviation of vegetation to determine
which one of the two-phase intersections is a real phase, first the GVR corresponding to
each polarization is estimated separately, then the corresponding minimum m value is
determined, its phase distance from the two intersection points is calculate, and that which
is furthest away from the intersection as the ground phase point ϕ is selected. Finally, the
vegetation height and extinction coefficient are estimated using the iterative estimation of
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the mean squared deviation minimization principle. According to the minimum distance
between the calculated volume coherence points and the observed coherence points, the
LUT of the variation in the volume-only complex coherence γV with the forest height and σ
is established. From the ground phase estimated in the second step, it is easy to determine
the coherence point γV that is farthest from it in the observed data. By comparing the
estimated value of γV with the lookup table, the estimated values of σ and the forest height
can be obtained [12,32].

4. Proposed Method of the Research

Figure 5 shows the flowchart of the proposed forest height inversion method.
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4.1. Semi-Empirical Improved RVoG Inversion Model

In the microwave region, the dielectric properties of vegetation are significantly in-
fluenced by its water content and geometric characteristics (e.g., the stems, branches and
leaves), as well as the movement of the scatterers (leaves and fine branches) between data
acquisitions, resulting in differences in displacement due to vegetation movement. Depend-
ing on the frequency and polarization, these factors have different degrees of influence on
scattering in temporal decorrelation [28]. Temporal decorrelation reduces the coherence
and causes phase shifts in the interferometric data, which have a significant impact on the
forest height inversion model. Moreover, its error sources have a complicated structure and
are affected by a combination of factors that are difficult to quantify, rendering temporal
decorrelation difficult to eliminate when preprocessing image data [36]. This has a greater
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impact on PolInSAR forest height inversion and, consequently, measures must be taken to
reduce this interference.

In previous studies, the physical model construction method was used to decom-
pose temporal decorrelation into dielectric constant, random motion and other compo-
nents, which were then modeled together with volume decorrelation to extract the forest
height [36]. Different images produce different degrees of temporal decorrelation effects
with the same disturbance. PolInSAR data with smaller kz show more obvious responses
to temporal decorrelation, and the inversion of the forest height is more sensitive to the
coherence and phase changes of the interference data [19]. Therefore, when using inter-
ference images with small kz to retrieve the forest height, the inversion results may have
large errors, even in the presence of a weak temporal decorrelation [20]. This situation is
indicated by the fact that the complex coherence shown in the unit circle does not intersect
the LUT when using the three-stage inversion method for height inversion [12]. In fact,
the kz of repeat-pass spaceborne PolInSAR data tends to be low (already containing a
large temporal decorrelation factor), leading to the low accuracy of the inversion results.
Therefore, an effective correction of kz is required to ensure high accuracy in forest height
extraction.

In this study, considering no deformation of the ground surface during the two
imaging periods and overlooking atmospheric disturbances and noise interference, only
the flat earth phase and topographic phase remain in the interferometric phase. kz is a
factor that indicates the sensitivity of the interferometric phase to terrain (height) variation
(Equation (6)). Thus, the linear relationship between the height and terrain phase can be
connected by kz [19]. The interferometric phase variation is analyzed by combining the flat
earth phase ϕ f lat and topographic phase ϕtopo, as follows:

∆ϕ = ϕtopo − ϕ f lat = −kz·h− ϕt (7)

where the first term on the right side of the equation is the terrain phase caused by terrain
height, and ϕt is the flatland phase caused by no elevation change. A linear relationship
between height and terrain phase connected by kz is established when the flatland phase is
removed.

When measuring the forest height using PolInSAR, there are major differences in
the interferometric measurements of the terrain height. Therefore, when measuring the
forest height, the interferometric phase of the upper point of the canopy and the bottom
mat point are must be incorporated into the calculation. However, there are two kinds
of phase contributions. One is the shift of the phase center caused by the penetration of
low-frequency SAR into the forest canopy, and the other major phase contribution is the
phase shift caused by the random motion of the canopy during imaging of the primary
secondary image [37]. Both contributions play interfering roles in the measurements and
must be removed during the inversion. When the effects of the above two effects are
considered, the phase changes, as follows:

∆ϕ = ϕtopo − ϕ f lat = −kz·(h + ∆h)− ϕt (8)

where ∆h is the height deviation resulting from the combined effect of the two effects.
The height offset can be thought of as a linear function of canopy height when only

the offset from the random motion of the canopy is considered as follows:

∆h =
Hr

hr
h = ε0h (9)

where Hr represents the standard deviation of the motion at a certain reference height hr
and ε0 indicates the change in this offset relative to the height.

The phase deviation due to low-frequency SAR penetration causes the observed phase
between the top of the canopy and half of the height [38], therefore, considering the canopy
phase shift due to random motion and the phase center deviation due to low-frequency
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SAR penetration, the height deviation obtained through the coupling of these two factors
can be simplified to a linear function with the variation vertical target height.

∆h = ε0h− d (10)

where d is the distance between the scattering center and the underlying surface after the
canopy phase shift, h/2 ≤ d ≤ h [38].

By introducing the height error into the canopy phase after removing the flat earth
phase, the relationship between the observed canopy phase ϕv and the true canopy height
h can be obtained as follows [37]:

ϕv = kz((1 + ε0)h− d) = εkzh− kzd = εkzh + ϕe (11)

where ε is the correction term of temporal decorrelation caused by random motion, ϕe is
the correction phase of the phase center shift and ε ≥ 1, −π ≤ ϕe ≤ π.

To solve the problem of temporal decorrelation in the inversion of PolInSAR data, a
new inversion method was proposed that realizes the inversion of the forest height through
empirical iteration. The semi-empirical improved RVoG inversion model integrates the
error factors encountered in the inversion process to provide an overall correction of
the offset phase caused by random motion and microwave penetration factors and the
coherence errors caused by dielectric constants [37]. Three correction terms, namely, ε,
ϕe and γe, are introduced based on the RVoG model. γe is the correction of temporal
decorrelation according to the overall coherence, and the correction of the phase influence
of temporal decorrelation on kz is realized using ε and ϕe. The correction term in the phase
and the complex coherence correction term are introduced into the iteration process to
ensure that the full error source is considered in the model:

γV = |γe| 2σ

cosθ

(
e

2σ
cosθ

hv−1
) ∫ hv

0 e
2σ

cosθ zej(εkzZ+ϕe)dz

γV = γe
2σ

cosθ

(
e

2σ
cosθ

hv−1
) ∫ hv

0 e
2σ

cosθ zej(ε·kz)Zdzγe = |γe|·ejϕe
(12)

4.2. Extinction Coefficient

The extinction coefficient represents the attenuation rate of microwaves in the forest
volume, which is a function of the density of scatterers in the forest and its dielectric
constant, reflecting the environmental conditions of the forest [9,39]. The existing RVoG
model assumes that the extinction coefficient σ is a constant value of a uniform vegetation
volume, which cannot describe the forest heterogeneity in the vertical direction. However,
forests have different vertical structures from the canopy to the ground, including the leaf,
branch and trunk layers. The vertical structure of the forest has a significant effect on the
extinction coefficient and influences the inversion of the forest parameters. In fact, in the
case of heterogeneous forests, the material density at the top of the canopy is lower than
that at the bottom of the forest, and the inhomogeneous distribution of scatterers in the
volume causes the value of the extinction coefficient σ to vary with height. Therefore, a
more suitable model for height inversion must investigate how one can accurately describe
the vertical forest structure. In recent years, polarization coherence tomography (PCT)
has been rapidly developed and used to estimate the vertical backscattering profiles of
forests in the L-band [40], but the theoretical research on the technique is complex, and
its practical application is challenging. Meanwhile, the Lidar waveform has been widely
used to determine the vertical reflectance profile structure [41], but the acquisition of Lidar
data is expensive, and the data cannot cover a large area. In this study, we use a converted
InSAR phase center height histogram to provide an approximation of the vertical reflectance
profile [42,43] and fit the extinction coefficient function with the height according to the
shape of the vertical reflectivity profile, allowing us to avoid the problems of expensive
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LiDAR data and the complex PCT research theory. The interference phase histogram is used
to provide an approximation of the vertical reflectance profile, and the vertical extinction
coefficient curve is expressed as a function of height using a Gaussian function [21]:

σ = a·exp

[
−
(

z− u
v

)2
]

0 ≤ z ≤ hv, a > 0 (13)

where hv is the thickness of the vegetation layer, a is the influence factor of σ, u is the position
of maximum extinction in the forest canopy, v is the standard deviation represented by the
canopy shape and u and v reflect the vertical heterogeneity of the forest.

The v value increases with the canopy height and vice versa. When the value of v
approaches infinity or 0, the extinction coefficient approaches a and 0, respectively. Under
these two extreme conditions, the volume coherence can be simplified to the RVoG model
and SINC model after introducing the above extinction coefficient function.

4.3. PolInSAR Decomposition Technique

The GVR is the ratio of the scattering energy generated by the electromagnetic wave
on the ground and the vegetation canopy, which determines the relative scattering contri-
bution of the ground and volume layer and depends on the polarization mode. Different
GVRs correspond to different physical properties of the vertical structure and polarization
characteristics of ground scattering and volume scattering. Usually, the GVR is customized
using the RVoG model, but the RVoG model cannot distinguish between two ground re-
sponses, specifically direct scattering with the trunk and the interaction with double-bounce
scattering, while the PolInSAR-based polarization decomposition algorithm includes all the
beneficial characteristics of radar data decomposition, resolving the issues with the RVoG
model mentioned above [7]. This study combines the potential of polarization decomposi-
tion to obtain different scattering mechanisms with the ability of interference estimation
to determine the vertical positions of different scatters in order to separate the ground
and volume coherence matrices. The polarization decomposition concept of Yamaguchi
three-component decomposition is applied to PolInSAR data.

Instead of the most widely known form of decomposition, namely Freeman three-
decomposition, Yamaguchi three-component decomposition was selected to improve the
GVR because it improves on the Freeman decomposition method by manually compensat-
ing for the polarization azimuth angle and modifying the volume scattering probability
density function to reduce errors when distinguishing between volume scattering and
double-bounce scattering, which are more suitable for the mapping of forest parameters
due to the distinct physical properties related to scattering [44,45]. The covariance matrix
obtained from PolInSAR observation data is decomposed into three scattering mechanism
matrices, as proposed by Yamaguchi for PolSAR data, so as to more accurately distinguish
the scattering responses from the ground and the overlying vegetation [26]. In this study,
we considered the influence of a larger GVR on the accuracy of forest height inversion,
which is caused by the fact that electromagnetic waves in sparsely vegetated areas can
easily penetrate the vegetation layer and reach the ground, thus resulting in a stronger
ground echo signal, and the fact that there is more double-bounce scattering caused by tree
growth and trunk interaction, which is considered as ground scattering [46]. With this in
mind, we established a new GVR parameter that considers volume scattering and even
scattering as volume layer scattering and odd scattering as ground layer scattering so as to
avoid the limitations of GVR generation to a certain extent, as follows:

m =
ω∗TTsω

ω∗T(TVol + Td)ω
=

ω∗TTGω

ω∗TTVω
(14)

where Ts, Td and TVol represent the contributions of surface, double-bounce and volume
scattering components, respectively. Td and TVol are considered as the volume layer
scattering TV and Ts as the ground layer scattering TG.
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The ground and volume scattering contribution coherence matrices are reconstructed
using the RVoG model and PolInSAR decomposition technique. Firstly, polarization in-
terference information is extracted from the preprocessed PolInSAR data. Each pair of
polarization interference data contains the original complex data at full polarization. The
scattering matrix defined by the Pauli basis can be equivalently described by the scattering
vector, provided that the scatterer satisfies the reciprocity condition:

K1 =
1√
2
[S1HH + S1VV S1HH − S1VV 2S1HV ]

TK2 =
1√
2
[S2HH + S2VV S2HH − S2VV 2S2HV ]

T (15)

where S represents the scattering matrix elements obtained at different polarizations, and
T represents the transpose of the matrix.

The PolInSAR coherence matrices, namely the polarization (T11 and T22) and cross-
correlation (Ω12) coherence matrix, are extracted as follows [26,47]:

[T6] =

〈[
K1
K2

] [
K1
∗T K2

∗T
]〉

=

[〈
K1K1

∗T〉 〈
K1 K2

∗T〉〈
K2K1

∗T〉 〈
K2 K2

∗T〉] = [T11 Ω12
Ω21 T22

]
(16)

where ∗T represents the conjugate transpose operator. Ω12 is a 3 ∗ 3 non-Hermitian complex
matrix that contains polarization and interference information. T11 and T22 are Hermitian
positive semidefinite matrices, which contain the polarization features of each image.

The maximum likelihood estimate of the polarization coherence matrix T is obtained
using the polarization stationary assumption [48,49]:

T =
1
2
(T11 + T22) (17)

The coherence matrix based on the model assumption can be decomposed into a
ground layer and a volume layer:

T = fGTG + fV TV (18)

where TG and TV are the ground matrix and volume coherence matrix, respectively, and
fG and fV are the contributing factors related to the ground layer and volume layer,
respectively.

The interference behavior of the main scattering contribution of a layer of random
volume vegetation on the ground can be modeled by a linear combination of polarization
interference correlation matrices as follows:

Ω12 = fGΩG + fVΩV (19)

Based on the assumption that the polarization of all the decorrelation sources is
independent, it can be expressed as [50]:

Ω12 = fGTGγG + fV TVγV (20)

where γG and γV are ground-only and volume-only complex coherence, respectively.
Thus, a system of linear equations is obtained in which the unknown parameters,

namely, γG and γV , can easily be estimated. It should be noted that there must be pure
ground coherence and pure volume coherence on the coherence lines of the unit circle.
Therefore, Equation (20) is transformed into a constrained linear least squares problem,
where the phases of γV and γG are taken as the observed volume phase and ground phase,
respectively, using the least squares method.

5. Results

The improved forest height inversion model was created by introducing the variable
extinction coefficient and the improved GVR findings obtained using the above method
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into the semi-empirical improved RVoG model. Figure 6 shows the inversion height results
obtained using the original model and the improved model, with some improvement in
the overall accuracy. However overall underestimation is still apparent. Table 4 shows the
inverse accuracy of the model. It can be seen that the R2 values of the improved model were
all above 0.5, which indicates a certain degree of improvement in the accuracy compared
with the original model and better fitting outcomes. The iteration parameter ε ranged from
20 to 50, demonstrating that the phase inaccuracy of the repeat-pass spaceborne PolInSAR
data was significantly impacted by the random motion of the canopy. The decorrelation
correction term γe increased with the increase in the temporal baseline for the first five
images, which indicates that the improved model has a good correction effect on the
temporal decorrelation interference. However, in the 0711-0919 interferometric image, the
effect of the excessive temporal baseline on the image was too large to be fully explained
by the temporal decorrelation term alone. This indicates that when the temporal baseline
reaches a certain level, it is necessary to consider the magnitude of both the iteration
parameter ε and the decorrelation correction term γe in order to analyze the error caused
by temporal decorrelation. At the same temporal baseline, the final kz value increased with
the decreasing incident angle of the image center, and the magnitude of ε was related to
the initial kz value. With the same image center incidence angle, the larger the temporal
baseline was, the larger the initial kz, ε and corrected kz value were, and the smaller the
decorrelation correction term γe was. That is, the magnitude of ε increased with the increase
in the temporal baseline of the collective data, while γe decreased with the increase in the
temporal baseline. Although the kz compensation algorithm can invert the forest height
rather accurately, it still has a small margin of error. Compared with the temporal baseline,
kz has a more evident impact on the inversion results. The inversion results are accurate
for large kz in general. After the linear cancellation of the influence on decorrelation, the
robustness and accuracy of inversion were significantly improved, thus possibly satisfying
the requirements for the remote sensing inversion of the forest height.

Table 4. Results regarding the parameter iteration and precision of inversion. Both RMSE and R2

have two values, which are the results of the original model and the improved model, respectively.

Datasets
Parameters Accuracy Result

ε γe RMSE R2 Average εkz

0711-0725 29.15 0.60× e−i·π 5.85/3.15 0.28/0.58 0.3148
0725-0808 38.89 0.17× ei·0.6π 5.40/3.62 0.24/0.55 0.3422
0905-0919 40.02 0.60× e−i·0.5π 5.96/4.12 0.27/0.64 0.5203
0725-0905 39.57 0.24× e−i·0.2π 4.08/2.53 0.19/0.67 0.3680
0808-0919 29.88 0.10× ei·0.1π 5.87/3.83 0.30/0.54 0.3944
0711-0919 37.09 0.19× ei·0.4π 5.65/2.97 0.19/0.65 0.5897

Figure 7 shows the forest height map obtained through the inversion of each pair of
interference images. The 0711-0919 and 0905-0919 interference pairs had a better overall
inversion effect, and the two images obtained larger vertical wavenumbers after correction,
ensuring the better removal of the interference of temporal decorrelation. The other four
images were affected by kz, and with the decrease in kz, the inversion results for the right
side of the image were significantly underestimated. After correction, the kz values of the
four images were relatively small, preventing the complete removal of the phase effect
caused by temporal decorrelation on the vertical wavenumber. Moreover, the image of
0808-0919 was seriously underestimated, and the decorrelation correction term γe was
the smallest and was still clearly affected by the temporal decorrelation, only partially
correcting the effect of temporal decorrelation on the sample data.
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6. Discussion
6.1. Extinction Coefficient

The constant extinction coefficient RVoG model and the variable extinction coefficient
semi-empirical improved RVoG model were used to build the LUTs, which are shown
in Figure 8a,b, respectively. We observed that when the extinction coefficient is zero, the
impact of volume decorrelation is the most significant, because the scatterers distributed
throughout the forest height interval contribute the same intensity and the radial position
of the interference position is closest to the triangle of the circle center. When the extinction
coefficient is large or the ground scattering is strong, the volume complex coherence
amplitude easily becomes saturated, but the phase is not saturated (green curve). With the
highest extinction coefficient is the highest, the smallest volume decorrelation, and largest
phase center height. The volume coherence of the extinction coefficient in the range of
0–1 dB/m (red curve) varies with hv. When the forest height is the same, the scattering
amplitude of volume complex coherence is larger due to the strong surface scattering
or vegetation attenuation, and volume decorrelation causes the complex coherence to
decrease with the increasing vegetation height. Therefore, the increase in the extinction
coefficient affects the volume decorrelation and phase center. The interference coherence of
the varying extinction volume at low heights is close to the constant zero extinction random
volume, the total change in the volume of the average extinction coefficient is lower, and
the difference between the various extinction change rates becomes more significant with
the increasing forest height. Furthermore, compared with the complex coherence obtained
by constant extinction coefficient, it was found that the complex coherence obtained by
varying the extinction coefficient simultaneously affects the phase center and coherence
by introducing the temporal decorrelation correction factor. Figure 9 shows the coherence
and phase of the extinction volume variation with height, where the linear variation in
the coherence and phase at a constant extinction (0.01 and 1 dB/m) yield random volume
boundaries. Comparing the coherence and phase variations obtained by the fixed extinction
coefficient and extinction coefficient influence factor, it was found that the lowest and
highest extinction coefficient influence factors are close to the properties of the constant
extinction random volume model, and high extinction results in less volume decorrelation
and a higher phase center height than low extinction.
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Figure 8. Comparative diagram of complex coherence before and after applying the improved
extinction coefficient. The interference coherence on the complex plane is represented as a random
volume in red, with hv of 0–30 m. In (a,b), the constant extinction coefficient values and the extinction
coefficient influencing factor values of 0.01, 0.2, 0.5 and 1 dB/m are shown in purple, blue, yellow and
green, respectively. In (a), the red segment is the RVoG model corresponding to the given constant
extinction random volume height, and in (b), the red segment is the semi-empirical improved RVoG
inversion model corresponding to the given extinction coefficient influence factor random volume
height.

Remote Sens. 2023, 15, 1272 17 of 27 
 

 

  
(a) (b) 

Figure 8. Comparative diagram of complex coherence before and after applying the improved ex-

tinction coefficient. The interference coherence on the complex plane is represented as a random 

volume in red, with ℎ𝑣 of 0–30 m. In (a,b), the constant extinction coefficient values and the extinc-

tion coefficient influencing factor values of 0.01, 0.2, 0.5 and 1 dB/m are shown in purple, blue, yel-

low and green, respectively. In (a), the red segment is the RVoG model corresponding to the given 

constant extinction random volume height, and in (b), the red segment is the semi-empirical im-

proved RVoG inversion model corresponding to the given extinction coefficient influence factor 

random volume height. 

  
(a) (b) 

Figure 9. Volume coherence and interference phase plots obtained for different extinction coeffi-

cients. (a) Volume coherence and height diagram with different extinction coefficients. (b) Interfer-

ence phase and height diagram with different extinction coefficients. The fixed extinction coeffi-

cients (0.01 and 1 dB/m) are represented by black dots, and the extinction coefficient influence fac-

tors (0.01, 0.2, 0.5 and 1 dB/m) are represented in blue, green, yellow and red, respectively. 

Since L-band data, which have an excellent electromagnetic wave penetration ability 

and a low phase center, were used in this study, the relationship between the vertical 

structure and electromagnetic wave attenuation was analyzed using the penetration 

depth. Penetration depth refers to the distance from the top of the canopy to the scattering 

phase center, and the interaction of the radar wavelength with canopy density and thick-

ness determines the degree of canopy penetration and the degree of microwave attenua-

tion (namely, the magnitude of the extinction coefficient) [51] (Figure 10). The scattering 

mechanism is directly related to the medium structure and its internal geometry. The ver-

tical ordering of the polarization phase centers changes with the increasing forest height, 

Figure 9. Volume coherence and interference phase plots obtained for different extinction coefficients.
(a) Volume coherence and height diagram with different extinction coefficients. (b) Interference phase
and height diagram with different extinction coefficients. The fixed extinction coefficients (0.01 and
1 dB/m) are represented by black dots, and the extinction coefficient influence factors (0.01, 0.2, 0.5
and 1 dB/m) are represented in blue, green, yellow and red, respectively.

Since L-band data, which have an excellent electromagnetic wave penetration ability
and a low phase center, were used in this study, the relationship between the vertical
structure and electromagnetic wave attenuation was analyzed using the penetration depth.
Penetration depth refers to the distance from the top of the canopy to the scattering phase
center, and the interaction of the radar wavelength with canopy density and thickness deter-
mines the degree of canopy penetration and the degree of microwave attenuation (namely,
the magnitude of the extinction coefficient) [51] (Figure 10). The scattering mechanism is
directly related to the medium structure and its internal geometry. The vertical ordering of
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the polarization phase centers changes with the increasing forest height, indicating that the
change in the forest structure during tree growth can affect the vertical distribution of the
scattering mechanism [43]. Figure 11b shows that the penetration depth of HV polarization
remained low in the canopy throughout the entire range of forest heights, whereas the ver-
tical position of the phase center of HH polarization and VV polarization changed with the
forest height and were more strongly affected by the stand density, indicating that the effect
of the stand density on the interference signal received by the cross-polar channel was less
significant [43,52]. The position of the phase center height derived from the interferometric
data depends on the relative contributions of various scattering components, which, in
turn, depend on the extinction coefficient. Changes in the forest stand density and canopy
thickness can affect the extinction effect, and the forest stand density distribution is an
important factor affecting the extinction coefficient. A rapid increase in the forest stand
density can result in the formation of a closed canopy, leading to the further attenuation and
depolarization of leaves and small branches through volume scattering, which manifests as
an increase in the extinction coefficient [53]. The increase in the extinction effect reduces
the interactions between radar signals and trees, and reduces the penetration of electro-
magnetic waves into the canopy, thus limiting the ability of microwaves to penetrate the
vegetation canopy and causing the polarization scattering phase center to be close to the top
of the canopy, which is conducive to the determination of forest height [54]. In this study,
both the DBH and canopy thickness decreased with the increasing extinction coefficient
(Figure 11d,e). Combined with changes in the relationship between the sample plots, it was
found (Figure 2) that both the DBH and canopy thickness decreased exponentially with
the increasing forest stand density. Therefore, the extinction coefficient increased with the
increase in forest stand density, which led to the decrease in the penetration depth. This
conclusion is the same as that obtained in the existing research [52]. Clearly, the extinction
coefficient is closely connected to the forest height and canopy thickness [55,56].
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Figure 10. Schematic diagram of the penetration depth. Figure 10. Schematic diagram of the penetration depth.

All of the sample plots were pure coniferous forests with an equal distribution of trees
and slight variation in the canopy height due to forests’ artificial nature. Therefore, in this
study, we assumed that the normalized vertical structures of the trees in the forest were
similar in a certain spatial domain and the SRTM DEM data was used to determine the
transformed phase histogram to represent the vertical profiles of the trees in the region.
The InSAR interferometric phase histogram was used to provide an approximation of the
vertical reflectance profile, and the Gaussian function was used for the profile fitting so as to
represent the vertical structural change in the extinction coefficient with height (Figure 12).
The existing studies generally agree that HV polarization is more sensitive to the vegetation
structure [57]. Thus, only the HV polarization of each interference pair was used to fit the
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vertical reflectance profile. Since there are no LiDAR data on the study area, the validation
of the profile structure is not possible, but the structure of the obtained vertical reflectance
profile structure conforms to the general scatterer distribution law [58]. The fitting result of
the Gaussian function was good and represents the scatterer distribution well with respect
to the extinction coefficient, which varies with height.

Remote Sens. 2023, 15, 1272 19 of 27 
 

 

   
(a) (b) (c) 

  
(d) (e) 

Figure 11. Diagram of the relationship between the extinction coefficient and the penetration depth, 

where the extinction coefficient is considered to be the attenuation coefficient and reciprocal of the 

penetration depth. (a) Penetration depth vs. extinction coefficient (the shade of the scatter color is 

the magnitude of the forest height). (b,c) are the scatter relationship diagrams of the mean tree 

height and the penetration depth and the extinction coefficient of HH, HV and VV polarization, 

respectively. (d) Mean canopy thickness vs. extinction coefficient (the shade of the scatter color is 

the magnitude of penetration depth). (e) Mean DBH vs. extinction coefficient (the shade of the scat-

ter color is the magnitude of the penetration depth). 

All of the sample plots were pure coniferous forests with an equal distribution of 

trees and slight variation in the canopy height due to forests’ artificial nature. Therefore, 

in this study, we assumed that the normalized vertical structures of the trees in the forest 

were similar in a certain spatial domain and the SRTM DEM data was used to determine 

the transformed phase histogram to represent the vertical profiles of the trees in the re-

gion. The InSAR interferometric phase histogram was used to provide an approximation 

of the vertical reflectance profile, and the Gaussian function was used for the profile fitting 

so as to represent the vertical structural change in the extinction coefficient with height 

(Figure 12). The existing studies generally agree that HV polarization is more sensitive to 

the vegetation structure [57]. Thus, only the HV polarization of each interference pair was 

used to fit the vertical reflectance profile. Since there are no LiDAR data on the study area, 

the validation of the profile structure is not possible, but the structure of the obtained 

vertical reflectance profile structure conforms to the general scatterer distribution law [58]. 

The fitting result of the Gaussian function was good and represents the scatterer distribu-

tion well with respect to the extinction coefficient, which varies with height. 

Figure 11. Diagram of the relationship between the extinction coefficient and the penetration depth,
where the extinction coefficient is considered to be the attenuation coefficient and reciprocal of the
penetration depth. (a) Penetration depth vs. extinction coefficient (the shade of the scatter color is the
magnitude of the forest height). (b,c) are the scatter relationship diagrams of the mean tree height
and the penetration depth and the extinction coefficient of HH, HV and VV polarization, respectively.
(d) Mean canopy thickness vs. extinction coefficient (the shade of the scatter color is the magnitude
of penetration depth). (e) Mean DBH vs. extinction coefficient (the shade of the scatter color is the
magnitude of the penetration depth).
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Figure 12. (a): Vertical reflectance profile fitted by the InSAR phase center height histogram and
Gaussian function. The histogram reflecting the vertical reflectance profile is red, and the verti-
cal reflectance profile obtained by Gaussian function fitting is blue. The vertical axis shows the
normalization of the forest heights ranging from 0 to 1 m. (b): Change in the magnitude of the influence
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factor a for different extinction coefficients, which determine the shape of the curve. The curves of 0.2,
0.5 and 1 for a are indicated in blue, red and green, respectively, and the a value obtained by fitting
the Gaussian function is yellow.

6.2. GVR

Zero GVR assumes ambiguity space in the calculation of volume-only coherence,
especially in the case of sparse forest areas, since the contributions of volume and ground
scattering are mixed in all polarization channels. Through the use of simulation experi-
ments, the RVoG model was used to illustrate the degree sensitivity of the forest height
to the GVR. In order to quantitatively analyze the forest height bias, the assumption of
zero GVR was made for the forest height in the range of 0–30 m based on a GVR range
from −30 dB to 30 dB. The simulation results show (Figure 13a) that when the GVR is less
than −10 dB, the forest height is highly underestimated by 10%. The bias increases signifi-
cantly as the GVR increases. The error is approximately 50% when the GVR approaches
0 dB, and the inversion of the forest height practically fails when the GVR exceeds 0 dB.
Therefore, to ensure a certain level of accuracy in the estimation, the GVR should be lower
than −10 dB. The improved GVR adopts the double-bounce and volume scatter as the
scattering contribution of the volume layer, which enables one to avoid the error caused by
the overestimation of the GVR in sparse vegetation areas. In general, the improved method
can reduce the magnitude of the GVR, but it is still difficult to ensure that every GVR is
below −10 dB (Figure 13b).
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Figure 13. (a) Forest height deviation map based on the assumption of zero GVR and (b) the histogram
of GVR after the improvement of the 0711-0725 interference pairs.

In order to analyze the relationship between the GVR and forest stand densities, the
sample plots with the highest and lowest stand densities were selected in order to analyze
the complex coherence (Figure 14). Fifteen complex coherence values that are common
and easy to extract were used in this study to compare with the complex coherence values
obtained in this paper, including three basic polarization types (HH, HV, VV), four linear
combinations of different polarizations (HHVV, HH + VV, HH − VV, HV + VH), three
circular polarizations (LL, LR, RR), three Opt coherence optimizations (Opt1, Opt2, Opt3),
and two PD coherence optimizations (PD High, PD Low). It can be seen from Figure 14, the
low-density complex coherences all converged together, while the high-density ones were
relatively scattered. Because the electromagnetic wave easily penetrates the vegetation
layer in low-density forest stands, the scattering phase of the high volume is close to that of
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the surface. However, the electromagnetic wave in high-density forest stands cannot easily
penetrate the vegetation layer, and the scattering phase center of the high volume is far
from the surface scattering phase. In the complex plane, the coherent points are scattered
on both sides of the coherence line, which is beneficial for the fitting of the coherence line
and the estimation of the ground phase. Moreover, there is more ground scattering, because
the attenuation of the electromagnetic wave decreases in sparse forest when penetrating
the vegetation layer. It can be observed that the ground-only and volume-only complex
coherences obtained after the modification improve the estimation of the ground and
volume phases to a considerable extent.
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Figure 14. Fifteen common complex coherences (HH, HV, VV, HHVV, HH + VV, HH − VV, HV + VH,
LL, LR, RR, Opt1, Opt2, Opt3, PD High, PD Low) and the complex coherences (γG, γV) obtained in
this study were used for the comparison of GVR at low and high forest stand densities. Left: low
density; right: high density.

Because the L-band has penetrating properties, the volume and double-bounce scat-
tering increase significantly with the increasing forest stand density and the growth of
trees, and the GVR decreases, which is conducive to height inversion. For dense canopies,
only the upper canopy returns to backscatter, which greatly increases scattering on the
canopy surface, rather than volume scattering. Compared to dense forests, in sparse forests,
electromagnetic wave attenuation decreases when propagating to the forest layer, and
electromagnetic waves easily penetrate the vegetation layer and reach the ground, where
ground scattering dominates in cases when forest height inversion is limited [57,59]. Ac-
cording to the distribution of the complex coherence of different forest stand densities, it
was concluded that there was a certain relationship between the forest stand density and
GVR (Figure 15). However, because the sample plots were concentrated in low density
areas, this relationship was not evident, but there was an overall trend whereby the GVR
decreased with the increasing forest stand density [46,60]. Moreover, only 34% of the
GVR could be explained by the density of the forest stands, indicating that, in this paper,
the forest stand density cannot effectively represent the GVR. In fact, the canopy water
content affects the distribution of scatterers and the attenuation and scattering of electro-
magnetic waves, which have significant effects on the magnitude of surface scattering and
volume scattering, thus leading to uncertainty in the GVR. Therefore, more forest structure
information is required to explain the variation in the GVR.
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6.3. Error Analysis of the Forest Height

Since the semi-empirical improved RVoG model adopted in this study is based on the
RvoG model and was used to empirically correct the effects of kz and temporal decorrelation,
simulation experiments were conducted to further reveal the effects of kz and temporal
decorrelation on the accuracy of forest height inversion. According to previous studies, the
best kz range for estimating the forest height is between 0.06 and 0.1 rad/m [20]. When kz
is less than 0.06 rad/m, the range of the interference coherence and coherence matrix ratio
of the data is small, and the independence and decorrelation of the data are poor. When
kz is greater than 0.1 rad/m, the error will further increase, which may lead to unreliable
results [61]. Therefore, only the influence of kz variation in the range of 0–0.12 rad/m on
the inversion accuracy of the tree height is considered. The estimated height error based on
the RvoG model is simulated by fixed temporal decorrelation, together with the kz and σ
values (Figure 16). For all the kz values, temporal decorrelation leads to the overestimation
(underestimation) of short (high) forests. In most cases, the degree of overestimation or
underestimation varies with the forest height and kz. However, in a specific range of
forest heights, a better retrieval accuracy can be obtained, and this range varies with the
kz value. With a fixed σ of 0.15 dB/m and a temporal decorrelation of 0.98, a kz of 0.10
rad/m produces an error of less than 10%, but only when the forest height ranges from 8
to 23 m. The forest height range changes to 10–30 m when kz is 0.06 rad/m (Figure 16a).
Therefore, a small kz value is more suitable for tall forests, while there will be obvious
errors in the case of short vegetation. A large kz value is suitable for low vegetation, a
finding which mirrors the existing research results [33]. By increasing the contribution of
temporal decorrelation, the height range is rapidly reduced with good accuracy (Figure 16b).
High vegetation is highly affected and serious estimation errors will occur if the temporal
decorrelation increases further. According to the simulation results, it is necessary to adopt
an appropriate kz and temporal decorrelation correction to achieve 20% accuracy in the
height range of 0–30 m [19,37].
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Figure 16. The forest height is relative to the retrieved the error and is defined as
(|hv − htrue|/htrue)× 100%, with a range of 0% to 20%. (a): The fixed temporal decorrelation is
0.98, and the error of the tree height of 0–30 m when kz is 0–0.12 is analyzed. (b): Fix kz = 0.1 and
analyze the error variation of the 0–30 m tree height in the range of 0.5–1 for temporal decorrelation.

In this study, we found that as the temporal baseline increases, the observed complex
coherence phase changes more than the coherence decreases. The combined effect of
temporal decorrelation and volume decorrelation results in an inhomogeneous distribution
of coherence in the same image. The error of the inversion results can be regulated within a
relatively small range when the temporal decorrelation of the same data is established as a
complex parameter. Due to the different forest heights and coherence conditions among the
different elements in the same image, there are various constraints on the magnitude of the
correction term. Therefore, using the same correction term inevitably leads to inconsistent
parameter effects with different pixel values, and the influence of temporal decorrelation is
not completely eliminated by semi-empirical iteration.

6.4. Future Work

Considering that the environment and the distribution of trees in different forest
stands are variable and influenced by different degrees of wind-induced canopy movement
and dielectric constant changes, the changes in the number of scatterers and changes in
the dielectric constant caused by changes in the vegetation cover and water content have
different effects on the temporal decorrelation of each sample plot. Therefore, by analyzing
the relationship between each correction factor of each plot and the vegetation cover
change and canopy water content and assigning a temporal decorrelation correction factor
to each sample plot, we can effectively obtain high-precision forest height inversion results.
However, the complex relationship between each correction coefficient and the influencing
factors, such as temporal decorrelation and the forest structure, has not yet been found.
Thus, it is not possible to conduct large-scale tree height inversion analysis and accurate
regional-scale extrapolation work. In addition, the interference phase histogram used in
this study to determine the vertical reflectance profile is based on the assumption that the
normalized vertical structures of the trees in the forest are similar in a certain spatial domain.
Therefore, the vertical structure profile of a single pixel cannot be estimated, and the effect
of the forest stand density on the extinction coefficient is overlooked. Currently, our team
is actively working on relevant data analysis and model improvements, attempting to
use other methods to achieve the vertical profile fitting of each pixel, and exploring the
correlation between forest structure parameters and temporal decorrelation correction
factors to achieve high-precision regional forest height inversion.
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7. Conclusions

In this paper, the empirical iterative model was used to correct the temporal decorrela-
tion errors generated by satellite-based data, which effectively enabled us to avoid the loss
of the traditional RVoG model’s capability for forest height inversion caused by the effects
of the vertical wavenumber and temporal decorrelation. It was found that the extinction
effect was significantly influenced by the forest stand density and forest height, and the
introduction of an extinction coefficient that varies with height can effectively reduce the
difference in the non-volume decorrelation response caused by the fixed extinction coeffi-
cient in the model. The results showed that the GVR is affected by the forest stand density,
and in general the combination of the RVoG and PolInSAR decomposition techniques can
improve the estimated results of the ground-only and volume-only complex coherence
and, to some extent avoid the effect of excessive ground scattering in sparsely vegetated
areas. In this study, repeat-pass spaceborne L-band ALOS-2 PALSAR data were used to
perform forest height inversion on coniferous forests in the Saihanba Forest area, achieving
a high inversion accuracy and improving the accuracy and robustness of the forest height
inversion with long temporal baseline PolInSAR data. However, the objects of this study
were all artificial coniferous forests and the influence of the forest stand density on the
extinction effect was overlooked. Therefore, the capacity of the high-precision inversion
method to assess the height of other heterogeneous forests requires further research and
analysis.
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