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Abstract. In the Dial-a-Ride Problem (DARP) the aim is to design vehicle routes for a set 

of users who must be transported between given origin and destination pairs, subject to a 

variety of side constraints. The standard DARP objective is cost minimization. In addition 

to cost, the objective considered in this paper includes three terms related to quality of 

service. This gives rise to a multicriteria problem. The problem is solved by means of a 

metaheuristic which efficiently integrates the reference point method for multicriteria 

optimization within a tabu search mechanism. Extensive tests are performed on randomly 

generated data and on real-life data provided by a major transporter in the Montreal area. 

Results indicate that the algorithm can yield a rich set of non-dominated solutions. It can 

be employed to determine good compromises between cost and quality of service. 
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1 Introduction

In the Dial-A-Ride Problem (DARP), several users formulate pickup and delivery requests

for transportation between origins and destinations. The same user typically makes two

requests during the same day: an outbound request from home to a destination and an

inbound request for the return trip. These requests are satisfied by a fleet of vehicles based

at a common depot. In the classical variant of the problem, the aim is to plan a set of

minimum cost vehicle routes satisfying all requests (or as many of them as possible), under

side constraints. These include vehicle capacity constraints, route duration constraints, time

windows, and maximum ride time constraints. Time windows are usually imposed on the

arrival time at destination for outbound trips, and on the departure time from origin for

inbound trips. The problem is said to be static if all requests are known at the time of

planning, and dynamic if these are gradually revealed over time (see Psaraftis 1995). This

paper addresses the static variant of the DARP. For recent surveys on the DARP, we refer

to Cordeau and Laporte (2007) and to Berbeglia et al. (2010).

The DARP arises in the management of on-demand transportation systems provided to

elderly and disabled people in many large cities. Applications have been reported in Copen-

hagen (Madsen et al. 1995), Bologna (Toth and Vigo 1996, 1997), Berlin (Borndörfer et al.

1997), Crema and Verbania (Colorni and Righini 2001), Los Angeles County (Diana and

Dessouky 2004), Brussels (Rekiek et al. 2006), Milan (Wolfler Calvo and Colorni 2007), and

a mid-size US city (Karabuk 2009). It is expected that dial-a-ride services will gain in im-

portance in the coming years due to the aging of the population and the trend toward the

development of ambulatory health care services.

In addition to the classical cost minimization objective, several authors have incorporated

quality of service considerations in the solution of the DARP. Beyond the satisfaction of time

windows and maximum ride time constraints which are quite widespread, the most common

quality of service criteria are the difference between actual and desired arrival time (Beaudry

et al. 2010; Jørgensen et al. 2007; Melachrinoudis et al. 2007; Coslovich et al. 2006), waiting

time during the ride (Jørgensen et al. 2007), waiting time before departure (Psaraftis 1980),

total waiting time (Diana and Dessouky 2004), mean ride time (Parragh et al. 2009), excess

of maximum ride time (Jørgensen et al. 2007), ratio of actual ride time to direct ride time

(Wolfler Calvo and Colorni 2007), excess ride time over direct time (Jørgensen et al. 2007;
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Melachrinoudis et al. 2007; Coslovich et al. 2006), time elapsed between the call and the

arrival time (Wilson et al. 1976), and maximum number of stops while a user is on board

(Armstrong and Garfinkel 1982).

Service criteria are usually handled as constraints or as terms in the objective function, which

results in the generation of a single solution. Ideally, the problem should be solved within a

multi-objective setting because it involves non-commensurate objectives. To our knowledge,

only two groups of authors have devised truly multicriteria algorithms capable of producing

a set of non-dominated solutions. However, these two methods can only handle two criteria.

Thus, Baugh et al. (1998) have developed a bicriteria simulated annealing heuristic in which

the two criteria are travel costs and time window violations. Parragh et al. (2009) have used

a variable neighborhood search heuristic coupled with path relinking to jointly minimize

transportation costs and average ride time.

Our work follows the second approach, but can handle any number of objectives. In a first

step, we have identified three quality of service criteria through an extensive survey conducted

with the users of the Réseau de Transport de Longueuil (RTL) which operates a dial-a-ride

service on the South Shore of Montreal (see Paquette et al. 2011). An initial contact was

made with 857 users, among which 572 accepted to receive a postal questionnaire. In total,

331 filled questionnaires were returned, yielding a response rate of 38.6%. Common factor

analyses and ANOVAs were performed on the collected data, and three measurable quality

determinants emerged: the waiting time during the time window at the origin, the waiting

time during the time window at the destination, and the ratio of the actual ride time the over

direct ride time. Each of these criteria can be incorporated within an optimization scheme

for the daily routing and scheduling of vehicles, as we will show.

The contribution of this paper is the development of an efficient multicriteria algorithm

incorporating a tabu search process, capable of producing within a single execution a large set

of non-dominated solutions with respect to a standard travel cost criterion and several quality

of service criteria. Our algorithm is flexible in the sense that it can accommodate a wide

variety of criteria and constraints. In particular, we consider two user types (ambulatory and

wheelchair-bound), which results in two types of capacity, a heterogeneous fleet (minibuses,

regular taxis, adapted taxis), and constraints related to drivers’ breaks. Our algorithm is

also of general applicability since it can be used to solve other versions of the DARP and

other routing problems different from the DARP.
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The main intent of a multicriteria algorithm, such as the one developed in this paper, is to

provide managers with a tool to better understand the trade-offs between costs and quality

of service. This type of algorithm is normally used at a tactical level, to help the manager

identify the priorities of the provider, as defined by weights in an objective function. The

algorithm can also be used at an operational level, with the weights identified at the tactical

level, in order to optimize the routing and scheduling of vehicles on a daily basis.

The remainder of this paper is organized as follows. Section 2 is devoted to the presentation

of a mathematical formulation of the problem. The algorithm is described in Section 3,

and computational results on artificial and real-life instances are presented in Section 4.

Conclusions follow in Section 5.

2 Mathematical model

Our problem can be formulated as an integer linear program. We first introduce the standard

model for the single criterion DARP, with n users of a single type and a heterogeneous fleet of

m vehicles. Let G = (V,A) be a directed graph where V = {v0, v1, ..., v2n+1} is the vertex set

and A = {(vi, vj), vi, vj ∈ V, i 6= j} is the arc set. Each request i consists of an origin vertex

vi and a destination vertex vi+n. Vertex v0 represents the depot from which the vehicles

start their route, and vertex v2n+1 is the depot to which they must return. We denote by

V ′ = V \ {v0, v2n+1} the subset of vertices excluding the vertices associated with the depots,

by V ′

OD the subset of destination vertices associated to outbound trips, and by V ′

IO the subset

of origin vertices associated to inbound trips.

Vehicle k has a capacity of Qk and performs a route whose duration must not exceed Tk.

Vertex vi ∈ V has a load equal to qi, with qi = −qi+n, a service time di, and a time window

[ei, li]. The time window of the depot vertices is [0, T ], where T is the length of the planning

horizon. With each arc (vi, vj) are associated a travel cost cij and a travel time tij.

The route Rk of vehicle k is defined as the set of arcs it follows. In addition, Jk =

{vi|∃(vi, vj) ∈ Rk, vj ∈ V } is the set of vertices visited by Rk. We define binary vari-

ables xk
ij equal to 1 if and only if vehicle k travels on arc (vi, vj). Additional variables are

required to define vehicle schedules. The arrival time of vehicle k at vertex vi is denoted

by Ak
i , the service time of vehicle k at vertex vi is equal to Bk

i ≥ max{ei, Ak
i }, and the
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departure time of vehicle k from vi is equal to Dk
i = Bk

i + di. The waiting time at vertex i

is positive only when the lower bound of the time window is greater than the arrival time:

W k
i = max{0, Bk

i −Ak
i }. The ride time of user i on vehicle k is denoted by Lk

i = Bk
i+n −Dk

i .

This variable may not exceed a maximal allowed ride time L. Finally, variable Qk
i denotes

the load of vehicle k after visiting vertex vi.

As in the standard DARP model introduced by Cordeau (2006), the objective is the mini-

mization of the transportation costs. The standard model is as follows:

Minimize
∑

vi∈V

∑

vj∈V

m∑

k=1

cijx
k
ij

subject to:

(1)

vn∑

vj=v1

xk
0j = 1 (k = 1, ...,m) (2)

∑

vj∈V ′

xk
ji −

∑

vj∈V ′

xk
ij = 0 (vi ∈ V ′, k = 1, ...,m) (3)

v2n∑

vi=vn+1

xk
i,2n+1 = 1 (k = 1, ...,m) (4)

∑

vj∈V ′

m∑

k=1

xk
ij = 1 (vi ∈ V ′) (5)

∑

vj∈V ′

xk
ij −

∑

vj∈V ′

xk
n+i,j = 0 (vi ∈ {v1, ..., vn}, k = 1, ...,m) (6)

Bk
j ≥ (Bk

i + di + tij)x
k
ij (vi, vj ∈ V ′, k = 1, ...,m) (7)

Qk
j ≥ (Qk

i + qj)x
k
ij (vi, vj ∈ V ′, k = 1, ...,m) (8)

Lk
i = Bk

n+i − (Bk
i + di) (vi ∈ {v1, ..., vn}, k = 1, ...,m) (9)

max{0, qi} ≤ Qk
i ≤ min{Qk, Qk + qi} (vi ∈ V ′, k = 1, ...,m) (10)

ti,n+i ≤ Lk
i ≤ L (vi ∈ {v1, ..., vn}, k = 1, ...,m) (11)

Bk
2n+1 −Bk

0 ≤ Tk (k = 1, ...,m) (12)

ei ≤ Bk
i ≤ li (vi ∈ V ′, k = 1, ...,m) (13)

Bk
0 ≥ 0 (k = 1, ...,m) (14)
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Bk
2n+1 ≤ T (k = 1, ...,m) (15)

xk
ij ∈ {0, 1} (vi, vj ∈ V, k = 1, ...,m). (16)

In this model, constraints (2), (3) and (4) ensure that each route starts and ends at the

depot. Constraints (5) and (6) guarantee that each vertex is visited exactly once and that

the origin and destination of a request are visited by the same vehicle. The consistency of

time variables and vehicle loads is ensured by constraints (7) and (8), respectively. User ride

times are defined by constraints (9). Constraints (10) ensure that vehicle capacity is always

respected, and constraints (11) mean that user ride time never exceeds L. The maximum

length of a route is imposed by constraints (12), and time windows are imposed by constraints

(13), (14) and (15).

We have modified the standard DARP model in order to incorporate several features of real-

life problems. These relate to the multiplicity of user types and vehicles, to the imposition

of new constraints, and to the introduction of quality criteria in the objective function.

Two types of users are usually served by adapted transportation services: ambulatory users

and wheelchair-bound users. We thus consider different service times and we assume that

each vehicle can accomodate up to Qk
1 ambulatory users and Qk

2 wheelchair users. No sub-

stitutions are possible between these two user types. The fleet used to serve these users is

generally heterogeneous and the number of vehicles of each type (minibuses, regular taxis

and adapted taxis) is equal to m1, m2 and m3, respectively. The values of Qk
1 and Qk

2 can

be different for each type of vehicle, which affects constraints (8) and (10). Finally, vari-

ables Qk
1i and Qk

2i denote the load of vehicle k for each type of users after visiting vertex vi.

Constraints (8) and (10) are then duplicated to account for each user type:

Qk
1j ≥ (Qk

1i + q1j)x
k
ij (vi, vj ∈ V ′, k = 1, ...,m) (17)

Qk
2j ≥ (Qk

2i + q2j)x
k
ij (vi, vj ∈ V ′, k = 1, ...,m) (18)

max{0, q1i} ≤ Qk
1i ≤ min{Q1k, Q1k + q1i} (vi ∈ V ′, k = 1, ...,m) (19)

max{0, q2i} ≤ Qk
2i ≤ min{Q2k, Q2k + q2i} (vi ∈ V ′, k = 1, ...,m). (20)

Two ride times are defined according to the territory served by the provider. In our case

study, a smaller maximum ride time L1 is associated to trips within the territory, and a
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larger maximum ride time L2 is imposed on trips going outside. This impacts constraints

(9) and (11). As in Jaw et al. (1986), the vehicle is not allowed to be idle while carrying

users, which means that it must either move, or the driver must be busy helping a user get

on or off the vehicle. This constraint is enforced throught the inclusion of the term

a(s) =
∑

vi∈V ′

∑

vj∈V ′

m∑

k=1

xk
ij(Q

k
1i +Qk

2i)W
k
j (21)

in the objective function. The maximal duration of route k is equal to Tk, and drivers are

entitled to a break of duration ν, positionned around the middle of their working day. This

constraint can be modeled by creating fictitious users v2n+2, ..., v2n+2+m1
with time windows

[ei = b0+Tk/2−2ν, li = b0+Tk/2]. Another constraint specifies that no user can be onboard

the vehicle while the driver takes his break:

b(s) =
∑

vi∈V ′

v2n+2+m1∑

vj=v2n+2

m1∑

k=1

xk
ij(Q

k
1i +Qk

2i) ≤ 0. (22)

In our algorithm, this constraint is relaxed and is treated as a penalty in the objective

function. These constraints can be applied to one or all types of drivers.

The objective function of the provider contains four terms. The first represents the vari-

able vehicle costs and is based on the tarification contract that the provider has with its

subcontractors (minibus operators and taxis). This cost is calculated as

Cost =

m1∑

k=1

c1(B
k
2n+1 −Bk

0 )/60 +
∑

vi∈V

∑

vj∈V

m∑

k=m1+1

c2x
k
ij +

∑

vi∈V

∑

vj∈V

m∑

k=m1+1

c3x
k
ij, (23)

where c1 is the hourly cost for a minibus, c2 is the flat rate for a taxi ride, and c3 is the cost

per kilometer for a taxi ride.

The other three terms of the objective function are based on the results of our empirical study

performed in cooperation with the users of the RTL service. The information collected from

the survey has enabled us to quantify and model the users’ preferences and to represent

their perceived level of service in different situations. The subsequent terms define user

inconvenience.

The second term of the objective function represents the waiting time within the destination

time window for an outbound trip. The upper limit of this time window is specified by the
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user but the lower limit is determined by the transporter. According to the results of our

survey, most users prefer the vehicle to arrive at their destination around the middle of the

time window. The inconvenience curve is therefore modeled through a quadratic function as

follows:

Quality1 =
∑

vi∈V
′

OD

m∑

k=1

((li − ei)/2−Bk
i )

2. (24)

The third term of the objective function represents the waiting time within the origin time

window for an inbound trip. The lower limit of the time window corresponds to the time

requested by the user, but the upper limit is set by the transporter. In this case, our survey

indicates that most users prefer the vehicle to arrive close to the beginning of the time

window. The more they wait, the less they perceive quality of the service as being satisfactory.

We again use a quadratic inconvenience curve to measure this type of inconvenience:

Quality2 =
∑

vi∈V
′

IO

m∑

k=1

(Bk
i − ei)

2. (25)

Finally, the fourth term of the objective function relates to the users’ ride time. Our survey

results indicate that the inconvenience cost associated with ride time is quadratic with respect

to the ratio of actual ride time over direct ride time:

Quality3 =
vn∑

vi=v1

m∑

k=1

(Lk
i /ti,i+n)

2. (26)

These modifications were incorporated into the model to represent the constraints and ob-

jectives of the provider under study. It is clear, however, that other constraints or objectives

could apply in different contexts.

3 Multicriteria tabu search algorithm

Many multicriteria optimization studies generalize classical single criterion problems. Con-

sidering several criteria is often the most natural way to model practical problems encoun-

tered in real-life applications. The approaches to these problems can be labeled as: a pos-

teriori decision making, when the decision maker articulates his preferences after a set of

Combining Multicriteria Analysis and Tabu Search for Dial-a-Ride Problems

CIRRELT-2012-04 7



solutions is calculated; interactive decision making, when iteractions between the decision

maker and the optimization phase happen; and a priori decision making, when the prefer-

ences are aggregated before the solutions are calculated. The latter type of approach seems

to be one of the most popular, given that it allows solving a multicriteria problem as a single

criterion problem after scalarization. Alternative methods for multicriteria problems are the

ε-constraint method, which consists in reducing the number of objective functions by trans-

forming them into constraints of the problem, goal programming, which aims at minimizing

the distance to an ideal point, and ranking methods, which list solutions in order of one of

the objective functions, while their dominance is tested by comparing them to the solutions

obtained earlier. Other research has focused on extending single criterion methods such as

dynamic programming or branch-and-bound, to the multicriteria context. Over the past

20 years, we have witnessed a rise in the development of metaheuristics for approximating

the set of solutions, namely tabu search (Gandibleux et al. 1997) and simulated annealing

(Alves and Cĺımaco 2000). Further details about these and other methods for multicriteria

combinatorial optimization problems can be found in Ehrgott (2000), in Hansen (2000) and

in the comprehensive survey of Ehrgott and Gandibleux (2002).

3.1 Heuristics for multicriteria routing problems

The specific case of multicriteria routing problems has been discussed and reviewed in Boffey

(1996) and Jozefowiez et al. (2008). The techniques applied to this type of problem are

generally similar to those mentioned earlier. Most research has concentrated on the bicriteria

Traveling Salesman Problem (Gupta and Warburton 1986; Paquete and Stützle 2003; Angel

et al. 2004, 2005; Lust and Jaszkiewicz 2010; Lust and Teghem 2010). As mentionned in

the introduction, Baugh et al. (1998) and Parragh et al. (2009) have developed heuristics

restricted to the bicriteria DARP.

3.2 Description of our multicriteria tabu search algorithm

A näıve implementation of a heuristic such as tabu search for a discrete multicriteria opti-

mization problem would be to repeatedly and independently apply it to an instance by using

each time a different set of criteria weights, and discarding dominated solutions at the end
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of the process. Such a scheme is likely to be impratical if each local search application is

time-consuming and the number of weight combinations considered is large. This approach

will be particularly inefficent in problems where generating an initial feasible solution is

NP-complete. This is the case of the DARP which contains time windows. To circumvent

this difficulty we have developed an efficient search mechanism consisting of a single thread,

but within which the criteria weights are dynamically modified, and dominated solutions are

discarded along the way. Our algorithm combines some features of the tabu search heuristic

of Cordeau and Laporte (2003) for the classical DARP, and of the multicriteria reference

point method of Cĺımaco et al. (2006).

3.2.1 Single criterion tabu search algorithm for the DARP

The tabu search heuristic is initialized with a solution s0 constructed by assigning each

request to a randomly selected vehicle. This solution is not necessarily feasible. At iteration t,

the current solution st can be partly described by an attribute set U(s) = {(i, k) : request i is
assigned to vehicle k}. To improve st, inter-route exchanges are performed at every iteration,

and intra-route exchanges are performed every 10 iterations, or whenever a new best solution

is identified. The neighboorhood N(s) of a solution s is composed of all the solutions s′ that

can be obtained from s by removing the attribute (i, k) and replacing it with attribute (i, k′).

Every solution in the neighboorhood of the current solution is evaluated and the best move

is applied. To minimize route duration, the forward time slack (Savelsbergh 1992) is used

to compute the impact of a move. This is the maximum time by which departure from the

depot can be delayed without violating any time window on a vehicle route. The best move,

which minimizes the total increase in f(s), is performed and attribute (i, k) is then added to

the tabu list for θ iterations. Through an aspiration criterion, the tabu status of an attribute

can, however, be revoked if that would allow the search process to reach a solution of smaller

cost than that of the best known solution having that attribute.

The objective function f(s) minimizes the routing cost c(s) and weighted penalty terms for

each relaxed constraint: q(s) for violations of capacity, d(s) for violations of duration, w(s)

for violations of time windows, and t(s) for violations of ride time constraints. Relaxing

the constraints enables the algorithm to explore infeasible solutions during the search and

thus reach better solutions than would otherwise be possible. The weights of the penalty
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terms, respectively α, β, γ, and τ , are self-adjusting positive parameters. Initially set to 1,

these parameters are divided or multiplied by 1.5 at each iteration depending on whether

the solution is feasible or infeasible with respect to the corresponding contraint. A new

best solution s∗ is identified whenever f(s′) < f(s∗), where s′ is the new solution obtained

after applying a move and s∗ is the current best solution. To diversify the search, any

solution s ∈ N(s) such that f(s) ≥ f(s) is penalized by the term p(s) = λc(s)
√
nmρik,

where ρik corresponds to the number of times the attribute (i, k) was added to a solution

during the search,
√
nm is a scaling factor, and λ is a non-negative parameter controlling

the aggressiveness of the diversification.

3.2.2 Adaptation to multiple objectives

We now explain the main changes made to this heuristic to handle multiple objectives.

The initialization phase was modified to take advantage of the characteristics of the real-life

problem which motivated this study and to yield an initial solution closer to feasibility. First,

users in wheelchairs are only included in minibus or adapted taxi routes since regular taxis

cannot accomodate this type of users. Second, user requests are ranked in non-decreasing

order of the beginning of their time window. Each request is added to a route in a rotating

manner. This enables the algorithm to generate balanced routes and to spread out users who

have to be served at the same time in different routes. Three terms representing penalties

associated with relaxed constraints from real-life problems have been added to the objective

function. The first two terms α1q1(s) and α2q2(s) represent the penalties associated with the

ambulatory and wheelchair capacities constraints ((19) and (20)), respectively. The third

term δa(s) ensures that the waiting time of users is limited while the vehicle is idle. The

fourth term χb(s) represents the fact that a user cannot be onboard the vehicle while the

driver takes his break (constraints (22)). In the algorithm, the parameters α1, α2, δ and

χ will be modified dynamically, as will the parameters β, γ and τ . This way of proceeding

leads the search process through a mix of feasible and infeasible solutions and allows the use

of simple exchange operators which do not guarantee feasibility.

The reference point method of Cĺımaco et al. (2006) was designed for generic multicriteria

problems in which the aim is to determine a set of non-dominated feasible solutions which

constitute an approximation of the Pareto front. Each solution is represented by a vector
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whose elements are the values taken by the terms of the objective function. Potential solu-

tions identified during the search process are evaluated through their distance from an ideal

point defined as a vector whose elements are the minimal value of each objective, typically

approximated by a heuristic. This point is generally infeasible, for otherwise it corresponds

to a unique non-dominated solution. Figure 1 summarizes these concepts visually. The dis-

tance between a potential solution and the ideal point is computed through one of several

metrics (typically Manhattan, Euclidean or Tchebychev). We have used the Manhattan

metric for its ease of implementation and also because we find no indication that the other

two metrics yield better solutions. The objective function we have used is defined as the

linear combination

f(s) = ω0|Cost − Cost∗|+ ω1|Quality1 −Quality1 ∗|+ ω2|Quality2 −Quality2 ∗|
+ω3|Quality3 −Quality3 ∗|+ α1q1(s) + α2q2(s) + βd(s) + γw(s) + τt(s)

+δa(s) + χb(s), (27)

where (Cost∗, Quality1∗, Quality2∗, Quality3∗) is the ideal point, and ωh is the weight of

criterion h.

Pareto front (non-dominated 
solutions)

z1

z2
Nadir point

Ideal point

Dominated 
solutions

Figure 1: Representation of multicriteria concepts

During the search, every feasible solution is compared to those belonging to the pool ND of

non-dominated solutions even if f(s′) > f(s∗). This enables the algorithm to identify more

non-dominated solutions than if the usual rule f(s′) < f(s∗) were applied.

The weights ωh play two distinct roles. First, it is necessary to measure all terms of the

objective function on a comparable scale. As suggested by Cĺımaco et al. (2006), we use the
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scaling factors σh = 1/(UBh − LBh), where UBh and LBh are the upper and lower bounds

on the value of the term of the objective function corresponding to criterion h. These bounds

are computed empirically by solving several instances repeatedly since no other information

is available a priori. The weights ωh also help perform a thorough exploration of the search

space. To this end, they are updated whenever ι iterations have elapsed since the last feasible

solution was encountered, or whenever the algorithm has not identified any feasible solution

for more than ζ consecutive iterations. The procedure used to update the weights is as

follows:

• ω0 := σ0ω0|Cost− Cost∗|;
• ω1 := σ1ω1|Quality1−Quality1∗|;
• ω2 := σ2ω2|Quality2−Quality2∗|;
• ω3 := σ3ω3|Quality3−Quality3∗|;
• ωh := ωh/

∑3
j=0 ωj (h = 0, ..., 3).

This procedure puts more emphasis on the term of the objective function for which the worst

value was obtained compared to the ideal point on the common scale at the last iteration.

At the same time, it allows the search process to put less emphasis on the other terms of the

objective function, since the sum of weights must be equal to one. It also allows the weights

used at the previous iteration to be consistent from one update to the next. Whenever the

weights are updated, the tabu list is emptied because it is no longer relevant with respect to

the new weights.

Moreover, when ω2 ≥ 0.25, the forward time slack procedure is not applied. Indeed, this

procedure delays as much as possible the beginning of service at the vertices, without vio-

lating any constraint, but since Quality2 aims at minimizing the gap between the beginning

of the time window and the service time, it does not make sense to delay the start of service

in this case.

Finally, the diversification procedure is usually based on the penalization of moves that are

often used, by means of the penalty term p(s). However, in the multicriteria algorithm,

the modifications made to the weights ωh also constitute a form of diversification. In the

following section, tests will be executed to determine whether the standard diversification
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mechanism is still useful in this context. The resulting multicriteria algorithm is summarized

in the pseudo-code of Algorithm 1.

Algorithm 1 Multicriteria algorithm

1. Initialization

2. Tabu search

While iteration < η

1. If iteration is a multiple of κ or if newbest = 1, do intra-route moves (intensification)

2. Otherwise

(a) Evaluate the cost of all possible inter-route exchange in the neighborhood of st.

(b) Do the inter-route exchange that generates the best non tabu solution or that is permitted by the aspiration

criteria and include the movement in the tabu list for θ iterations.

3. Calculate the costs for the solution found and the penalties associated with hard constraints.

4. Recalculate the parameters α1, α2, β, δ, γ, τ , χ.

5. If the solution is feasible

(a) Compare st to solutions in the ND set.

(b) If the solution is not dominated

i. Add st to ND and reset tabu list.

ii. Set newbest = 1, iterationbest = 1, and iterationtotal = 1.

(c) If iterationtotal = ι or if iterationbest = ζ

i. Adjust the weights ω0, ω1, ω2, ω3.

ii. Reset tabu list.

6. Increment counters iteration, iterationbest and iterationtotal.

4 Computational results

The algorithm just described was coded in C and run on a 2.93GHz Intel Xeon X7350

computer. It was tested on several random and real-life instances.

4.1 Test instances

The random instances are those introduced by Cordeau and Laporte (2003) which have been

modified to include two types of users and two types of vehicles. The instances contain

between 24 and 144 requests randomly generated over the square [−10, 10]2. The maximum

ride time L is equal to 90 minutes and the maximal duration of a route is set to 480 minutes.

Since approximately 30% of the rides are performed by wheelchair users, this proportion

was also used in our instance generation procedure. A time window is associated to each
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origin vertex for an inbound trip and to each destination vertex for an outbound trip. The

beginning ei of the time window is randomly chosen in the interval [60, 480] and its end li is

chosen in the interval [ei+30, ei+45]. Table 1 summarizes the characteristics of the random

instances.

Table 1: Characteristics of the random instances

Instance n m1 m2 Instance n m1 m2

1 24 1 2 6 144 5 8

2 48 2 3 7 36 2 2

3 72 3 4 8 72 3 3

4 96 3 6 9 108 3 5

5 120 5 7 10 144 5 6

The real-life instances are those of the RTL. We had access to a full year of data. The daily

number of rides changes according to the season and the day of the week. The peak demand

occurs on Fridays, while weekends are the least busy days. To perform our tests, we have

selected 12 typical days from two different months and representing all days of the week.

Each of these instances has a different number of requests and a different number of vehicles

available. Table 2 presents the main characteristics of the real-life instances. The service

times for each type of user are estimated by the provider as d1i = 1 minute and d2i = 2

minutes. The values of Qk
1 and Qk

2 are 8 and 5 for minibuses, 4 and 0 for regular taxis, and

1 and 1 for adapted taxis. The RTL network extends over the South Shore of Montreal,

where the depot is located, Montreal Island and the City of Laval, North of Montreal. If a

trip is made on the South Shore, the maximum ride time is L1 = 45 minutes; otherwise, it is

equal to L2 = 90 minutes. Time windows for outbound requests have a width of 20 minutes,

whereas the width for inbound requests is 30 minutes. Minibus drivers cannot work more

than 10.5 consecutive hours (Tk = 630) and are entitled to have a break of ν = 30 minutes,

usually around the middle of their working day. The last two constraints are not applied to

taxi drivers who serve other clients when they are not working for the RTL. The hourly cost

c1 for a minibus is estimated at $50, the fixed cost c2 for a taxi ride is $3.30, and the cost

per kilometer c3 is $1.60.
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Table 2: Characteristics of the real-life instances

Instance Day of the week n m1 m2 m3

February 5 Monday 1056 22 20 125

February 6 Tuesday 1136 22 30 130

February 7 Wednesday 1146 22 80 175

February 10 Saturday 454 22 15 50

February 11 Sunday 450 19 5 50

August 6 Monday 854 22 20 125

August 7 Tuesday 970 22 50 125

August 8 Wednesday 986 22 50 150

August 9 Thursday 980 22 60 125

August 10 Friday 882 19 20 125

August 11 Saturday 206 19 5 50

August 12 Sunday 190 19 5 30

4.2 Solution quality indicators

To measure solution quality, we have used two indicators frequently employed in the literature

on evolutionary algorithms (Zitzler et al. 2003, 2010). The first is the hypervolume indicator

which measures the volume formed by the nadir point and all points in the set of non-

dominated solutions, as shown in Figure 2. We have used the algorithm developped by

Fonseca et al. (2006) to compute the hypervolume. The larger the value of the indicator, the

better is the set of solutions because this means it is diversified, which is a desirable property.

For example, in Figure 2, the set B of solutions is better than the set A. Our second indicator

is the multiplicative unary epsilon indicator. It represents the smallest value of ǫ by which

each point in a reference set has to be multiplied to obtain a set that is dominated by the

set of non-dominated solutions. As suggested by Parragh et al. (2009), the reference set

corresponds in this case to the combination of all the non-dominated solutions found for the

same instance accross all the runs executed on it. A small value of the indicator is preferable

because this means that the set of solutions found by the algorithm is close to the reference

set.
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Pareto front (non-
dominated solutions)

Nadir point

Ideal point

Set A

Set B

z1

Figure 2: Hypervolume indicator for two sets of solutions

4.3 Preliminary tests on the random instances

Preliminary tests to parametrize the algorithm were executed with the random instances and

aimed to

1. identify the best values for ι and ζ, the numbers of iterations after which the weights

are changed,

2. identify the best value for δ, the coefficient of the penalty term representing the waiting

time of users onboard the vehicle while it is idle, and

3. determine whether the regular diversification procedure is useful in the multicriteria

context.

Each random instance was solved ten times with ten different seeds for 106 iterations. The

algorithm was tested for the following values of (ι, ζ): (100, 500), (100, 1000), (100, 50000),

(1000, 5000), (1000, 50000), and (10000, 50000). Three values were tested for δ: 0.5, 1, and

1.5. The algorithm was also tested with and without the regular diversification procedure.

Thus, 36 parametrization combinations were tested. The values of the lower and upper

bounds for each optimization criterion are summarized in Table 3. These values are an

approximation of the best values found when individually optimizing each objective term

five times.

Table 4 presents the average of the hypervolume and epsilon indicators on all instances for the

different parametrizations based on ι and ζ values. According to the hypervolume indicator,

the best parametrization is the one with ι = 1000 and ζ = 50000. However, according to
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Table 3: Values of the lower and upper bound for the random instances

Instance Cost Quality1 Quality2 Quality3 Cost Quality1 Quality2 Quality3

pr01 400 0 0 24 900 3900 7700 25800

pr02 900 0 0 48 1400 5000 15300 117500

pr03 1530 0 0 72 2200 5300 20500 12000

pr04 1780 0 0 96 2700 9500 28700 96000

pr05 2100 0 0 120 3200 10500 28300 42600

pr06 2710 0 0 144 3900 11500 37800 75600

pr07 780 0 0 36 1200 4000 11400 64900

pr08 1480 0 0 72 2200 7600 17800 12800

pr09 1980 0 0 108 2800 9200 25800 25700

pr10 2990 0 0 144 4000 10700 37900 7468700

the epsilon indicator, the best parametrization would be ι = 10000 and ζ = 50000. Thus

the values for ι and ζ should be fixed to one of the largest value possible considering the

maximum number of iterations allowed.

Table 5 presents aggregated results over the values of δ. The best value is 0.5 according to

both indicators. Finally, Table 6 shows that it is preferable to apply the regular diversification

procedure (Cordeau and Laporte 2003) within our multicriteria algorithm, even though other

factors act as diversification agents.

Table 4: Indicator values for parameters ι and ζ (average on all instances)

ι ζ Hypervolume indicator Epsilon indicator

100 500 1.42246E+17 8.03

100 5000 1.43666E+17 8.86

100 50000 1.51939E+17 7.25

1000 5000 1.41795E+17 10.55

1000 50000 1.52557E+17 6.87

10000 50000 1.49727E+17 5.05
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Table 5: Indicator values associated to the penalty for waiting time of users onboard the

vehicle while it is idle (average on all instances)

δ Hypervolume indicator Epsilon indicator

0.5 1.77318E+17 5.15

1 1.60744E+17 5.84

5 1.02979E+17 12.40

Table 6: Indicator values according to the fact that the diversification procedure is used or

not (average on all instances)

Diversification Hypervolume indicator Epsilon indicator

No 1.43239E+17 9.15

Yes 1.50731E+17 6.38

4.4 Application to the real-life instances

Having parametrized the algorithm on the random instances, we have applied it with the

best parameter setting to the real-life instances. To determine the upper and lower bounds

necessary to set the scales of each objective term, the algorithm was run separately on

weekday instances and on weekend instances. In a context where this method of analysis

should be repeated, it is important to consider that the determination of scales is an initial

step that cannot be executed for each new instance, i.e. everyday. Thus, all weekday

instances will have the same scales and all weekend instances will have others (see Table 7

and 8). We have used the parameter values derived from our tests on the random instances,

except for ι and ζ which depend on the total number of iterations. Because 105 iterations were

necessary to solve the real-life instances, we set (ι, ζ) to (100, 1000) and (100, 500). Table 9

presents for each instance the total computing time (minutes), the number of solutions found

and the average computing time (minutes) per non-dominated solution. The best setting is

(100, 1000), which is consistent with the results obtained on the random instances.

Table 7: Upper and lower bounds for real-life instances from Monday to Friday

Cost Quality1 Quality2 Quality3 Cost Quality1 Quality2 Quality3

10000 0 98000 0 30000 60000 300000 20000
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Table 8: Upper and lower bounds for real-life instances on Saturday and Sunday

Cost Quality1 Quality2 Quality3 Cost Quality1 Quality2 Quality3

0 0 20000 0 20000 20000 100000 10000

Table 9: Computational results for the multicriteria algorithm on the real-life instances. (1)

Execution with (ι, ζ) = (100, 500); (2) Execution with (ι, ζ) = (100, 1000)

Instance Computing Number of Computing Computing Number of Computing

time in solutions time in time in solutions time in

minutes (1) found (1) minutes per minutes (2) found (2) minutes per

non-dominated non-dominated

solution (1) solution (2)

February 5 1360.43 107 12.71 1361.25 107 12.72

February 6 1323.33 7 189.05 1538.96 5 307.79

February 7 941.24 194 4.85 807.85 4 201.96

February 10 196.4 23 8.54 326.06 100 3.26

February 11 45.54 24 1.90 32.75 4 8.19

August 6 251.33 50 5.03 247.05 50 4.94

August 7 235.85 51 4.62 228.45 6 38.08

August 8 606.79 70 8.67 606.51 70 8.66

August 9 396.87 126 3.15 394.08 126 3.13

August 10 380.48 8 47.56 314.28 37 8.49

August 11 17.25 19 0.91 16.67 5 3.33

August 12 18.92 48 0.39 15.4 34 0.45

Average 481.20 60.58 23.95 490.78 45.67 50.08

The average computing time is 480 minutes, which is acceptable considering that in practice,

the multicriteria problem will only be solved infrequently at the tactical level. Indeed, the

trade-off between costs and the quality criteria is only considered periodically. For the

purpose of daily planning, the weights can be set equal to the best ones identified in the last

tactical analysis performed.
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4.5 Trade-offs between cost and quality

The solution of real-life instances using the multicriteria tabu search heuristic can also help

assess the trade-offs between cost and quality of service. To this end, we have performed tests

on six of the real-life instances: February 5, February 10, February 11, August 8, August

11, and August 12. For each of the quality criteria, each of these instances was solved with

four different weight combinations. For Quality1, we have successively fixed ω1 to 0.2, 0.4,

0.6, and 0.8 and we have set ω0, ω2, and ω3 equal to (1 − ω1)/3. We have proceeded in

a similar fashion for Quality2 and Quality3 by varying the value of ω2 and ω3. The tabu

search algorithm was again executed in a single-thread fashion, but instead of modifying the

weights dynamically, we have successively used each of the four settings just defined.

Having solved an instance with a given set of weights, we have averaged the values of Cost,

Quality1, Quality2, and Quality3 over all non-dominated solutions identified by the algo-

rithm. For example, the weights and average solution values corresponding to a variation of

ω1 on the February 11 instance are reported in Table 10 and depicted in Figure 3. In this

case, it can be observed that increasing ω1 from 0.2 to 0.8 decreases the inconvenience asso-

ciated with Quality1 by 33.45% but increases Cost by only 10.81%. Here, the improvement

in Quality1 is mostly achieved at the expense of Quality2, without any noticeable effect on

Quality3.

Table 10: Values of Cost, Quality1, Quality2, and Quality3 with the four different weight

combinations for the February 11 instance associated with a variation of ω1

Weight combination Cost Quality1 Quality2 Quality3

(0.27; 0.2; 0.27; 0.27) 5170.08 2263.13 499.55 642.30

(0.2; 0.4; 0.2; 0.2) 5500.57 1928.40 1184.49 561.21

(0.13; 0.6; 0.13; 0.13) 5666.75 1831.10 1361.78 580.87

(0.07; 0.8; 0.07; 0.07) 5728.91 1506.11 2866.57 661.80
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✏✑✒✓✔✎✕✂

✏✑✒✓✔✎✕✄

✏✑✒✓✔✎✕☎

Figure 3: Values of Cost, Quality1, Quality2, and Quality3 for the February 11 instance

associated with a variation of ω1

Similar results are reported in Tables 11, 12 and 13 for all six instances and each quality crite-

rion. In each case, significant average inconvenience reductions (51.82%, 83.85% and 38.91%)

can be obtained by increasing the solution cost by only a small percentage (7.21%, 5.75%

and 0.33%). Increasing ω2 has a relatively small effect on Cost and Quality1 but increases

the inconvenience related to Quality3 rather significantly. Increasing ω3 yields marginally

higher Cost values, but much worse solutions in terms of Quality1 and Quality2. This type of

analysis can prove highly useful to dial-a-ride operators who seek cost-efficient compromises

between solution cost and quality of service, or between several quality attributes.
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Table 11: Variations of the cost and the three quality of service criteria on six real-life

instances when more emphasis is put on Quality1

Real-life Inconvenience Cost Inconvenience Inconvenience

instance variation linked variation variation linked variation linked

to Quality1 to Quality2 to Quality3

February 5 −60.02% −0.45% 152.62% 43.94%

February 10 −63.74% 14.05% 432.34% 67.24%

February 11 −33.45% 10.81% 473.83% 3.03%

August 8 −64.45% 13.29% 24.83% 22.37%

August 11 −44.82% 0.50% 659.32% 23.88%

August 12 −44.44% 5.08% 167.37% 43.92%

Average −51.82% 7.21% 318.39% 34.06%

Table 12: Variations of the cost and the three quality of service criteria on six real-life

instances when more emphasis is put on Quality2

Real-life Inconvenience Cost Inconvenience Inconvenience

instance variation linked variation variation linked variation linked

to Quality2 to Quality1 to Quality3

February 5 −76.50% −0.41% 41.06% 31.11%

February 10 −68.49% 7.94% −68.49% 2.88%

February 11 −96.23% 11.95% −35.64% 24.05%

August 8 −63.31% 7.41% 26.71% 19.75%

August 11 −99.02% 7.00% −5.62% 12.00%

August 12 −99.53% 0.61% 41.71% 37.59%

Average −83.85% 5.75% −0.04% 21.23%
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Table 13: Variations of the cost and the three quality of service criteria on six real-life

instances when more emphasis is put on Quality3

Real-life Inconvenience Cost Inconvenience Inconvenience

instance variation linked variation variation linked variation linked

to Quality3 to Quality1 to Quality2

February 5 −45.89% 2.24% 41.38% −31.46%

February 10 −38.92% −7.21% 27.59% −21.26%

February 11 −34.51% 2.48% 8.52% 16.35%

August 8 −20.83% 3.03% 25.55% 29.37%

August 11 −45.40% −0.20% 10.13% 61.05%

August 12 −47.97% 1.64% −0.26% 2.82%

Average −38.91% 0.33% 18.82% 9.48%

5 Conclusions

We have developed a multicriteria heuristic embedding a tabu search process to the solution

of DARPs combining cost and quality of service criteria. Our algorithm is the first to handle

more than two criteria for this type of problem. It provides a useful tool to assist decision

making in a practical context. Our results indicate that computing times are acceptable,

considering that this type of planning is often made at the tactical level. The algorithm

generates many high quality non-dominated solutions to real-life DARPs. We have performed

extensive tests to analyze the interactions among several criteria including solution cost and

quality of service indicators. Using the set of solutions generated by the algorithm, managers

can readily evaluate the impacts of potential policy changes on the service performance.

Finally, the algorithm is flexible and other constraints or criteria that could arise in other

contexts can readily be incorporated within the solution scheme.
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