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Control of near-degeneracy effects and dynamical correlation in atoms and molecules is within
sight, thanks to an economical method that mixes configuration interaction~CI! and density
functional theory~DFT!. The influence of the size of the configuration-space has been studied for
light systems including elements of the first and second period of the Periodic Table. ©2002
American Institute of Physics.@DOI: 10.1063/1.1430739#

I. INTRODUCTION

Different approaches are usually available for the quan-
tum chemist in order to deal with dynamical~interelectronic
repulsions at short-range! or nondynamical~near-degeneracy
or rearrangement of electrons within partially filled shells!
correlation.1 The analysis of the Fermi and Coulomb holes
~see, e.g., Ref. 2! can be helpful in picturing both compo-
nents and in grasping the nature of their physical origins.

Because of ‘‘left–right’’ correlation, it is commonly be-
lieved that the exchange-correlation hole in a molecule is
localized around the reference electron~see, e.g., Ref. 3!. In
fact, this is especially true at large internuclear distance,
where the total hole is localized around the nearest nucleus
to the reference electron, whereas at smaller distance there
still exists a weak contribution to the hole on the other nu-
clei. By comparison, the hole of the homogeneous electron
gas always strictly ‘‘follows’’ the reference electron. The
Kohn–Sham method~KS! ~Ref. 4! can give rise to such lo-
calized model holes, with the help of approximate exchange-
correlation functionals such as LSDA~Ref. 4! or GGA ~see,
e.g., Refs. 5–8!, which depend on the density or the gradient
of the density. While the approximate correlation functionals
efficiently model dynamical correlation, local exchange
functionals can also mimic part of the nondynamical corre-
lation, in addition to the exchange energy~see, e.g., Ref. 9!.
It results in a crude description of nondynamical correlation.

A much-discussed problem is that of symmetry-
breaking, where the ability to cover these near-degeneracy
effects has serious consequences~see, e.g., Ref. 10!. For ex-
ample, hybrid functionals can strongly increase the tendency
to break spatial symmetry as soon as one augments the
weight of the Hartree–Fock delocalized exchange. The re-
sulting poor quality of the atomic or molecular wave func-
tion then restricts its use in applied theoretical chemistry
~i.e., calculations of vibrational frequencies, study of bond-
breaking reactions, determination of reaction barriers of tran-
sition states, ...!.

Other alternatives that aim to describe this nondynamical
correlation, inside the DFT formalism, are ensemble theory11

and the fractional occupation number~FON! method.12–15

The former approach asserts that, for systems with a strong
multideterminantal character, the interacting density can only
be represented by an ensemble of degenerate monodetermi-
nantal states. The latter is based on Janak’s theorem,16 which
allows fractional occupations on frontier orbitals, hence a
simulation of a mixing of configurations.

More traditionally, quantum chemists often use the wave
function formalism, and especially configuration interaction
~CI!, to deal with nondynamical correlation. The inherent
process is then to compensate the long-range delocalized ex-
change hole of the reference wave function by building a
long-range correlation hole.3

Consequently, it seems natural to try to combine CI with
DFT ~for a review, see Ref. 17!, with the secret hope to get
the better of both worlds~i.e., low ‘‘CPU cost/accuracy’’
ratio and ease of interpretation for DFT, explicit handling of
near-degeneracies and possibility of systematic improvement
for CI!, to deal with systems where dynamical as well as
nondynamical correlation are crucial. Adding a localized cor-
relation hole, by a DFT contribution, to a correlation hole
that already compensates the exchange hole at long range,
should yield an exchange-correlation hole that is somewhat
localized around the reference electron. The combination can
be achieved by splitting the two-electron operator, with one
part dedicated to CI and the other to DFT. The proportion of
each component can then be adjusted by varying a coupling
parameter.

After a brief recall of the underlying theory and a survey
of technical details, we will explore a few systems and stress
the importance of the choice of the coupling parameter. De-
pending on the inherent multideterminantal character of the
atom or molecule, only a small or medium configuration-
space will be necessary, resulting in an inexpensive compu-
tation.
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II. THEORY

Straightforward mixing of CI and DFT techniques can
result in a double counting of correlation contributions. To
prevent this artifact, the key technique is to split the interact-
ing Hamiltonian.18–21 This separation can be made with the
help of the standard error function,

V̂ee5V̂sr1V̂lr , ~1!

V̂lr5
1

2 (
iÞ j

N

v lr~r i ,r j !, ~2!

v lr~r i ,r j !5
erf~mur i2r ju!

ur i2r ju
, ~3!

whereV̂sr andV̂lr are, respectively, the short- and long-range
two-electron operators. These two-electron operators are
chosen so that the short-range one presents a singularity at
electron–electron coalescence, while the smooth long-range
one possesses the Coulomb tail. The calculation of bielec-
tronic integrals is also more convenient with operators in-
volving the error function than with other operators that were
chosen in the past, like the Yukawa two-electron operator.20

As a starting point, the coupling parameterm is chosen to be
position-independent.

The short-range part of the interelectronic operator will
be handled by density functionals, while the long-range part
will be described by a multideterminantal wave function.
Thus, since

H erf~0!50
erf~1`!51,

the pure Kohn–Sham method can be fully recovered atm
50, while a complete CI occurs asm→1`.

The ground state electronic energyE0 can be obtained
by the constrained-search formalism22 below,

E05min
r

Ev@r# ~4!

5min
r

HF@r#1E v~r !r~r !dr J ~5!

5min
C

H ^CuT̂1V̂lruC&1Usr@r~C!#1Exc,sr@r~C!#

1E v~r !r~r !dr J , ~6!

wherev is the external potential,r5r(C) is the interacting
density corresponding to the multiconfigurational wave func-
tion C, F is the universal density functional,T̂ is the kinetic
energy operator,Usr is the short-range Hartree energy, and
Exc,sr is the short-range exchange-correlation energy.

Because the long-range two-electron operator shows no
singularity at electron–electron coalescence, this partitioning
has the advantage to release the CI calculation, in a finite set
of one-particle basis functions, from trying to represent the
cusp. Thus, a smaller configuration-space should be suffi-
cient for an accurate calculation.

For the DFT part, the spin-independent local density ap-
proximation ~LDA ! was used. That reinforces the chosen
split of the electron–electron interaction, as leaving DFT
cover the short-range domain will enable the transferability
of short-range correlation effects~supposed to be indepen-
dent of the system! from the homogeneous electron gas. We
expect that our results should not suffer too much from not
using density gradient corrections for the short-range corre-
lation energies, as noted by Perdewet al.23 Whereas the
short-range local exchange functional can be obtained ana-
lytically, a local correlation functional has to be designed for
the short-range interaction. This has been achieved by inter-
polating some coupled-cluster~CC! calculations, made by
following Freeman,24 on the homogeneous electron gas for
variousm andr s ~Wigner–Seitz radius!. This led to premul-
tiply the VWN correlation energy functional25 by a short-
range correction factor.26 One has, nevertheless, to qualify
the physical meaning of this correction. These coupled-
cluster calculations yielded long-range correlation energy
densities, from which we deduced short-range ones by sub-
tracting them from Coulomb results. Thus, the ‘‘short-range’’
correction actually also contains coupling terms between
long- and short-range contributions.

If we want to predict the approximate value of the cou-
pling parameter that will yield the most accurate result for a
given system, we can rely on the specific case of the spin-
unpolarized homogeneous electron gas. In that case,m must
depend on the electronic density, in an unknown way. We can
try a simple local approximationm~r! on the basis of the fact
that an electron occupies on average the sphere delimited by
the Wigner–Seitz radiusr s5@3/(4pr)#1/3. If we model the
short-range correlation as becoming significant when one
electron penetrates the occupation sphere of the other, we
can try

m~r!5
1

r s
~7!

as a starting point.
The expression of the resulting short-range exchange en-

ergy per electron, which is the analog of the total one, is

ex,sr5E
0

`

2pu erfc~m~r!u!rx~u!, ~8!

where u5ur 12r 2u and rx(u) is the density of the Fermi
hole.27 We can picture how this hole is modified by the short-
range electron–electron interaction, by considering the func-
tion,

f ~u!5erfc~m~r!u!rx~u!. ~9!

Figure 1 shows a comparison of these two functions forr s

52.
We can see that applying the short-range interaction

sharpens the Fermi hole at short interelectronic distance,
while the oscillations at long-range nearly vanish~not shown
on the figure!.

Now we consider the resulting short-range correlation
energy. Within the local approximation~7!, we succeeded in
fitting the short-range correction factor to the VWN correla-
tion functional in the case of the unpolarized homogeneous
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electron gas. Its expression isar s
b/(11ar s

b), where a
50.816 28 andb50.242 74. We have tested the validity of
this approximate short-range correlation energy when ap-
plied to atoms and molecules. In Fig. 2, the correlation en-
ergies of 54 systems including atoms, ions, hydrides, dimers,
and the isoelectronic series of helium and beryllium,28 are
compared with experience.

Although a non-self-consistent numerical program was
used, we can observe that, overall, the well-known overesti-
mation tendency of the LSDA correlation energy~by a factor
of roughly 2! is corrected by only retaining the short-range
contribution. This success is all the more striking since no
spin polarization correction was used for the short-range cor-
relation functional, neither within the framework of conven-
tional spin density functional theory nor within its alternative
interpretation in terms of the on-top pair-density.29–32

Typical examples that fail to be described by a short-
range correlation functional are the HF hydride, and the C2,
N2 , O2 , and F2 dimers. Lie and Clementi33,34found that 2, 4,
10, 5, and 2 CSF’s were respectively needed in order to
obtain a proper dissociation of these molecules. Thus, we
expect that the combination of short-range density function-
als with CI will correct these results by taking into account
the nondynamical correlation.

In order to perform the CI-DF coupling, it is easier to
use a position-independent coupling parameter. Thus, a con-
venient way to transfer what we have learned from the spin-
unpolarized homogeneous electron gas to atoms and mol-
ecules is to introduce a system-averaged coupling parameter,

^m&5
1

N E m@r~r !#r~r !dr . ~10!

For the local approximation~7!,

^m&5^r s
21& ~11!

5S 4p

3 D 1/3E r4/3~r !dr , ~12!

which is easily computed because it is proportional to
Dirac’s local exchange.35 In spite of this crude system-
average~it can only give a ‘‘compromise’’ value between
several regions!, interesting results will be presented in the
next sections. Beside this system-averaged coupling param-
eter, we also expect that there exists an intermediate value of
m, between 0~KS! and ` ~CI!, that will yield the closest
energy to the exact one. Searching for such a value will
however lead to a violation of size extensivity and size-
consistency. The problem could occur for example when het-
eronuclear molecules dissociate. As the optimalm’s of the
fragments may be quite different, the sum of the correspond-
ing energies may not be equal to the energy of the molecule
at infinite separation at its own optimalm.

III. TECHNICAL DETAILS

Our primary goal was to find the smallest configuration-
space that ensures a good accuracy, in order to enlarge the
scope of applications of the CI class of methods, that are still
computationally demanding. The study of a systematic im-
provement that consists in including more and more configu-
ration state functions~CSF! in the CI expansion implies to
sort the orbitals in order of importance. In all the calculations
presented below, we decided not to optimize the orbitals,
which should be done in practical applications of the method
by coupling density functionals with MCSCF wave func-
tions, but to use accurate natural spin–orbitals36 to build the
CSF’s. They are the eigenfunctions of the reduced first-order
density operatorĝ15( ini uf i&^f i u, where the occupation
numberni obeys the Pauli condition 0<ni<1. We justify
this preference mainly because mixing the natural orbitals
provides an accurate description of the nondynamical corre-
lation. Moreover, the observation of their occupation number
reveals their probable importance in the CI~a large occupa-
tion number indicates weightiness, whereas a small one can
lead to omit the natural orbital without dramatically penalize
the efficiency of the expansion!. Prior to the coupling, a
MRCI calculation will therefore be necessary to produce re-
liable natural orbitals. This has been achieved by choosing a
cutoff value for the occupation numbers equal to 0.01 for all
the systems.37 Please note that this required calculation is on
no account a part of the CI-DF coupling but that we need it
for our study of a systematic improvement. We will also
make use of this calculation to obtain the reference correla-
tion energy, in the case of BeH, BH, B2 , and O2. For He and

FIG. 1. Fermi hole,rx(u), divided by the densityr, in the spin-unpolarized
homogeneous electron gas forr s52 ~solid line! and the function obtained
by multiplication of the complementary error function erfc@m(r)u# ~dashed
line!. u is the interelectronic separation in bohrs.

FIG. 2. Comparison of LSDA and short-range LDA correlation energies
with experimental data for a set of 54 atomic and molecular systems~Ref.
28!.
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H2, however, ‘‘exact’’ results will be used, while for Be, H2

at large internuclear distance, LiH, and Li2 , full CI results
will be used. All these results can be found in the captions of
the tables that appear in the Results and Discussion.

Large uncontracted basis sets have been used for each
atom of the systems studied below. These are Dunning’s
correlation-consistent polarized valence basis sets,38,39 i.e.,
cc-pV5Z (8s4p3d2 f ) for H and He, cc-pVQZ
(12s6p3d2 f ) for Li, cc-pV5Z (14s8p4d3 f ) for Be, B,
Ne, and O. The Stuttgart pseudopotentials40 have helped to
reduce the CPU time and to focus on effects specific to the
valence shell. Calculations on diatomics use experimental
equilibrium bond distances~cf. Table VI in Refs. 33 and 34!.
The radial part of the DFT integration grid is based on the
transformationr 52a loge(12xmr),41 while the angular part
is a Lebedev quadrature scheme.42

The whole scheme was incorporated in the Molpro pack-
age ofab initio programs,43 in the multireference configura-
tion interaction~MRCI! code.44,45 Care has also been taken
to the modification of the bielectronic integrals, to suit the
long-range operator.46 During the calculation, upgrading the
density matrix enables the CI coefficients optimization,
while the orbitals remain frozen. This explains why the
CI-DF energy of a single determinant atm50 is not the
‘‘true’’ Kohn–Sham energy, and why asm→` the energy is
above the Hartree–Fock one. Nevertheless, we will still use
Kohn–Sham and Hartree–Fock terms to describe CI-DF at
m50 andm→`.

IV. RESULTS AND DISCUSSION

The purpose of this section is to pass in review many-
electrons systems that will exhibit a growing multidetermi-
nantal character. This means that a calculation on the first
systems~‘‘normal’’ systems! presented will reach a good ac-
curacy~more than 75% of the correlation energy! with only
one Slater determinant, while the last systems~‘‘abnormal’’
systems! will truly need additional configurations to describe
their ground state in an accurate way. Typically, we will fo-
cus on the variation of the electronic energy or the correla-
tion energy, defined as the difference between the energy and
the restricted Hartree–Fock~RHF! energy, withm for larger
and larger configuration spaces. The first point to note will be
the smallest value of the coupling parameter that will yield
the most accurate result to within about 0.05%~such a value
will be called from now on the ‘‘best’’m!. Then, we will
have to determine which is the smallest configuration-space,
around that value, that preserves a reasonable accuracy.

A. ‘‘Normal’’ systems

1. Helium atom

The helium atom is a good illustration of a system where
near-degeneracy correlation effects are not significant. It is
shown in Fig. 3, where we have plotted the variation of
energy with the coupling parameter for two configuration
spaces. It appears that the monodeterminantal wave function
reaches a good accuracy if we focus on a domain surround-
ing ^m&50.96 bohr21 ~which was computed from the RHF
electron density47!.

In fact, the value of the coupling parameter that yields
the closest energy to the ‘‘exact’’ one occurs at 1.125 bohr21

for the (1s)2 configuration. Here, the percentage of error on
the energy is less than 0.3%. Moreover, the electronic energy
is lowered by almost 63 millihartree compared to standard
Kohn–Sham (m50), and almost 34 millihartree compared
to Hartree–Fock (m→`). This important improvement em-
phasizes the quality of the short-range local density approxi-
mation in comparison to the conventional one. Furthermore,
our short-range approximate density functional is spin-
unpolarized, and yet yields rather accurate results.

In short, we can greatly reduce the computational cost by
limiting the CI to only one CSF if we choosem around 1
bohr21. Obviously, if we enlarge the configuration-space by
including up to 3d natural orbitals, the error can reach only
0.004% at the ‘‘best’’m ~around 1.5 bohr21!. It is worth
mentioning that this is in better agreement with the exact
energy than the pure CI result.

The details of the systematic calculations are revealed in
Table I, where we have listed each natural orbital, its occu-
pation number, the corresponding number of CSF’s, and the
percentages of correlation energy at ‘‘best’’m, system-
averagedm, and for pure CI. Here again, we can see that a
very good accuracy appears much earlier for an appropriate
CI-DF coupling than for a traditional CI. In fact, the CI-DF
coupling is much superior to the CI until the 2p NO is in-
corporated to the configuration-space. Therefore, although
the large occupation number of the 1s NO seems to mini-
mize importance of the other NO’s, the 2p NO makes a
significant contribution to the correlation energy, which is
called ‘‘angular correlation,’’ just as well in the traditional CI
as, to a certain extent, in the CI-DF coupling. After the in-
clusion of the 3p NO, the results given by the system-
averagedm deteriorate while the ‘‘best’’m will still perform
better than the CI.

In order to emphasize the role of the DFT component in

FIG. 3. Variation of the energy of helium with the CI-DF coupling param-
eter: the upper curve represents the calculation using the configuration (1s)2

only, the lower curve was obtained by adding the natural orbitals 2s, 2p,
3s, 3p, 3d to the configuration space, and the horizontal line is the exact
energy~Ref. 48!.
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the energy lowering, we have to check that its contribution is
not already very small around 1 bohr21. Figure 4 contradicts
this hypothesis by showing the variation of the short-range
exchange-correlation energy for the (1s)2 configuration
along the coupling. It reveals that, at 1.125 bohr21, its con-
tribution to the energy is still large~2290 mhartree!, proving
the importance of short-range DF effects in order to properly
describe dynamical correlation.

2. Hydrogen molecule

In H2 at the equilibrium bond distance, the absence of
nondynamical correlation effects is even more pronounced
than in helium. This is shown in Table II, where 84% of the
correlation energy is recovered with a single Slater determi-
nant, in spite of a smaller occupation number of the first NO
than in helium.

Here, the 1su and 1pu NO’s play a role comparable to
the 2p NO in helium, inasmuch as their contribution to the
correlation energy is crucial to the efficiency of pure CI and
important for the CI-DF coupling.

3. LiH hydride

In LiH, correlation effects are also dominated to a large
extent by dynamical correlation. This can be seen in Table III
by observing the high percentage of correlation energy that is
recovered with only one Slater derminant for the CI-DF cou-
pling. We should mention here that when the totality of the
correlation energy is recovered with the largest
configuration-space at ‘‘best’’m, percentages greater than
100% were also found around that value, emphasizing the
fact that the CI-DF method is no longer variational, as soon
as one had to choose an approximate short-range exchange-
correlation functional. Thus, the energy atm50.75, when the
6s orbital is included, lies below that of the full CI by 0.2%.
Note please that this is actually not a proof of the nonvaria-
tional character, as our full CI energy is just an upper bound
to the exact energy. As a pseudopotential was used for Li, we
have no better estimates in the literature.

Here again, and despite a small occupation number, the
1p NO makes a significant contribution both in CI-DF and
CI techniques. It is also worth noting the very good perfor-
mance of the system-averaged coupling parameter, as the
percentage of correlation energy stays very close to that at
‘‘best’’ m ~within slightly more than 1%!.

4. Li 2 dimer

As can be seen in Table IV, the virtual NO’s of the Li2

dimer have rather large occupation numbers, which could
question the efficiency of a monodeterminantal wave func-
tion. Nevertheless, the CI-DF coupling still performs accu-
rately even with a single configuration. The contributions to

FIG. 4. Variation of the short-range exchange-correlation energy with the
coupling parameter for the (1s)2 configuration of helium.

TABLE I. He: Changes of the correlation energy with increasing configu-
ration space. From one line to the next, it changes by the addition of the
natural orbital~NO!. Its occupation number~ON!, in the MRCI reference
calculation is also given, as is the total number of configuration state func-
tions ~CSF!. The correlation energy obtained with the smallest~‘‘best’’ !
coupling parameterm yielding an error lower than 0.05%, that with the
system-averaged coupling parameter^r s

21&, and that obtained in a pure con-
figuration interaction calculation (m→`), for the corresponding space, are
given as a percentage of the ‘‘exact’’ correlation energy, defined as the
difference between the exact and Hartree–Fock energies.Eexact5

22.9037 a.u.~Ref. 48!, ERHF522.8616 a.u.,̂ r s
21&50.96 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

1s 1.983 920 1 1 79.9 79.0 20.1
2s 0.007 596 5 3 83.8 80.7 38.5
2p 0.002 559 8 6 97.1 86.7 85.0
3s 0.000 125 2 9 97.8 87.4 87.0
3p 0.000 082 1 15 99.2 88.7 90.9
3d 0.000 064 7 27 99.7 88.8 95.1
4s 0.000 007 8 33 99.8 88.9 95.3

TABLE II. H 2 : Changes of the correlation energy with increasing configu-
ration space. For the explanation of symbols, see Table I.EExact5

21.1735 a.u.~Ref. 49!, ERHF521.1336 a.u.,̂ r s
21&50.62 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

1sg 1.964 258 2 1 84.0 84.0 20.3
1su 0.019 870 1 2 88.7 88.6 46.3
2sg 0.006 025 7 4 90.4 89.5 64.9
1pu 0.004 267 6 6 97.2 92.8 91.2
3sg 0.000 199 4 9 97.4 92.8 92.5
2su 0.000 191 5 11 98.2 93.6 93.7
1pg 0.000 144 3 13 98.6 93.6 95.6

TABLE III. LiH: Changes of the correlation energy with increasing configu-
ration space. For the explanation of symbols, see Table I.EFCI5

20.7870 a.u.,ERHF520.7501 a.u.,̂ r s
21&50.45 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

2s 1.941 223 1 1 89.0 89.0 20.4
3s 0.029 100 3 3 90.9 90.9 43.7
1p 0.010 000 5 5 95.9 95.6 77.4
4s 0.008 008 5 8 98.4 97.3 91.9
5s 0.000 304 6 12 99.1 97.9 93.2
2p 0.000 233 4 16 99.8 98.5 95.0
6s 0.000 132 1 21 100.0 98.9 95.7
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the correlation energy yielded by the 1pu and 2su are, how-
ever, quite significant. Actually, as the 2su NO is included,
the correlation energy recovered by the CI is greater than by
the CI-DF coupling with the system-averagedm, but still
lower if we consider the ‘‘best’’m.

As in the LiH hydride, the CI-DF coupling yielded more
correlation energy for the largest configuration-space around
the ‘‘best’’ m than the full CI did. This effect is even more
pronounced than in LiH, as the energy atm50.75, when the
2su orbital is included, lies below that of the full CI by
3.1%.

5. O2 dimer

O2 at equilibrium bond distance almost exhibits no non-
dynamical correlation effects. This can be seen in Table V, as
one can retrieve 87.8% of the correlation energy with only
one CSF, if the ‘‘best’’m is chosen.

One can also note the great advantage to use CI-DFT
with ‘‘best’’ m as well as system-averagedm over pure CI.
Moreover, adding more than one CSF improves only slightly
the results.

B. ‘‘Abnormal’’ systems

1. Be series

We now step into systems with a fairly large amount of
nondynamical correlation. The beryllium isoelectronic series
is a sequence where strong near-degeneracy effects occur in
theL-shell. As a matter of fact, the large occupation number
of the 2p NO, reported in Table VI, suggests taking the
(1s)2(2p)2 configuration into account for an accurate calcu-
lation.

This also appears in Fig. 5, where three calculations are
shown, each corresponding to a different configuration-

space. Even if the monodeterminantal wave function, at
‘‘best’’ m, yields an energy which is, respectively, 9 and 32
millihartree lower than atm50 ~Kohn–Sham! and m→`
~Hartree–Fock!, still demonstrating the efficiency of the
CI-DF coupling, it is now perfectly clear that a single con-
figuration is not enough to represent the ground state of that
system. Even at the ‘‘best’’m, the monodeterminantal wave
function indeed yields an electronic energy with an error
greater than 1.6% in comparison to the lowest energy ob-
tained with the largest CI. Whereas, if we consider a larger
configuration-space by including the 2p natural orbitals, the
curve becomes closely parallel to that of the larger CI.

In Table VI, we can check the small percentage of cor-
relation energy recovered by the monodeterminantal wave
function and the significant improvement occurring when the
2p NO is added to the configuration space. But this addition
dramatically augments the value of the ‘‘best’’m, as reported
in Table VII, which leads to a very small short-range DF
contribution.

Furthermore, one can note the rather poor performance
of the CI-DF coupling with the system-averaged coupling
parameter, and the possible hidden nonvariational character
of the CI-DF method, as the energy atm52.25, when the 3d
orbital is included, lies below that of the full CI by 0.2%.

Now we will try to grasp the nature of the coupling
parameter by comparing Be and Ne61, which belong to the
beryllium isoelectronic series. Figure 6 illustrates the in-
crease of near-degeneracy effects with the atomic number

FIG. 5. Variation of the energy of beryllium with the CI-DF coupling pa-
rameter: the upper curve represents the calculation using the configuration
(2s)2 only, the next curve was obtained by adding the 2p natural orbitals to
the configuration-space, the lower curve was obtained by adding the natural
orbitals 2p, 3s, 3d, 4s, 3p to the configuration space, and the exact energy
can be estimated by the value at the end of the lower curve.

TABLE IV. Li 2 : Changes of the correlation energy with increasing configu-
ration space. For the explanation of symbols, see Table I.EFCI5

20.4307 a.u.,ERHF520.3981 a.u.,̂ r s
21&50.22 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

2sg 1.811 885 2 1 83.2 83.2 20.8
1pu 0.063 117 0 3 90.5 90.5 68.1
3sg 0.031 432 9 5 92.0 91.1 86.3
2su 0.029 321 1 6 100.0 94.5 98.3

TABLE V. O2 : Changes of the correlation energy with increasing configu-
ration space. For the explanation of symbols, see Table I.EMRCI5

231.9535 a.u.,ERHF5231.4576 a.u.,̂ r s
21&51.08 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

1pg 1.023 870 9 1 87.8 70.2 20.6
1pg 1.023 870 9 2 88.7 75.2 7.2
3su 0.051 158 8 48 90.1 81.6 21.2
2pu 0.157 44 5 2588 91.8 85.2 31.6
4sg 0.010 355 0 12282 92.6 86.7 36.8
4su 0.007 331 9 47856 92.9 87.6 41.7

TABLE VI. Be: Changes of the correlation energy with increasing configu-
ration space. For the explanation of symbols, see Table I.EFCI5

21.0109 a.u.,ERHF520.9628 a.u.,̂ r s
21&50.32 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

2s 1.810 928 2 1 66.2 63.7 21.6
2p 0.061 842 0 4 96.8 73.2 95.8
3s 0.002 797 9 6 99.5 73.9 98.6
3d 0.000 106 6 16 100.0 73.9 99.4
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~the curves have been shifted to show the respective energy
lowerings!. Here, we will limit the size of the configuration-
space to the (1s)2(2p)2 configuration previously identified
as important. As expected, the nondynamical correlation is
much greater for the ion (Z510) than for the atom (Z
54). Furthermore, a shift can be observed in the ‘‘best’’m
@around 0.3 bohr21 for Be and 1.5 bohr21 for Ne61, for the
(1s)2(2s)2 curve#. To understand that feature, one has to
remember that the inverse of the coupling parameter 1/m acts
like an effective interaction distance, which decreases when
Z increases. This example underlines the importance of using
a position-dependent coupling parameter.

2. H2 dimer at large bond distance

Near-degeneracy correlation often arises in dissociating
molecules. For example, whereas nondynamical correlation
effects do not prevail in H2 at the equilibrium bond distance,
a completely different situation appears whenR53.0 bohr.

This can be seen in Table VIII, where we can relate the
small percentage of correlation energy recovered by the
single Slater determinant wave function to the large occupa-
tion number of the 1su NO. Also important is the role
played by the 1pu NO in the improvement of the correlation
energy. But, as in the case of the beryllium atom, adding

excited configurations to the configuration-space causes the
‘‘best’’ m to be quite large, implying a very small short-range
contribution~see Table IX!. Please note that the ‘‘best’’m is,
however, determined by quite a severe criterion, and that a
tolerance of;1 mhartree would produce much smaller val-
ues.

Once again, the system-averaged coupling parameter
yields poor results, even with a very large configuration-
space.

3. BeH hydride

The BeH hydride is a molecule where strong nondy-
namical correlation effects take place, as can be seen in Table
X, where even with a very large configuration space includ-
ing up to 178 CSF’s, only a moderate accuracy can be
reached. Among the necessary NO’s, the 1p and 2p NO’s
cause significant jumps in the percentage of correlation en-
ergy.

It should also be noted that the BeH hydride is an open-
shell molecule and that our CI-DF coupling method involved
a spin-unpolarized short-range exchange-correlation func-
tional.

4. BH hydride

The results reported in Table XI seem to indicate that the
BH hydride is an intermediate system where dynamical and
nondynamical correlation effects are both important. For
such systems, the system-averagedm seems to be quite reli-
able, as the correlation energy is greater than with the CI,
except for the two largest configuration spaces. Once again,
including the 1p and 2p NO’s leads to significant improve-
ments.

FIG. 6. Variation of the energies of Be and Ne61 with the CI-DF coupling
parameter: The~A! curve represents the calculation using the configuration
(2s)2 of Ne61, the~B! curve was obtained by adding the 2p natural orbitals
to the configuration space of Ne61, the (A8) curve represents the calculation
using the configuration (2s)2 of Be, the (B8) curve was obtained by adding
the 2p natural orbitals to the configuration space of Be. All the curves have
been shifted so that~B! and (B8) energies coincide whenm→`.

TABLE VII. Be: Dependence of the ‘‘best’’ coupling parameterm on the
size of the configuration space~for the definition of the ‘‘best’’m, see first
paragraph of the Results and Discussion!. The corresponding short-range
exchange correlation energy contribution is also given.EFCI

521.0109 a.u.,ERHF520.9628 a.u.

NO ‘‘best’’ m Esc,sr

2s 0.25 20.165
2p 2.00 20.009
3s 2.25 20.007
3d 1.80 20.007

TABLE VIII. H 2 at 3 a.u.: Changes of the correlation energy with increasing
configuration space. For the explanation of symbols, see Table I.EFCI

521.0570 a.u.,ERHF520.9893 a.u.,̂ r s
21&50.45 bohr21.

NO ON CSF’s

Percentage of correlation energy

‘‘best’’ m ^r s
21& m→`

1sg 1.794 892 0 1 66.6 60.8 25.1
1su 0.195 364 8 2 87.2 72.5 87.0
2sg 0.003 190 9 4 91.1 72.8 91.0
1pu 0.002 793 4 6 97.5 73.8 97.5
3sg 0.000 264 3 9 98.0 74.3 98.0
2su 0.000 135 5 11 98.3 75.1 98.3
1pg 0.000 120 7 13 98.8 75.1 98.8

TABLE IX. H 2 at 3 a.u.: Dependence of the ‘‘best’’ coupling parameterm
on the size of the configuration space. For an explanation of symbols, see
Table VII. EFCI521.0570 a.u.,ERHF520.9893 a.u.

NO ‘‘best’’ m Exc,sr

1sg 0.25 20.286
1su 5.75 20.003
2sg 7.50 20.002
1pu 8.50 20.001
3sg 8.75 20.001
2su 9.00 20.001
1pg 9.00 20.001
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5. B2 dimer

The B2 dimer could also be seen as an intermediate sys-
tem where dynamical and nondynmical correlation effects
are crucial. However, the results reported in Table XII reveal
the importance of the virtual NO’s. Even with the largest
configuration-space, that includes up to 4896 CSF’s, only a
moderate accuracy can be achieved.

In order to improve the calculations on the B2 dimer,
spin dependence should probably be taken into account in
our short-range exchange-correlation functionals.

6. O2 dimer at large bond distance

We have previously shown that nondynamical correla-
tion effects in the O2 dimer at equilibrium distance are weak.
Nonetheless, by stretching the bond, it is possible to
‘‘switch’’ to a state where near-degeneracy becomes relevant.
Such a situation can be found whenR54 bohr.

Table XIII shows that one can link the percentage of
correlation energy recovered by the single Slater determinant
wave function, which is lower than 75%, to the large occu-
pation number of the 3su NO. Additional NO’s increase
only slightly the percentage of correlation energy. The
system-averaged coupling parameter, while missing a few
percents in comparison to ‘‘best’’m, yields much better re-
sults than pure CI.

V. CONCLUSION

The influence of the size of the configuration space in a
method that combines short-range density functionals with
long-range wave functions has been studied for a few atoms
and molecules. As far as ‘‘normal’’ systems are concerned, a
short-range LDA exchange-correlation functional always
yield better energies than the conventional one. Furthermore,
a system-averaged coupling parameter based on a simple lo-
cal approximation is reliable enough to yield rather accurate
correlation energies. For ‘‘abnormal’’ systems, a reasonable
accuracy can only be achieved by enlarging the configuration
space. Its size then depends on the quality of the short-range
DF and on the spin-polarization of the system. For such sys-
tems, the system-average fails to yield good results. In order
to improve the method, approximate exchange-correlation
functionals that go beyond LDA should be needed, and spin
dependence should be handled, either by conventional spin
density functional theory or by the alternative on-top
pair-density29–32 interpretation.
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