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Abstract
With accumulating research on the interconnections among different types of genomic regulations, researchers have
found that multidimensional genomic studies outperform one-dimensional studies in multiple aspects. Among
many sources of multidimensional genomic data, The Cancer Genome Atlas (TCGA) provides the public with com-
prehensive profiling data on >30 cancer types, making it an ideal test bed for conducting and comparing different
analyses. In this article, the analysis goal is to apply several existing methods and associate multidimensional genomic
measurements with cancer outcomes in particular prognosis, with special focus on the predictive power of genomic
signatures. We exploit clinical data and four types of genomic measurement including mRNA gene expression,
DNA methylation, microRNA and copy number alterations for breast invasive carcinoma, glioblastoma multiforme,
acute myeloid leukemia and lung squamous cell carcinoma collected byTCGA.To accommodate the high dimension-
ality, we extract important features using Principal Component Analysis, Partial Least Squares and Least Absolute
Shrinkage and Selection Operator (Lasso), which are representative of dimension reduction and variable selection
techniques and have been extensively adopted, and fit Cox survival models with combined important features.We
calibrate the predictive power of each type of genomic measurement for the prognosis of four cancer types and
find that the results vary across cancers. Our analysis also suggests that for most of the cancers in our study and
the adopted methods, there is no substantial improvement in prediction when adding other genomic measurement
after gene expression and clinical covariates have been included in the model. This is consistent with the findings
that molecular features measured at the transcription level affect clinical outcomes more directly than those mea-
sured at the DNA/epigenetic level.
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INTRODUCTION
In the past decade, cancer research has entered the era

of personalized medicine, where a person’s individual

molecular and genetic profiles are used to drive thera-

peutic, diagnostic and prognostic advances [1]. In

order to realize it, we are facing a number of critical

challenges. Among them, the complexity of molecular

architecture of cancer, which manifests itself at the

genetic, genomic, epigenetic, transcriptomic and

proteomic levels, is the first and most fundamental

one that we need to gain more insights into. With

the fast development in genome technologies, we are

now equipped with data profiled on multiple layers of

genomic activities, such as mRNA-gene expression,
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DNA methylation, microRNA, copy number alter-

ations (CNA) and so on. A limitation of many early

cancer-genomic studies is that the ‘one-dimensional’

analysis of a single type of genomic measurement was

conducted, most frequently on mRNA-gene expres-

sion. They can be insufficient to fully exploit the

knowledge of cancer genome, underline the etiology

of cancer development and inform prognosis. Recent

studies have noted that it is necessary to collectively

analyze multidimensional genomic measurements.

One of the most significant contributions to acceler-

ating the integrative analysis of cancer-genomic data

have been made by The Cancer Genome Atlas

(TCGA, https://tcga-data.nci.nih.gov/tcga/), which

is a combined effort of multiple research institutes

organized by NCI. In TCGA, the tumor and

normal samples from over 6000 patients have been

profiled, covering 37 types of genomic and clinical

data for 33 cancer types. Comprehensive profiling

data have been published on cancers of breast,

ovary, bladder, head/neck, prostate, kidney, lung

and other organs, and will soon be available for

many other cancer types.

Multidimensional genomic data carry a wealth of

information and can be analyzed in many different

ways [2–15]. A large number of published studies

have focused on the interconnections among differ-

ent types of genomic regulations [2, 5–8, 12–14]. For

example, studies such as [5, 6, 14] have correlated

mRNA-gene expression with DNA methylation,

CNA and microRNA. Multiple genetic markers

and regulating pathways have been identified, and

these studies have thrown light upon the etiology

of cancer development. In this article, we conduct

a different type of analysis, where the goal is to as-

sociate multidimensional genomic measurements

with cancer outcomes and phenotypes. Such analysis

can help bridge the gap between genomic discovery

and clinical medicine and be of practical importance.

Several published studies [4, 9–11, 15] have pursued

this kind of analysis. In the study of the association

between cancer outcomes/phenotypes and multidi-

mensional genomic measurements, there are also

multiple possible analysis objectives. Many studies

have been interested in identifying cancer markers,

which has been a key scheme in cancer research. We

acknowledge the importance of such analyses. In this

article, we take a different perspective and focus on

predicting cancer outcomes, especially prognosis,

using multidimensional genomic measurements and

several existing methods.

Consider mRNA-gene expression, methylation,

CNA and microRNA measurements, which are

commonly available in the TCGA data. We note

that the analysis we conduct is also applicable to

other datasets and other types of genomic measure-

ment. We choose TCGA data not only because

TCGA is one of the largest publicly available and

high-quality data sources for cancer-genomic studies,

but also because they are being analyzed by multiple

research groups, making them an ideal test bed.

Literature review suggests that for each individual

type of measurement, there are studies that have

shown good predictive power for cancer outcomes.

For instance, patients with glioblastoma multiforme

(GBM) who were grouped on the basis of expres-

sions of 42 probe sets had significantly different over-

all survival with a P-value of 0.0006 for the log-rank

test. In parallel, patients grouped on the basis of two

different CNA signatures had prediction log-rank

P-values of 0.0036 and 0.0034, respectively [16].

DNA-methylation data in TCGA GBM were used

to validate CpG island hypermethylation phenotype

[17]. The results showed a log-rank P-value of

0.0001 when comparing the survival of subgroups.

And in the original EORTC study, the signature had

a prediction c-index 0.71. Goswami and Nakshatri

[18] studied the prognostic properties of microRNAs

identified before in cancers including GBM, acute

myeloid leukemia (AML) and lung squamous cell

carcinoma (LUSC) and showed that the sum of ex-

pressions of different hsa-mir-181 isoforms in TCGA

AML data had a Cox-PH model P-value < 0.001.

Similar performance was found for miR-374a in

LUSC and a 10-miRNA expression signature in

GBM. A context-specific microRNA-regulation

network was constructed to predict GBM prognosis

and resulted in a prediction AUC [area under re-

ceiver operating characteristic (ROC) curve] of

0.69 in an independent testing set [19]. However,

it has also been observed in many studies that the

prediction performance of omic signatures vary sig-

nificantly across studies, and for most cancer types

and outcomes, there is still a lack of a consistent set

of omic signatures with satisfactory predictive power.

Thus, our first goal is to analyzeTCGAdata and calibrate the
predictive power of each type of genomic measurement for the
prognosis of several cancer types. In multiple studies, it

has been shown that collectively analyzing multiple

types of genomic measurement can be more inform-

ative than analyzing a single type of measurement.

There is convincing evidence showing that this is
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true for understanding cancer biology. However, it is

less clear whether combining multiple types of meas-

urements can lead to better prediction. Thus, ‘our
second goal is to quantify whether improved prediction can be
achieved by combiningmultiple types of genomic measurements
inTCGA data’.

METHODS
We analyze prognosis data on four cancer types,

namely ‘‘breast invasive carcinoma (BRCA), glio-

blastoma multiforme (GBM), acute myeloid leuke-

mia (AML), and lung squamous cell carcinoma

(LUSC)’’. Breast cancer is the most frequently diag-

nosed cancer and the second cause of cancer deaths

in women. Invasive breast cancer involves both

ductal carcinoma (more common) and lobular car-

cinoma that have spread to the surrounding normal

tissues. GBM is the first cancer studied by TCGA. It

is the most common and deadliest malignant primary

brain tumors in adults. Patients with GBM usually

have a poor prognosis, and the median survival time

is �15 months. The 5-year survival rate is as low as

4%. Compared with some other diseases, the gen-

omic landscape of AML is less defined, especially in

cases without recognizable karyotype abnormalities,

which consist of �40% of all adult patients. The

outcome is usually grim for them since the cytogen-

etic risk can no longer help guide the decision for

their treatment [20]. Lung cancer accounts for �28%

of all cancer deaths, more than any other cancers in

both men and women. The prognosis for lung

cancer is poor. Most lung-cancer patients are diag-

nosed with advanced cancer, and only 16% of the

patients will survive for 5 years after diagnosis. LUSC

is a subtype of the most common type of lung can-

cer—non-small cell lung carcinoma.

Data collection
The data information flowed through TCGA pipe-

line and was collected, reviewed, processed and ana-

lyzed in a combined effort of six different cores:

Tissue Source Sites (TSS), Biospecimen Core

Resources (BCRs), Data Coordinating Center

(DCC), Genome Characterization Centers (GCCs),

Sequencing Centers (GSCs) and Genome Data

Analysis Centers (GDACs) [21]. The retrospective

biospecimen banks of TSS were screened for newly

diagnosed cases, and tissues were reviewed by BCRs

to ensure that they satisfied the general and cancer-

specific guidelines such as no <80% tumor nuclei

were required in the viable portion of the tumor.

Then RNA and DNA extracted from qualified spe-

cimens were distributed to GCCs and GSCs to gen-

erate molecular data. For example, in the case of

BRCA [22], mRNA-expression profiles were gen-

erated using custom Agilent 244 K array platforms.

MicroRNA expression levels were assayed via

Illumina sequencing using 1222 miRBase v16

mature and star strands as the reference database of

microRNA transcripts/genes. Methylation at CpG

dinucleotides were measured using the Illumina

DNA Methylation assay. DNA copy-number ana-

lyses were performed using Affymetrix SNP6.0.

For the other three cancers, the genomic features

might be assayed by a different platform because of

the changing assay technologies over the course of

the project. Some platforms were replaced with

upgraded versions, and some array-based assays

were replaced with sequencing. All submitted data

including clinical metadata and omics data were de-

posited, standardized and validated by DCC. Finally,

DCC made the data accessible to the public research

community while protecting patient privacy.

All data are downloaded from TCGA Provisional as

of September 2013 using the CGDS-R package. The

obtained data include clinical information, mRNA

gene expression, CNAs, methylation and

microRNA. Brief data information is provided in

Tables 1 and 2. We refer to the TCGA website for

more detailed information. The outcome of the most

interest is overall survival. The observed death rates for

the four cancer types are 10.3% (BRCA), 76.1%

(GBM), 66.5% (AML) and 33.7% (LUSC), respect-

ively. For GBM, disease-free survival is also studied

(for more information, see Supplementary Appendix).

For clinical covariates, we collect those suggested

by the notable papers [22–25] that the TCGA re-

search network has published on each of the four

cancers. For BRCA, we include age, race, clinical

calls for estrogen receptor (ER), progesterone (PR)

and human epidermal growth factor receptor 2

(HER2), and pathologic stage fields of T, N, M. In

terms of HER2 Final Status, Florescence in situ hy-

bridization (FISH) is used to supplement the infor-

mation on immunohistochemistry (IHC) value.

Fields of pathologic stages T and N are made

binary, where T is coded as T1 and T_other, corres-

ponding to a smaller tumor size (�2 cm) and a larger

(>2 cm) tumor size, respectively. N is coded as nega-

tive corresponding to N0 and Positive corresponding

to N1–N3, respectively. M is coded as Positive for
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M1 and negative for others. For GBM, age, gender,

race, and whether the tumor was primary and pre-

viously untreated, or secondary, or recurrent are

considered. For AML, in addition to age, gender

and race, we have white cell counts (WBC), which

is coded as binary, and cytogenetic classification (fa-

vorable, normal/intermediate, poor). For LUSC, we

have in particular smoking status for each individual

in clinical information.

For genomic measurements, we download and

analyze the processed level 3 data, as in many pub-

lished studies. Elaborated details are provided in the

published papers [22–25]. In brief, for gene expres-

sion, we download the robust Z-scores, which is a

form of lowess-normalized, log-transformed and

median-centered version of gene-expression data

that takes into account all of the gene-expression

arrays under consideration. It determines whether a

gene is up- or down-regulated relative to the refer-

ence population. For methylation, we extract the

beta values, which are scores calculated from methy-

lated (M) and unmethylated (U) bead types and

measure the percentages of methylation. They

range from zero to one. For CNA, the loss and

gain levels of copy-number changes have been iden-

tified using segmentation analysis and GISTIC algo-

rithm and expressed in the form of log2 ratio of a

sample versus the reference intensity. For

microRNA, for GBM, we use the available expres-

sion-array-based microRNA data, which have been

normalized in the same way as the expression-array-

based gene-expression data. For BRCA and LUSC,

expression-array data are not available, and RNA-

sequencing data normalized to reads per million

reads (RPM) are used, that is, the reads correspond-

ing to particular microRNAs are summed and nor-

malized to a million microRNA-aligned reads. For

AML, microRNA data are not available.

Data processing
The four datasets are processed in a similar manner.

In Figure 1, we provide the flowchart of data pro-

cessing for BRCA. The total number of samples is

983. Among them, 971 have clinical data (survival

outcome and clinical covariates) available. We

remove 60 samples with overall survival time missing

Table 1: Clinical information on the four datasets

BRCA GBM AML LUSC

Number of patients 403 299 136 90
Clinical outcomes

Overall survival (month) (0.07, 115.4) (0.1, 129.3) (0.9, 95.4) (0.8, 176.5)
Event rate 8.93% 72.24% 61.80% 37.78%

Clinical covariates
Age at initial pathology diagnosis (27, 89) (10, 89) (18, 88) (40, 84)
Race (white versus non-white) 299/104 273/26 126/10 49/41
Gender (male versus female) 174/125 73/63 67/23
WBC (>16 versus �16) 105/21
ER status (positive versus negative) 314/89
PR status (positive versus negative) 266/137
HER2 final status
Positive 76
Equivocal 71
Negative 256

Cytogenetic risk
Favorable 28
Normal/intermediate 82
Poor 26

Tumor stage code (T1 versusT_other) 113/290
Lymph node stage (positive versus negative) 200/203
Metastasis stage code (positive versus negative) 10/393
Recurrence status 6
Primary/secondary cancer 281/18
Smoking status
Current smoker 16
Current reformed smoker >15 18
Current reformed smoker �15 56

Tumor stage code (positive versus negative) 34/56
Lymph node stage (positive versus negative) 13/77
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or equal to 0. Male breast cancer is relatively rare,

and in our situation, it accounts for only 1% of the

total sample. Thus we remove those male cases, re-

sulting in 901 samples. For mRNA-gene expression,

526 samples have 15 639 features profiled. There are

a total of 2464 missing observations. As the missing

rate is relatively low, we adopt the simple imputation

using median values across samples. In principle, we

can analyze the 15 639 gene-expression features dir-

ectly. However, considering that the number of

genes related to cancer survival is not expected to

be large, and that including a large number of

genes may create computational instability, we con-

duct a supervised screening. Here we fit a Cox re-

gression model to each gene-expression feature, and

then select the top 2500 for downstream analysis. For

a very small number of genes with extremely low

variations, the Cox model fitting does not converge.

Such genes can either be directly removed or fitted

under a small ridge penalization (which is adopted in

this study). For methylation, 929 samples have 1662

features profiled. There are a total of 850 missing

observations, which are imputed using medians

across samples. No further processing is conducted.

For microRNA, 1108 samples have 1046 features

profiled. There is no missing measurement. We

add 1 and then conduct log2 transformation, which

is frequently adopted for RNA-sequencing data nor-

malization and applied in the DESeq2 package [26].

Out of the 1046 features, 190 have constant values

and are screened out. In addition, 441 features have

median absolute deviations exactly equal to 0 and are

also removed. Four hundred and fifteen features pass

this unsupervised screening and are used for down-

stream analysis. For CNA, 934 samples have 20 500

features profiled. There is no missing measurement.

And no unsupervised screening is conducted. With

concerns on the high dimensionality, we conduct

supervised screening in the same manner as for

gene expression. In our analysis, we are interested

in the prediction performance by combining mul-

tiple types of genomic measurements. Thus we

merge the clinical data with four sets of genomic

data. A total of 466 samples have all the

Table 2: Genomic information on the four datasets

Number of patients BRCA GBM AML LUSC
403 299 136 90

Omics data
Gene expression
Platform Agilent 244K custom

gene expression
G4502A_07

Agilent 244K custom
gene expression
G4502A_07

Affymetrix human
genome
HG-U133_Plus_2

Agilent 244K custom
gene expression
G4502A_07

Number of patients 526 500 173 154
Features before clean 15 639 16 407 18131 15521
Features after clean Top 2500 Top 2500 Top 2500 Top 2500

DNA methylation
Platform Illumina DNA

methylation 27/450
(combined)

Illumina DNA
methylation 27/450
(combined)

Illumina DNA
methylation 450

Illumina DNA
methylation 27/450
(combined)

Number of patients 929 398 194 385
Features before clean 1662 1622 14959 1578
Features after clean 1662 1622 Top 2500 1578

miRNA
Platform IlluminaGA/

HiSeq_miRNASeq
(combined)

Agilent 8*15k human
miRNA-specific
microarray

IlluminaGA/
HiSeq_miRNASeq
(combined)

Number of patients 983 496 512
Features before clean 1046 534 1046
Features after clean 415 534 430

CAN
Platform Affymetrix genome-

wide human SNP
array 6.0

Affymetrix genome-
wide human SNP
array 6.0

Affymetrix genome-
wide human SNP
array 6.0

Affymetrix genome-
wide human SNP
array 6.0

Number of patients 934 563 191 178
Features before clean 20500 20501 20501 17869
Features after clean Top 2500 Top 2500 Top 2500 Top 2500
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measurements available for downstream analysis.

Because of our specific analysis goal, the number of

samples used for analysis is considerably smaller than

the starting number.

For all four datasets, more information on the pro-

cessed samples is provided in Table 1. The sample

sizes used for analysis are 403 (BRCA), 299 (GBM),

136 (AML) and 90 (LUSC) with event (death) rates

8.93%, 72.24%, 61.80% and 37.78%, respectively.

Multiple platforms have been used. For example

for methylation, both Illumina DNA Methylation

27 and 450 were used.

Feature extraction
For cancer prognosis, our goal is to build models

with predictive power. With low-dimensional clin-

ical covariates, it is a ‘standard’ survival model fitting

problem. However, with genomic measurements,

we face a high-dimensionality problem, and direct

model fitting is not applicable.

Denote T as the survival time and C as the

random censoring time. Under right censoring,

one observes ð ~T ¼ minðT,CÞ,d ¼ IðT � CÞÞ: For

simplicity of notation, consider a single type of gen-

omic measurement, say gene expression. Denote

ðX1, . . . ,XDÞ as the D gene-expression features.

Assume n iid observations. We note that D� n,
which poses a high-dimensionality problem here.

For the working survival model, assume the Cox

proportional hazards model. Other survival models

may be studied in a similar manner. Consider the

following ways of extracting a small number of im-

portant features and building prediction models.

Principal component analysis
Principal component analysis (PCA) is perhaps the

most extensively used ‘dimension reduction’ tech-

nique, which searches for a few important linear

combinations of the original measurements. The

method can effectively overcome collinearity

among the original measurements and, more import-

antly, significantly reduce the number of covariates

included in the model. For discussions on the appli-

cations of PCA in genomic data analysis, we refer to

Gene Expression 
15639 gene-level features 

(N = 526) 

DNA Methylation 
1662 combined features 

(N = 929) 

miRNA 
1046 features 

(N = 983) 

Copy Number 
Alterations 

20500 features (N = 934)

Impute with 
median values

2464 

obs 

Missing

850 obs

Missing

Impute with 
median values

0 obs 

Missing

0 obs

Missing

Log2 
transformation No additional 

transformation 

No additional 

transformation 

No additional 

transformation 

Unsupervised 
Screening 

No feature �iltered out 

Unsupervised 
Screening 

No feature �iltered out 

Unsupervised 
Screening 

No feature �iltered out 

Unsupervised 
Screening 
415 features left

Supervised
Screening 

Top 2500 features 

Supervised
Screening 

1662 features 

Supervised 
Screening 

415 features 

Supervised
Screening 

Top 2500 features 

Merge

Clinical + Omics Data 
(N = 403) 

Omics Data 

BRCA Dataset 
(Total N = 983)

Clinical Data 
Outcomes & Covariates including Age, Gender, Race 

(N = 971) 

70 Excluded  

60 (Overall 

survival is not 

available or 0)

10 (Males)

Clinical Data 
 (N = 739) 

With all the clinical 

covariates available

Figure 1: Flowchart of data processing for the BRCA dataset.
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[27] and others. PCA can be easily conducted using

singular value decomposition (SVD) and is achieved

using R function prcomp() in this article. Denote

ðZ1, . . . ,ZKÞ as the PCs. Following [28], we take

the first few (say P) PCs and use them in survival

model fitting. Z0ps ðp ¼ 1, . . . ,PÞ are uncorrelated,

and the variation explained by Zp decreases as p
increases.

The standard PCA technique defines a single

linear projection, and possible extensions involve

more complex projection methods. One extension

is to obtain a probabilistic formulation of PCA from

a Gaussian latent variable model, which has been

proposed in [29]. Others include the sparse PCA

and PCA that is constrained to certain subsets. We

adopt the standard PCA because of its simplicity,

representativeness, extensive applications and satis-

factory empirical performance.

Partial least squares
Partial least squares (PLS) is also a dimension-reduc-

tion technique. Unlike PCA, when constructing

linear combinations of the original measurements,

it utilizes information from the survival outcome

for the weight as well. The standard PLS method

can be carried out by constructing orthogonal direc-

tions Zm’s using X’s weighted by the strength of their

effects on the outcome and then orthogonalized

with respect to the former directions. More detailed

discussions and the algorithm are provided in [28]. In

the context of high-dimensional genomic data,

Nguyen and Rocke [30] proposed to apply PLS in

a two-stage manner. They used linear regression for

survival data to determine the PLS components and

then applied Cox regression on the resulted compo-

nents. Bastien [31] later replaced the linear regression

step by Cox regression. The comparison of different

methods can be found in Lambert-Lacroix S and

Letue F, unpublished data.

Considering the computational burden, we

choose the method that replaces the survival times

by the deviance residuals in extracting the PLS dir-

ections, which has been shown to have a good ap-

proximation performance [32]. We implement it

using R package plsRcox.

Least absolute shrinkage and selection operator
Least absolute shrinkage and selection operator

(Lasso) is a penalized ‘variable selection’ method.

As described in [33], Lasso applies model selection

to choose a small number of ‘important’ covariates

and achieves parsimony by generating coefficients

that are exactly zero. The penalized estimate under

the Cox proportional hazard model [34, 35] can be

written as

b̂ ¼ argmaxb‘ bð Þ, subject to
X

b
�� �� � s

where ‘ bð Þ ¼
Pn

i¼1 di bTXi � log

�Pn
j¼1

~Tj � ~Ti
� ��

expðbTXjÞ

��
denotes the log-partial-likelihood and

s > 0 is a tuning parameter. The method is imple-

mented using R package glmnet in this article. The

tuning parameter is chosen by cross validation. We

take a few (say P) important covariates with non-

zero effects and use them in survival model fitting.

There are a large number of variable selection

methods. We choose penalization, since it has been

attracting a lot of attention in the statistics and bio-

informatics literature. Comprehensive reviews can be

found in [36, 37]. Among all the available penalization

methods, Lasso is perhaps the most extensively studied

and adopted. We note that other penalties such as

adaptive Lasso, bridge, SCAD, MCP and others are

potentially applicable here. It is not our intention to

apply and compare multiple penalization methods.

Under the Cox model, the hazard function hðtjZÞ
with the selected features Z ¼ ðZ1, . . . ,ZPÞ is of

the form hðtjZÞ ¼ h0ðtÞexpðbTZÞ, where h0ðtÞ is

an unspecified baseline-hazard function, and

b ¼ ðb1, . . . ,bPÞ is the unknown vector of regression

coefficients. The selected features Z ¼ ðZ1, . . . ,ZPÞ

can be the first few PCs from PCA, the first few

directions from PLS, or the few covariates with non-

zero effects from Lasso.

Model evaluation
In the area of clinical medicine, it is of great interest

to evaluate the predictive power of an individual or

composite marker. We focus on evaluating the pre-

diction accuracy in the concept of discrimination,

which is commonly referred to as the ‘C-statistic’.

For binary outcome, popular measures such as the

ROC curve and AUC belong to this category.

Simply put, the C-statistic is an estimate of the con-

ditional probability that for a randomly chosen pair (a

case and control), the prognostic score calculated

using the extracted features is higher for the case.

When the C-statistic is �0.5, the prognostic score

is no better than a coin-flip in determining the sur-

vival outcome of a patient. On the other hand, when

it is close to 1 (0, usually transforming values <0.5 to
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those >0.5), the prognostic score always accurately

determines the prognosis of a patient. For more rele-

vant discussions and new developments, we refer to

[38, 39] and others. For a censored survival outcome,

the C-statistic is essentially a rank-correlation meas-

ure, to be specific, some linear function of the mod-

ified Kendall’s t [40]. Several summary indexes have

been pursued employing different techniques to

cope with censored survival data [41–43]. We

choose the censoring-adjusted C-statistic which is

described in details in Uno et al. [42] and implement

it using R package survAUC. The C-statistic with

respect to a pre-specified time point t can be written

as

Ĉt ¼Pn
i¼1

Pn
j¼1 di Ŝc ~Ti

� �	 
�2
I ~Ti < ~Tj, ~Ti < t
� �

I b̂TZi > b̂TZj

� �
Pn

i¼1

Pn
j¼1 di Ŝc ~Ti

� �	 
�2
I ~Ti < ~Tj, ~Ti < t
� �

where Ið�Þ is the indicator function and Ŝc �ð Þ is the

Kaplan–Meier estimator for the survival function of

the censoring time C, ScðtÞ ¼ pðC > tÞ: Finally, the

summary C-statistic is the weighted integration of

time-dependent Ĉt. Ĉ ¼ Ĉt �ŵðtÞdt, where ŵðtÞ
is proportional to 2 � f̂ ðtÞ � ŜðtÞ: ŜðtÞ is the

Kaplan–Meier estimator, and a discrete approxima-

tion to f̂ ðtÞ is based on increments in the Kaplan–

Meier estimator [41]. It has been shown that the

nonparametric estimator of C-statistic based on the

inverse-probability-of-censoring weights is consist-

ent for a population concordance measure that is

free of censoring [42].

ANALYSES
Ideally, prediction evaluation involves clearly defined

independent training and testing data. In TCGA,

there is no clear-cut training set versus testing set.

In addition, considering the moderate sample sizes,

we resort to cross-validation-based evaluation, which

consists of the following steps.

(a) Randomly split data into ten parts with equal

sizes.

(b) Fit different models using nine parts of the data

(training). The model construction procedure

has been described in Section 2.3.

(c) Apply the training data model, and make predic-

tion for subjects in the remaining one part

(testing). Compute the prediction C-statistic.

(d) Repeat (b) and (c) over all ten parts of the data,

and compute the average C-statistic.

(e) Randomness may be introduced in the split step

(a). To be more objective, repeat Steps (a)–(d)

500 times. Compute the average C-statistic. In

addition, the 500 C-statistics can also generate

the ‘distribution’, as opposed to a single statistic.

The LUSC dataset have a relatively small sample

size. We have experimented with splitting into 10

parts and found that it leads to a very small sample

size for the testing data and generates unreliable re-

sults. Thus, we split into five parts for this specific

dataset. To establish the ‘baseline’ of prediction per-

formance and gain more insights, we also randomly

permute the observed time and event indicators and

then apply the above procedures. Here there is no

association between prognosis and clinical or gen-

omic measurements. Thus a fair evaluation proced-

ure should lead to the average C-statistic �0.5. In

addition, the distribution of C-statistic under permu-

tation may inform us of the variation of prediction. A

flowchart of the above procedure is provided in

Figure 2.

PCA^Cox model
For PCA–Cox, we select the top 10 PCs with their

corresponding variable loadings for each genomic

data in the training data separately. After that, we

extract the same 10 components from the testing

data using the loadings of the training data. Then

they are concatenated with clinical covariates. With

the small number of extracted features, it is possible

to directly fit a Cox model. We add a very small

ridge penalty to obtain a more stable estimate with-

out seriously modifying the model structure. After

building the vector of predictors, we are able to

evaluate the prediction accuracy. Here we acknow-

ledge the subjectiveness in the choice of the number

of top features selected. The consideration is that too

few selected features may lead to insufficient infor-

mation, and too many selected features may create

problems for the Cox model fitting. We have ex-

perimented with a few other numbers of features and

reached similar conclusions.

PLS^Cox model
For PLS–Cox, we select the top 10 directions with

the corresponding variable loadings as well as weights

and orthogonalization information for each genomic

data in the training data separately. After that, we
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form the 10 directions for the testing data using the

extracted information. Then they are concatenated

with clinical covariates. The other steps are the same

as the PCA–Cox.

Lasso^Cox model
For Lasso–Cox, if the cross-validated tuning param-

eter leads to more than 10 selected variables, then

those variables are used in downstream analysis. If

fewer than 10 variables are selected, we modify the

tuning parameter value until 10 variables are selected.

For simplicity in calculation, in one equation, we

apply the same amount of penalization to all vari-

ables. In principle, we can apply the approach in [43]

and allow for different degrees of penalization to

different variables. The steps left are the same as

the PCA–Cox.

RESULTS
Individual model predictions
The analysis results for clinical covariates and each

type of genomic measurement for the four cancers

are shown in Table 3. The prediction performance

of clinical covariates varies across cancers, with C-

statistic from as high as 0.65 for GBM and AML to

as low as 0.54 for BRCA. For BRCA under PCA–

Cox, CNA has the best prediction performance (C-

statistic 0.76), closely followed by mRNA gene ex-

pression (C-statistic 0.74). For GBM, all four types of

genomic measurement have similar low C-statistics,

ranging from 0.53 to 0.58. For AML, gene expres-

sion and methylation have similar C-statistics, which

are considerably larger than that of CNA. For LUSC,

gene expression has the highest C-statistic, which is

considerably larger than that for methylation and

microRNA. For BRCA under PLS–Cox, gene ex-

pression has a very large C-statistic (0.92), while

others have low values. For GBM, again gene ex-

pression has the largest C-statistic (0.65), followed by

methylation (0.59). For AML, methylation has the

largest C-statistic (0.82), followed by gene expression

(0.75). For LUSC, the gene-expression C-statistic

(0.86) is considerably larger than that for methylation

(0.56), microRNA (0.43) and CNA (0.65). In gen-

eral, Lasso–Cox leads to smaller C-statistics. For

Clinical Expression Methylation miRNA CNA Overall 

Survival 

Choose
features 
according to
training results 

Choose
features 
according to
training results 

Choose 
features 
according to
training results 

Choose 
features 
according to
training results 

Test 

Set

Split 
Ten-fold Cross Validation 

Training 

Set 

Dataset 

Clinical Expression Methylation miRNA CNA Overall 

Survival 

Number of  
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COX
LASSO 

COX 
LASSO 

COX 
LASSO 

COX 
LASSO

Choose 
λ

 so that  
Nvar = 10 

    < 10    ≥ 10

Top Nvar

( ≥10) Features 

Choose 
λ

 so that  
Nvar = 10 

    < 10    ≥ 10

Top Nvar
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λ
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    < 10    ≥ 10

Top Nvar
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λ

 so that  
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    < 10   ≥ 10
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Obtain parameter estimates 

Fit Cox PH Model using L2 penalty 
Concatenate 

Construct predictors  

C statistics

Figure 2: Flowchart of data analysis.
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example for BRCA, the C-statistic of gene expres-

sion is 0.55, compared to 0.74 under PCA-Cox and

0.92 under PLS-Cox. Similar observations are made

for AML and LUSC. For GBM, all three methods

have low C-statistics. With the distribution com-

puted across multiple splits, we are able to obtain

the variation of C-statistic. The standard deviations

are also shown in Table 3. For BRCA and LUSC,

the variations are relatively high, while the variation

is very low for GBM. The high variations are caused

by the small sample size (LUSC) and/or low event

rate (BRCA). The significance of difference between

two types of measurements and two methods can be

inferred using the variances and is omitted here.

Comparing the obtained C-statistics against those

obtained under permutation using the Wilcoxon

test suggests that the differences are significant, al-

though the magnitudes of C-statistic improvement

are not necessarily dramatic.

Integrated model predictions
The analysis results for combining multiple types of

measurement are provided in Table 4. In combining,

we start with the clinical covariates, which are of low

dimension and usually have important implications.

Based on the clinical covariates, we incorporate

mRNA-gene expressions. The consideration is that

molecular features measured at the transcription level

affect cancer clinical outcomes more directly than

those measured at the DNA/epigenetic level

(CNA, mutation status and methylation).

Molecular features at the DNA level affect clinical

outcomes by influencing mRNA expressions.

Similarly, microRNAs influence mRNA expressions

through translational repression or target degrad-

ation, which then affect clinical outcomes. Then

based on the clinical covariates and gene expressions,

we add one more type of genomic measurement.

With microRNA, methylation and CNA, their bio-

logical interconnections are not thoroughly under-

stood, and there is no commonly accepted ‘order’ for

combining them. Thus, we only consider a grand

model including all types of measurement. For

AML, microRNA measurement is not available.

Thus the grand model includes clinical covariates,

gene expression, methylation and CNA. In addition,

in Figures 1–4 in Supplementary Appendix, we

show the distributions of the C-statistics (training

model predicting testing data, without permutation;

training model predicting testing data, with permu-

tation). The Wilcoxon signed-rank tests are used to

evaluate the significance of difference in prediction

performance between the C-statistics, and the P-

values are shown in the plots as well.

We again observe significant differences across

cancers. Under PCA–Cox, for BRCA, combining

mRNA-gene expression with clinical covariates can

significantly improve prediction compared to using

clinical covariates only. However, we do not see

further benefit when adding other types of genomic

measurement. For GBM, clinical covariates alone

have an average C-statistic of 0.65. Adding

mRNA-gene expression and other types of genomic

measurement does not lead to improvement in pre-

diction. For AML, adding mRNA-gene expression

to clinical covariates leads to the C-statistic to in-

crease from 0.65 to 0.68. Adding methylation may

further lead to an improvement to 0.76. However,

CNA does not seem to bring any additional predict-

ive power. For LUSC, combining mRNA-gene ex-

pression with clinical covariates leads to an

improvement from 0.56 to 0.74. Other models

have smaller C-statistics. Under PLS–Cox, for

BRCA, gene expression brings significant predictive

power beyond clinical covariates. There is no add-

itional predictive power by methylation, microRNA

and CNA. For GBM, genomic measurements do not

bring any predictive power beyond clinical covari-

ates. For AML, gene expression leads the C-statistic

to increase from 0.65 to 0.75. Methylation brings

additional predictive power and increases the C-stat-

istic to 0.83. For LUSC, gene expression leads the C-

statistic to increase from 0.56 to 0.86. There is no

Table 3: Prediction performance of a single type of
genomic measurement

Method Data
type

Estimate of C-statistic (standard error)

BRCA GBM AML LUSC

Clinical 0.54 (0.07) 0.65 (0.01) 0.65 (0.03) 0.56 (0.07)
PCA Expression 0.74 (0.05) 0.57 (0.01) 0.70 (0.03) 0.76 (0.06)

Methylation 0.60 (0.07) 0.53 (0.01) 0.74 (0.03) 0.48 (0.07)
miRNA 0.62 (0.06) 0.56 (0.01) 0.54 (0.07)
CNA 0.76 (0.06) 0.58 (0.01) 0.54 (0.04) 0.72 (0.07)

PLS Expression 0.92 (0.04) 0.65 (0.01) 0.75 (0.03) 0.86 (0.04)
Methylation 0.59 (0.07) 0.59 (0.01) 0.82 (0.03) 0.56 (0.07)
miRNA 0.51 (0.07) 0.56 (0.01) 0.43 (0.07)
CNA 0.54 (0.08) 0.55 (0.01) 0.48 (0.04) 0.65 (0.07)

LASSO Expression 0.55 (0.08) 0.58 (0.02) 0.63 (0.03) 0.55 (0.08)
Methylation 0.53 (0.08) 0.52 (0.01) 0.62 (0.04) 0.50 (0.08)
miRNA 0.70 (0.07) 0.55 (0.01) 0.50 (0.08)
CNA 0.54 (0.08) 0.59 (0.02) 0.51 (0.04) 0.58 (0.08)
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further improvement afterward. Under Lasso–Cox,

for BRCA, gene expression and microRNA bring

additional predictive power, but not CNA. For

GBM, we again observe that genomic measurements

do not bring any additional predictive power beyond

clinical covariates. Similar observations are made for

AML and LUSC.

Discussions
It should be first noted that the results are method-

dependent. As can be seen from Tables 3 and 4, the

three methods can generate significantly different re-

sults. This observation is not surprising. PCA and

PLS are dimension reduction methods, while Lasso

is a variable selection method. They make different

assumptions. Variable selection methods assume that

the ‘signals’ are sparse, while dimension reduction

methods assume that all covariates carry some signals.

The difference between PCA and PLS is that PLS is a

supervised approach when extracting the important

features. In this study, PCA, PLS and Lasso are

adopted because of their representativeness and

popularity. With real data, it is practically impossible

to know the true generating models and which

method is the most appropriate. It is possible that a

different analysis method will lead to analysis results

different from ours. Our analysis may suggest that in

practical data analysis, it may be necessary to experi-

ment with multiple methods in order to better com-

prehend the prediction power of clinical and

genomic measurements.

Also, different cancer types are significantly differ-

ent. It is thus not surprising to observe one type of

measurement has different predictive power for dif-

ferent cancers. For most of the analyses, we observe

that mRNA gene expression has higher C-statistic

than the other genomic measurements. This obser-

vation is reasonable. As discussed above, mRNA-

gene expression has the most direct effect on

cancer clinical outcomes, and other genomic meas-

urements affect outcomes through gene expression.

Thus gene expression may carry the richest infor-

mation on prognosis. Analysis results presented in

Table 4 suggest that gene expression may have add-

itional predictive power beyond clinical covariates.

However, in general, methylation, microRNA and

CNA do not bring much additional predictive

power. Published studies show that they can be im-

portant for understanding cancer biology, but, as

suggested by our analysis, not necessarily for predic-

tion. The grand model does not necessarily have

better prediction. One interpretation is that it has

much more variables, leading to less reliable model

estimation and hence inferior prediction.

Table 4: Prediction performance of combining multiple types of genomic measurements

Method Data type Estimate of C-statistic (standard error)

BRCA GBM AML LUSC

PCA Clinical 0.54 (0.07) 0.65 (0.01) 0.65 (0.03) 0.56 (0.07)
Clcþ expression 0.73 (0.06) 0.64 (0.01) 0.68 (0.03) 0.74 (0.06)
Clcþ exprþmethylation 0.72 (0.06) 0.64 (0.01) 0.76 (0.03) 0.70 (0.07)
Clcþ exprþmiRNA 0.71 (0.06) 0.63 (0.01) 0.70 (0.07)
Clcþ exprþCNA 0.70 (0.07) 0.65 (0.01) 0.65 (0.03) 0.71 (0.07)
Clcþ exprþmethylþCNA 0.75 (0.03)
Clcþ exprþmethylþmiRNAþCNA 0.73 (0.07) 0.63 (0.01) 0.68 (0.07)

PLS Clinical 0.54 (0.07) 0.65 (0.01) 0.65 (0.03) 0.56 (0.07)
Clcþ expression 0.92 (0.04) 0.66 (0.01) 0.75 (0.03) 0.86 (0.04)
Clcþ exprþmethylation 0.83 (0.05) 0.64 (0.01) 0.83 (0.02) 0.76 (0.05)
Clcþ exprþmiRNA 0.82 (0.06) 0.65 (0.01) 0.69 (0.07)
Clcþ exprþCNA 0.91 (0.04) 0.66 (0.01) 0.74 (0.03) 0.82 (0.04)
Clcþ exprþmethylþCNA 0.83 (0.03)
Clcþ exprþmethylþmiRNAþCNA 0.72 (0.06) 0.64 (0.01) 0.69 (0.07)

LASSO Clinical 0.54 (0.07) 0.65 (0.01) 0.65 (0.03) 0.56 (0.07)
Clcþ expression 0.57 (0.08) 0.64 (0.01) 0.64 (0.03) 0.53 (0.08)
Clcþ exprþmethylation 0.57 (0.08) 0.62 (0.02) 0.65 (0.04) 0.52 (0.08)
Clcþ exprþmiRNA 0.65 (0.07) 0.61 (0.02) - 0.55 (0.08)
Clcþ exprþCNA 0.52 (0.08) 0.65 (0.01) 0.63 (0.03) 0.57 (0.08)
Clcþ exprþmethylþCNA 0.65 (0.04)
Clcþ exprþmethylþmiRNAþCNA 0.60 (0.08) 0.61 (0.02) 0.56 (0.08)
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CONCLUSION
Multidimensional genomic studies are becoming

popular in cancer research. Most published studies

have been focusing on linking different types of gen-

omic measurements. In this article, we analyze the

TCGA data and focus on predicting cancer prognosis

using multiple types of measurements. The general

observation is that mRNA-gene expression may

have the best predictive power, and there is no sig-

nificant gain by further combining other types of

genomic measurements. Our brief literature review

suggests that such a result has not been reported in

the published studies and can be informative in mul-

tiple ways. We do note that with differences be-

tween analysis methods and cancer types, our

observations do not necessarily hold for other analysis

methods and cancers. This study inevitably suffers a

few limitations. Although the TCGA is one of the

largest multidimensional studies, the effective sample

size may still be small, and cross validation may fur-

ther reduce sample size. Multiple types of genomic

measurements are combined in a ‘brutal’ manner.

We incorporate the interconnection between for ex-

ample microRNA on mRNA-gene expression by

introducing gene expression first. However, more

sophisticated modeling is not considered. PCA,

PLS and Lasso are the most commonly adopted di-

mension reduction and penalized variable selection

methods. Statistically speaking, there exist methods

that can outperform them. It is not our intention to

identify the optimal analysis methods for the four

datasets. Despite these limitations, this study is

among the first to carefully study prediction using

multidimensional data and can be informative.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

	 Multidimensional studies are becoming popular in cancer re-
search. However, most of the existing studies have focused on
linking different types ofmeasurements.

	 We study predicting cancer prognosis using multiple types of
genomicmeasurements.We adopt threemethods for extracting
important features, and use a cross-validation based approach
with C-statistic to measure prediction.

	 The analysis results aremethod-dependent. In general, the Lasso
method leads to smaller C-statistics than PCA and PLS.

	 mRNA-gene expression in general have more predictive power
than the other types of genomic measurements. Introducing

more genomic measurements does not lead to significantly im-
provedprediction over gene expression.

	 Studying prediction has important implications.There is a need
formore sophisticatedmethods and extensive studies.
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