
Copyright. 2004 Society of Photo-Optical Instrumentation Engineers. 
 
This paper was published in The Proceedings of the SPIE Defense and Security Symposium 2004, and is made available as an electronic reprint with 
permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple 
locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of 
the paper are prohibited. 

Combining multiple face recognition systems using Fisher’s linear 
discriminant 

 
Thomas Heseltine*, Nick Pears, Jim Austin 

Department of Computer Science, The University of York, United Kingdom 
 
 

ABSTRACT 
 
The application of image processing as a pre-processing step to methods of face recognition can significantly improve 
recognition accuracy.  However, different image processing techniques provide different advantages, enhancing specific 
features or normalising certain capture conditions.  We introduce a new method of isolating these useful qualities from a 
range of image subspaces using Fisher's linear discriminant and combining them to create a more effective image 
subspace, utilising the advantages offered by numerous image processing techniques and ultimately reducing recognition 
error.  Systems are evaluated by performing up to 258,840 verification operations on a large test set of images presenting 
typical difficulties when performing recognition.  Results are presented in the form of error rate curves, showing false 
acceptance rate (FAR) vs. false rejection rate (FRR), generated by varying a decision threshold applied to the euclidean 
distance metric performed in combined face space. 
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1. INTRODUCTION 
 
It has been shown that the application of image processing techniques as a pre-processing step to methods of face 
recognition, such as the eigenface and fisherface methods, can significantly improve recognition accuracy1, 2.  Such 
image processing techniques work on several principles, such as reducing noise, enhancing features or normalising 
environmental conditions.  Therefore, each technique provides unique advantages, specifically suited to different 
conditions.  For example, colour normalisation techniques3, 4 may aid recognition by making such features as skin-tone 
and hair colour consistent despite the effect of lighting conditions.  Another system may incorporate edge detection 
filters, focusing purely on facial structure, while a third may blur an image, reducing inaccuracies introduced by the 
feature alignment stage.  Unfortunately, often incorporated with these beneficial characteristics are surplus side effects, 
which can actually degrade system performance:  normalising colour and removing the effect of lighting conditions will 
reduce the geometric information encapsulated within the facial surface shading; edge-detection or gradient based filters 
preserve structural cues, but remove skin-tone information. 
 
In this paper we analyse and evaluate a range of face recognition systems, each utilising a different image processing 
technique, in an attempt to identify and isolate the advantages offered by each system.  Focusing on appearance based 
methods of face recognition we propose a means of selecting and extracting components from the image subspace 
produced by each system, such that they may be combined into a unified face space.  We apply this method of 
combination to the eigenface approach5, 6 and fisherface approach7.  The benefit of using multiple eigenspaces has 
previously been examined by Pentland et al8, in which specialist eigenspaces were constructed for various facial 
orientations and local facial regions, from which cumulative match scores were able to reduce error rates.  Our approach 
differs in that we extract and combine individual dimensions, creating a single unified face space. 
 
In section 2 we begin with a brief explanation of the eigenface and fisherface methods.  We describe the database of face 
images used for testing and training in section 3, which are then analysed in section 4, discussing the image processing 
techniques evaluated in previous work1, 2, the rationale for combining multiple systems and the criteria used to identify 
the most discriminatory components of each system.  The algorithm used for combining these components is then 
described in section 5.  After applying this combination process to the eigenface and fisherface methods, we compare the 
effectiveness of the resultant face space combinations with the optimum systems of previous work2.  The evaluation 
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procedure is described in section 6, by which we perform verification operations on a large test set of facial images that 
present typical difficulties when performing recognition, such as variations in illumination direction and facial 
expression.  We present the results in the form of error rate curves in section 7, generated by varying a decision threshold 
in the verification operations. 
 

2. THE EIGENFACE AND FISHERFACE METHODS 
 
In this section we give a brief explanation of the eigenface and fisherface methods of face recognition, while referring 
the reader to Turk and Pentland5, 6 and Belhumeur et al7 for more detailed explanations.  Both approaches work on the 
same principle of analysing the image space of a given training set of face images Γni, of c different people, attempting to 
reduce image space dimensionality down to the most discriminating components.  This is accomplished by computing 
eigenvectors of one or more scatter matrices (equation 1) using standard linear methods, ultimately producing subspace 
projection matrices, Uef and Uff, of the top c-1 components with the highest eigenvalues for the eigenface and fisherface 
systems respectively. 
 

.    (1) 
 

The two approaches differ in the scatter matrices from which the eigenvectors are calculated.  The eigenface method 
applies principal component analysis (PCA) using the covariance matrix SC, constructed from single examples of each 
person in the training set.  Whereas the fisherface method is able to take advantage of multiple examples of each person, 
minimising within-class scatter (SW), yet maximising between-class scatter (SB).  In addition, the fisherface approach 
applies PCA to the total scatter matrix ST, producing a preliminary projection matrix Upca, used to reduce the 
dimensionality of the scatter matrices SB and SW, ensuring they are non-singular, before computing the eigenvectors (Ufld) 
of the reduced scatter matrix ratio. 
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Finally, the matrix Uff is calculated as shown in equation 2, such that it will project a face image into a reduced image 
space of c-1 dimensions.  Once projection matrices have been constructed, they are used to reduce the dimensionality of 
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These face-key vectors contain the coefficients of the respective projection matrix eigenvectors, referred to as eigenfaces 
(Fig. 1) and fisherfaces (Fig. 2).  Face-keys are compared using the Euclidean distance measure, followed by a threshold 
to determine an acceptance/rejection decision as shown in equation 4. 
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Fig. 1. The average face (left) and first five eigenfaces (right) computed with no image pre-processing. 



         

Fig. 2.  The first five fisherfaces, defining a face space with no image pre-processing. 

3. THE TEST DATABASE 
 
We conduct experiments using a database of 960 bitmap images of 120 individuals (60 male, 60 female) of various race 
and age, extracted from the AR Face Database provided by Martinez and Benavente9.  From this database we take a 
training set of 240 images (60 people under a range of lighting conditions and facial expressions), used to compute the 
scatter matrices described in section 2 and ultimately produce the face space projection matrices.  The remaining 720 
images (60 people, 12 images each) are then separated into two disjoint sets of equal size (test set A and test set B).  We 
use test set A to analyse the face-key variance throughout face space, calculate discriminant weightings (see section 4) 
and compute the optimum face space combinations.  This leaves test set B as an unseen set of data to evaluate the final 
combined system.  The six examples shown in Table 1 were repeated on two days, making up the 12 images of each 
subject in the test sets.  All images are pre-aligned with the eye centres 25 pixels apart, before being cropped to a width 
and height of 65 and 82 pixels respectively. 
 

Lighting Natural From left From right Left & right Natural Natural 
Expression Neutral Neutral Neutral Neutral Happy Angry 

Example 
 

      

Table 1. Image capture conditions included in the database training and test sets. 

4. ANALYSIS OF FACE RECOGNITION SYSTEMS 
 
In this section we analyse image subspaces produced when various image pre-processing techniques are applied to both 
the eigenface and fisherface methods.  We begin by providing the results obtained in previous work2, shown in Fig. 3, 
showing the range of error rates produced when using various image processing techniques.  Continuing this line of 
research we persist with these same image processing techniques, referring the reader to Heseltine et al1, 2 for 
implementation details, while in this paper we focus on the effect and methodologies of combining multiple systems, 
rather than the image processing techniques themselves. 
 
Fig. 3 clearly shows that the choice of image processing technique has a significant effect on the performance of both the 
eigenface and fisherface approaches, with detail enhancement filters providing the lowest equal error rates (EER, the 
error when FAR equals FRR) when used in conjunction with the fisherface approach.  However, we find it surprising 
that some image processing techniques give such poor performance, especially when designed specifically to compensate 
for conditions known to be a source of error in face recognition systems10.  For example, we see that intensity 
normalisation increases error rates for fisherface-based systems, despite being the optimum image processing technique 
for eigenface-based recognition.  Hence, it is apparent that this processing technique is able to preserve discriminatory 
information, while normalising lighting effects, yet is unsuitable for fisherface-based recognition.  We now carry out 
further investigation into the discriminating ability of each face recognition system by applying Fisher’s Linear 
Discriminant (FLD), as used by Gordon11 to analyse 3D face features, to individual components (single dimensions) of 
each face space.  Focusing on a single face space dimension we calculate the discriminant d, describing the 
discriminating power of that dimension, between c people in test set A. 
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Where m is the mean value of that dimension in the face-keys of test set A, mi the within-class mean of class i and �i the 
set of vector elements taken from the face-keys of class i. 



 

Fig. 3. EERs of eigenface and fisherface systems using a range of image processing techniques as calculated by Heseltine et al2. 

Applying equation 5 to each dimension of the eigenface face space (using no image pre-processing), provides a set of 
discriminant values as shown in Fig. 4.  Looking at the range of discriminant values, we note that the higher 
discriminants appear at the lower end of the face space.  This is exactly as we would expect, showing that the order of 
principal components, in terms of eigenvalues, is related to that dimensions discriminating ability. 
 



 

Fig. 4. Discriminant values of the eigenface face space dimensions using no image pre-processing. 

However, it can also be seen that certain dimensions produce very low discriminant values.  In Fig. 4 we see that the 
third principal component in particular has a very low discriminating ability, despite its relatively high eigenvalue.  This 
highlights some problems in the eigenface training method, in that the third dimension obviously represents something of 
high variance in the training set that has little or no use in discriminating between different people.  In other words, it is a 
feature of the environmental capture conditions.  Applying equation 5 to each dimension in the assortment of fisherface 
systems, we see similar results to those of the eigenface systems, with a wide range of discriminant values across the 
different image processing techniques.  Fig. 5 shows the top ten dimensions with the highest discriminant value from 
each fisherface system.   
 
It is clear that although some image processing techniques do not perform well in the face recognition tests, producing 
high EERs as seen in Fig. 3, some of their face-key components do contain highly discriminatory information.  We 
hypothesise that the reason for these highly discriminating anomalies, in an otherwise ineffective subspace, is that a 
certain image processing technique may be particularly suited to a single discriminating factor, such as skin tone or hair 
colour, but is not effective when used as a more general classifier.  Therefore, if we were able to isolate these few useful 
qualities from the more specialised image subspaces, they could be used to make a positive contribution to a generally 
more effective face space, reducing error rates further.  For example, grey_world pre-processing results in a particularly 
high EER (23.0%), yet we see that two dimensions of this face space have discriminant values significantly greater than 
any dimension from the optimum fisherface system (using slbc image pre-processing).  Therefore, it is not unreasonable 
to assume (given that grey_world normalises colour and slbc enhances edges) that if these two dimensions were 
extracted and combined with the existing slbc face space, a further reduction in error may occur, due to the additional 
discriminatory information being introduced. 
 
In order to combine multiple dimensions from a range of face spaces, we require some criterion to decide which 
dimensions to combine.  It is not enough to rely purely on the discriminant value itself, as this only gives us an indication 
of the discriminating ability of that dimension alone, without any indication of whether the inclusion of this dimension 
would benefit the existing set of dimensions.  If an existing face space already provides a certain amount of 
discriminatory ability, it would be of little benefit (or could even be detrimental) if we were to introduce an additional 
dimension describing a feature already present within the existing set, unless it was of a discriminant significantly high 
as to provide a valued contribution.  Ideally we would use the EER as this criterion, such that a new dimension would be 
incorporated into any existing system if it resulted in a reduced EER.  However, such an approach is problematic in that 
the time taken to process a complete verification evaluation for all dimension combinations would be unfeasible, unless 
we used a particularly small test set, in which case we run the risk of over-training: only selecting those dimensions 
particularly suited to the small amount of test data.  



 
 

 

Fig. 5.  Ten greatest discriminant values of dimensions from fisherface face spaces using a range of image pre-processing techniques. 

What we require is some method of providing an indication of how effective a given combination of face space 
dimensions is likely to be, without the need of processing a complete evaluation of all verification operations.  An 
obvious solution, already used to analyse individual face space dimensions is that of FLD, which with a small amount of 
adaptation can be applied to whole face-key vectors, rather than individual vector elements, providing a global 
discriminant value d for the entire face space, 
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where ω is the face-key of some single or combined face space, to which we apply the recognition distance metric 

(equation 4) to the averageω and class average iω .  Applying equation 6 to each fisherface system shown in Fig. 3 and 

comparing the result with their respective EERs, it becomes evident there is some correlation between this global 
discriminant value and the effectiveness of a face recognition system, as seen in Fig. 6. 



 

 

Fig. 6. Scatter graph showing the correlation between the global discriminant value and EER of fisherface systems. 

5. COMBINING SYSTEMS 
 
In this section we describe how the analysis methods discussed in section 4 are used to combine multiple face 
recognition systems.  Firstly, we need to address the problem of prioritising face space dimensions.  Because the average 
magnitude and deviation of face-key vectors from a range of systems are likely to differ by some orders of magnitude, 
certain dimensions will have a greater influence than others, even if the discriminating abilities are evenly matched.  To 
compensate for this effect, we normalise moments by dividing each face-key element by its within-class standard 
deviation.  However, in normalising these dimensions we have also removed any prioritisation, such that all face space 
components are considered equal.  Although not a problem when applied to a single face space, when combining 
multiple dimensions we would ideally wish to give greater precedence to the more reliable components.  Otherwise the 
situation is likely to arise when a large number of less discriminating (but still useful) dimensions begin to outweigh the 
fewer more discriminating ones, diminishing their influence on the verification operation and hence increasing error 
rates.  In section 4 we showed how FLD could be used to measure the discriminating ability of a single dimension from 
any given face space.  We now apply this discriminant value d (equation 5) as a weighting for each face space 
dimension, prioritising those dimensions with the highest discriminating ability. 
 
With this weighting scheme applied to all face-keys produced by each system, we can begin to combine dimensions into 
a single unified face space.  The criterion required for a new dimension to be introduced to an existing face space is a 
resultant increase in the global discriminant, calculated using equation 6.  However, as can be seen from Fig. 6 this 
method can only provide a rough indication of system effectiveness and if we were to build up the combination from a 
single dimension, we may achieve a greater discriminant but not necessarily the lowest EER.  Therefore, in order to 
provide the combination with the best head start, we initialise the dimension set with the optimum face space achieved so 
far (intensity and slbc for eigenface and fisherface systems respectively).  Beginning with this small preliminary set of 
dimensions (the face space of the optimum eigenface or fisherface system), we then iteratively test each additional 
dimension from other face spaces for combination with the existing dimension set as shown in Table 2. 
 
The result is a new face space consisting of the dimensions taken from the original optimum system, plus a selection of 
additional dimensions from other systems.  Each new dimension will have increased the global discriminant, such that 
the final combination has a significantly higher discriminant value and will therefore also have reduced the EER when 
evaluated on test set B. 
 



 
Combined face space = face space dimensions of current optimum system 
Calculate global FLD of combined face space 
For each face space system: 

For each dimension of face space system: 
Concatenate new dimension onto combined face space 
Calculate global FLD of combined face space 
If global FLD has not increased: 

Remove new dimension from combined face space 
Save combined face space ready for evaluation 

Table 2 Combination algorithm used to select and combine dimensions from multiple face spaces. 

6. THE TEST PROCEDURE 
 
The effectiveness of the face recognition systems is evaluated by means of error rate curves (FRR vs. FAR) generated by 
performing a large number of verification operations on the database test sets.  The images in the test set are verified 
against every other image, producing a distance value using equation 4.  No image is compared with itself and each pair 
is compared only once (the relationship is symmetric).  This provides 64,620 verification operations when performed on 
all images in test set B or 258,840 operations if both test sets A and B are combined.  After calculating the distance 
values for each comparison, a threshold is applied in order to derive the rejection/acceptance decision for each image 
pair.  FAR is calculated as the percentage of acceptance decisions when images of different people are compared and 
FRR is the percentage of rejection decisions when images of the same person are compared.  By varying the threshold 
we produce a set of FRR FAR plots, forming the error rate curve, as shown in Fig.8. 
 

 

Fig. 7. Flow chart of face recognition evaluation procedure. 



7. RESULTS 
 
In this section we present results obtained from evaluating the optimum single systems and combined face recognition 
systems formed using the eigenface and fisherface methods.  The results are presented in the form of error rate curves 
(FAR vs. FRR) generated using the procedure described in section 6, taking the EER as a single comparative value. 

 

Fig. 8. Error rate curves of single optimum, weighted and combined eigenface (left) and fisherface (right) systems, produced when 
applied to test set B. 

Fig. 8 (left) shows the error rates obtained using the eigenface approach, when applied to test set B (the previously 
unseen test set).  We see that applying the optimum eigenface system (incorporating the best image pre-processing 
technique as described by Heseltine et al2) to test set B, produces an EER of 19.7%.  A significant improvement is 
witnessed when the discriminant values (calculated using test set A) are applied as a weighting scheme (described in 
section 5), prioritising the most discriminating principal components, reducing the EER to 15.4%.  With this weighting 
scheme in place for all eigenface systems, we then apply the combination algorithm in Table 2, producing the third error 
rate curve in Fig. 8.  Unfortunately, this combined system substantially increases the error rate, resulting in a final EER 
of 22.8%. 
 
Fig. 8 (right) shows the results obtained when performing the same evaluation experiments using the fisherface 
approach.  The initial EER, using the optimum image pre-processing technique is 17.9%.  Weighting the components 
according to discriminant values, unlike the eigenface system, has very little effect on system performance and although 
provides marginal improvement at some points along the error curve, actually results in the same EER of 17.9%.  
However, combining the weighted dimensions, from all fisherface systems, produces a significant error reduction to 
13.0% EER.  Displaying the face space dimensions selected for inclusion in this final combined fisherface system in Fig. 
9 shows that those systems with lower EERs generally provide more highly discriminating dimensions for inclusion in 
the final system than systems with higher EERs.  It is also evident that dimensions with higher eigenvalues provide the 
most discriminating information, as expected.  However, it is interesting to note that even a few of the least effective 
systems provide some contribution to the final combined face space. 
 
Having evaluated the initial baseline systems and combined systems on the unseen test set B, demonstrating the 
improvement gained by combining multiple fisherface dimensions, we now explore how these results vary when the 
images used to compute the optimum combination are also present in the evaluation test set.  This experiment is 
analogous to training the face recognition system on the database (or gallery set) of known people, which are then 
compared to newly acquired (unseen) images. 
 



 

Fig. 9.  Face space dimensions included (�) in the final combined fisherface face space used to produce the results shown in Fig. 8. 

 

Fig. 10.  Error rate curves of optimum single and combined fisherface systems applied to three test sets. 

Fig. 10 shows the results obtained when the optimum fisherface system and combined fisherface system are applied to 
test set A (used to construct the combined system), test set B (the unseen test set) and the full test set (all images from 
sets A and B).  We see that the combined system does produce lower error rates (11.7% EER) when applied to images 



used to construct the combination, as would be expected.  However, we also see that test set A produces better results 
(16.6% EER) than test set B for the single fisherface system, suggesting that it is actually a slightly easier test set 
anyway.  Performing the evaluation on the larger set, providing 258,840 verification operations, the error rate drops 
slightly to 12.8% EER, showing that a small improvement is introduced if some test images are available for training, as 
well as suggesting that the method scales well, considering the large increase in image comparisons.  The distinct 
separation between the error curves of the single optimum fisherface system and those using the combined system further 
enforces the fact that combining multiple face space dimensions provides a substantial advantage over individual systems 
that use a single image processing technique. 
 

8. CONCLUSION 
 
We have highlighted the importance of using image processing as a pre-processing step to two well-known methods of 
face recognition and discussed the possibilities of combining face space dimensions of multiple systems in an attempt to 
utilise the advantages offered by numerous image processing techniques.  Using FLD as an analysis tool we have 
confirmed the hypothesis that although an image subspace may not perform well when used for recognition, it may 
harbour highly discriminatory components that could complement other more superior systems and hence we have 
shown the potential to improve recognition error rates by combining multiple dimensions from a range of face 
recognition systems. 
 
Using this method of FLD analysis, we have overcome two problems presented when combining face recognition 
systems.  Firstly, using the respective discriminant values to weight face space dimensions, according to their 
discriminating ability, has allowed us to combine multiple dimensions yet maintain a bias towards those that present the 
most distinguishing features.  We have shown this weighting scheme to be highly beneficial when used with the 
optimum eigenface system, reducing the EER from 19.7% to 15.4%, but have little influence on the effectiveness of 
individual fisherface systems.  Secondly, applying FLD to entire face-keys and comparing these global discriminant 
values with the EERs of existing systems has demonstrated how this analysis can be used to provide a rough indication 
of the effectiveness of a given face recognition system, requiring significantly less processing time than completing a full 
set of verification operations on the same data.  Using this global discriminant as criteria for selecting face space 
dimensions as potential sources of additional discriminatory information to an existing system has enabled an iterative 
approach of appending new face space dimensions to existing combinations, increasing the global discriminant value and 
hence improving the performance of the combined face recognition system. 
 
Testing this method of combination on face space representations produced using the eigenface approach has shown it to 
be ineffective for this method of face recognition, increasing the EER significantly from 15.4% to 22.8%.  However, 
applying the same combination process to fisherface systems has shown that combining multiple face spaces can 
improve system performance substantially, reducing the EER from 17.9% down to 13.0%. 
 
This key difference between the eigenface and fisherface approaches is of particular interest and at first thought perhaps 
quite surprising.  In order to understand this phenomenon, we must consider the method of combination used.  We have 
created a criterion in which face space dimensions are incorporated into an existing set if they increase the discriminant 
of the combined face space.  This criterion only takes into account the discriminating ability of the new dimension when 
compared with the level of discrimination already achieved within the existing combination.  It does not allow for the 
inter-dependency of facial features or the possibility that features represented in the additional dimension may already be 
present in the existing face space.  For example, consider a combined face space, in which its current set of dimensions 
encapsulates such features as the nose base width, bridge curvature and nose length.  Now suppose we identify a new 
dimension for inclusion in the face space, representing the more general feature of nose shape, which due to its high 
between-class variance will increases the global discriminant.  However, this new dimension represents a feature that is 
largely dependent on those already represented in the face space.  Therefore the discriminatory information available in 
this new dimension is predominantly redundant, meaning that the only real contribution to the combined face space is the 
additional noise of within-class variance. 
 
This reasoning begins to uncover the grounds for failing to successfully combine multiple eigenface systems.  The 
eigenface approach creates a face space that maximises image distribution, but uses no examples of within-class 
variance, therefore doing nothing to reduce noise or environmental features.  Any dimension combined with an existing 



face space not only introduces the primary discriminating feature (which may have been present beforehand anyway) but 
also incorporates substantial within-class variance.  Adini et al10 have shown that differences due to lighting conditions 
and facial expression are greater than the differences between images of different people, suggesting that the noise 
introduced when combining dimensions will be more diverse and cumulative than the discriminating features, which will 
often reoccur and hence be redundant.  The fisherface approach differs in its ability to formulate face space such that 
within-class variation is minimised, hence reducing environmental influence, allowing multiple dimensions to combine 
with relatively little increase in noise content.  Therefore, even if the dimension contribution is redundant, little or no 
degradation is introduced. 
 
The criterion used to select dimensions is obviously an important factor in the combination process.  In this paper we 
have developed a method of using FLD to predict system effectiveness, which due to its short processing time allows 
many combinations to be tested in a relatively small amount of time, yet we see from Fig. 6 that the system with the 
greatest discriminant value does not necessarily have the lowest EER.  Therefore it is highly likely that other face space 
combinations exist that will produce a lower EER than the best combination presented in this paper.  Such a face space 
combination could easily be found if a more accurate representation of system effectiveness was used in the combination 
selection criteria.  One obvious choice is the EER itself.  Although this would take an extremely long time to process, 
once the dimensions have been identified, the combined face space projection matrix can be stored for latter use and 
providing the training set is sufficiently large and varied, re-training and re-combining would not be required. 
 
Previous work had shown that image processing improves the fisherface method of face recognition from an EER of 
20.1% using no image processing, to 17.8% using the optimum processing technique.  We have extended this line of 
research to show that creating a face space combination, incorporating multiple fisherface systems reduces the EER 
further, down to 12.8% when tested on a large amount of data presenting typical difficulties when performing 
recognition.  Evaluating this system at its fundamental level, using 258,840 verification operations between face images, 
demonstrates that combining multiple face space dimensions improves the effectiveness of the core face recognition 
engine.  We have not applied any additional heuristics, typically incorporated into fully functional commercial and 
industrial systems.  For example, we have not experimented with different distance metrics, multiple facial alignments, 
optimising crop regions or storing multiple gallery images.  All of which are known to improve error rates and can easily 
be applied to the combined face recognition systems presented in this paper.  With these additional measures in place, it 
is likely that the improvements made to the core recognition engine will bring the error rates of fully functional 
commercial and industrial systems substantially closer to those required for the application scenarios in mind. 
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