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ABSTRACT

The application of image processing as a pre-peingsstep to methods of face recognition can sicanitly improve

recognition accuracy. However, different imagegessing techniques provide different advantagdsarering specific
features or normalising certain capture conditiovMe introduce a new method of isolating theseulsgfalities from a

range of image subspaces using Fisher's linearimisant and combining them to create a more dffecimage

subspace, utilising the advantages offered by nonseimage processing techniques and ultimatelyciaguecognition

error. Systems are evaluated by performing ub& 840 verification operations on a large tesob$émages presenting
typical difficulties when performing recognitiorResults are presented in the form of error rateezjrshowing false
acceptance rate (FAR) vs. false rejection rate (fFg8nerated by varying a decision threshold agpliethe euclidean
distance metric performed in combined face space.

Keywords: Face Recognition, Eigenface, Fisherfaoear Discriminant
1. INTRODUCTION

It has been shown that the application of imagecgssing techniques as a pre-processing step toodweihf face
recognition, such as the eigenface and fisherfaethads, can significantly improve recognition aeoyt > Such

image processing techniques work on several pilesipuch as reducing noise, enhancing featureasnalising

environmental conditions. Therefore, each techmiguovides unique advantages, specifically suiteddifferent

conditions. For example, colour normalisation téghes’ * may aid recognition by making such features as-tkie

and hair colour consistent despite the effect gifitihg conditions. Another system may incorporatige detection
filters, focusing purely on facial structure, whiethird may blur an image, reducing inaccuracigsoduced by the
feature alignment stage. Unfortunately, often ipooated with these beneficial characteristicssamplus side effects,
which can actually degrade system performancemalising colour and removing the effect of lightiognditions will

reduce the geometric information encapsulated withé facial surface shading; edge-detection cdigra based filters
preserve structural cues, but remove skin-tonerimddion.

In this paper we analyse and evaluate a rangecef fiacognition systems, each utilising a differiemige processing
technique, in an attempt to identify and isolate #lilvantages offered by each system. Focusingpeasance based
methods of face recognition we propose a meansletting and extracting components from the imagesjgace
produced by each system, such that they may be inethbinto a unified face space. We apply this metlof
combination to the eigenface approac¢hand fisherface approath The benefit of using multiple eigenspaces has
previously been examined by Pentland & al which specialist eigenspaces were construétedvarious facial
orientations and local facial regions, from whiehmulative match scores were able to reduce ertesraOur approach
differs in that we extract and combine individuahdnsions, creating a single unified face space.

In section 2 we begin with a brief explanation g tigenface and fisherface methods. We desdrébdatabase of face
images used for testing and training in sectiomldich are then analysed in section 4, discussiagrttage processing
techniques evaluated in previous wofkthe rationale for combining multiple systems amel criteria used to identify
the most discriminatory components of each systébhe algorithm used for combining these componéntthen
described in section 5. After applying this conathion process to the eigenface and fisherface rdstivee compare the
effectiveness of the resultant face space combimstivith the optimum systems of previous wWorklhe evaluation
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procedure is described in section 6, by which wiéope verification operations on a large test detagial images that
present typical difficulties when performing recdgm, such as variations in illumination directicand facial
expression. We present the results in the forermf rate curves in section 7, generated by vgrgidecision threshold
in the verification operations.

2. THE EIGENFACE AND FISHERFACE METHODS

In this section we give a brief explanation of #igenface and fisherface methods of face recognitidile referring
the reader to Turk and Pentl&ntland Belhumeur et afor more detailed explanations. Both approacheswn the
same principle of analysing the image space o¥amgiraining set of face imaggs, of c different people, attempting to
reduce image space dimensionality down to the misstiminating components. This is accomplishedcbgnputing
eigenvectors of one or more scatter matrices (exua) using standard linear methods, ultimatelydpicing subspace
projection matricese andUy, of the topc-1 components with the highest eigenvalues for tgerdace and fisherface
systems respectively.
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The two approaches differ in the scatter matricemfwhich the eigenvectors are calculated. Therdgare method
applies principal component analysis (PCA) using ¢bvariance matri&., constructed from single examples of each
person in the training set. Whereas the fisherfaethod is able to take advantage of multiple exaspf each person,
minimising within-class scatteiSg), yet maximising between-class scattg)( In addition, the fisherface approach
applies PCA to the total scatter matr, producing a preliminary projection matrid,., used to reduce the
dimensionality of the scatter matricBsandS,, ensuring they are non-singular, before computiegeigenvectorsJsq)

of the reduced scatter matrix ratio.
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Finally, the matrixUy is calculated as shown in equation 2, such thatllitproject a face image into a reduced image
space ot-1 dimensions. Once projection matrices have beestnacted, they are used to reduce the dimenstprali
a given face image I" (5330 element vector) down to a c-1 element veetr o, termed a face-key, as shown in equation 3.

w =ul(r-v) fork=1..c1l. 3

These face-key vectors contain the coefficienthefrespective projection matrix eigenvectors,mrefitto as eigenfaces
(Fig. 1) and fisherfaces (Fig. 2). Face-keys ampmared using the Euclidean distance measurewetldy a threshold
to determine an acceptance/rejection decision @asrsin equation 4.
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Fig. 1. The average fackeff) and first five eigenfacesight) computed with no image pre-processing.




Fig. 2. The first five fisherfaces, defining adagpace with no image pre-processing.
3. THE TEST DATABASE

We conduct experiments using a database of 96@piimages of 120 individuals (60 male, 60 femafejasious race
and age, extracted from the AR Face Database @iy Martinez and BenavefteFrom this database we take a
training set of 240 images (60 people under a raridighting conditions and facial expressions)ediso compute the
scatter matrices described in section 2 and uldtpgiroduce the face space projection matricese rEmaining 720
images (60 people, 12 images each) are then sedantb two disjoint sets of equal size (test setnél test set B). We
use test set A to analyse the face-key varianaaugffiout face space, calculate discriminant weigistifsee section 4)
and compute the optimum face space combinatiotis [€aves test set B as an unseen set of datahoate the final
combined system. The six examples shown in Tablere repeated on two days, making up the 12 imafjesach
subject in the test sets. All images are pre-aligwith the eye centres 25 pixels apart, beforegoeiopped to a width
and height of 65 and 82 pixels respectively.

Lighting Natural From left From right| Left & righ Natural atural
Expression Neutral Neutral Neutral Neutral Happy| Angry

Example

Table 1. Image capture conditions included in thablase training and test sets.

4. ANALYSIS OF FACE RECOGNITION SYSTEMS

In this section we analyse image subspaces produbed various image pre-processing techniquespied to both
the eigenface and fisherface methods. We begiprbyiding the results obtained in previous worshown in Fig. 3,
showing the range of error rates produced whengugarious image processing techniques. Contintfiigy line of
research we persist with these same image progessizhniques, referring the reader to Heseltinealet? for

implementation details, while in this paper we foan the effect and methodologies of combining ipleltsystems,
rather than the image processing techniques theessel

Fig. 3 clearly shows that the choice of image psoirey technique has a significant effect on théopeiance of both the
eigenface and fisherface approaches, with det@hmeement filters providing the lowest equal enaies (EER, the
error when FAR equals FRR) when used in conjunciiith the fisherface approach. However, we fingutprising
that some image processing techniques give suchpgssformance, especially when designed specifitalcompensate
for conditions known to be a source of error inefaecognition systeri For example, we see that intensity
normalisation increases error rates for fisherfagsed systems, despite being the optimum imagegsog technique
for eigenface-based recognition. Hence, it is egathat this processing technique is able togmuesdiscriminatory
information, while normalising lighting effects, tyes unsuitable for fisherface-based recognitidWe now carry out
further investigation into the discriminating abjliof each face recognition system by applying &i%h Linear
Discriminant (FLD), as used by Gorddrno analyse 3D face features, to individual comptsésingle dimensions) of
each face space. Focusing on a single face spmeension we calculate the discriminadt describing the
discriminating power of that dimension, betwegmeople in test set A.
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Wherem s the mean value of that dimension in the facgska test set Am the within-class mean of clasand®; the
set of vector elements taken from the face-keydasfsi.




EERs of Face Recognition Systems Using Various
Pre-processing Techniques
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Fig. 3. EERSs of eigenface and fisherface systerimgusrange of image processing techniques aslasdclby Heseltine et?l

Applying equation 5 to each dimension of the eigeafface space (using no image pre-processingjideoa set of
discriminant values as shown in Fig. 4. Lookingtls range of discriminant values, we note that higher
discriminants appear at the lower end of the fa@eas. This is exactly as we would expect, showlvag the order of
principal components, in terms of eigenvaluesglated to that dimensions discriminating ability.



Discriminant Values of Eigenface Face Space
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Fig. 4. Discriminant values of the eigenface fguace dimensions using no image pre-processing.

However, it can also be seen that certain dimesspoduce very low discriminant values. In Figwd see that the
third principal component in particular has a vy discriminating ability, despite its relativehigh eigenvalue. This
highlights some problems in the eigenface traimrgghod, in that the third dimension obviously reergs something of
high variance in the training set that has litttero use in discriminating between different peogdteother words, it is a
feature of the environmental capture conditiongpling equation 5 to each dimension in the assemtrof fisherface

systems, we see similar results to those of thenggge systems, with a wide range of discriminaities across the
different image processing techniques. Fig. 5 shtwe top ten dimensions with the highest discramirvalue from

each fisherface system.

It is clear that although some image processingnigeies do not perform well in the face recognitiests, producing
high EERs as seen in Fig. 3, some of their faced@yponents do contain highly discriminatory infation. We
hypothesise that the reason for these highly digngting anomalies, in an otherwise ineffective spdre, is that a
certain image processing technique may be partiguaited to a single discriminating factor, suhskin tone or hair
colour, but is not effective when used as a moreegs classifier. Therefore, if we were able wase these few useful
gualities from the more specialised image subspdhbey could be used to make a positive contriloutda generally
more effective face space, reducing error ratethdur For examplegrey_worldpre-processing results in a particularly
high EER (23.0%), yet we see that two dimensionthisfface space have discriminant values sigmiflgagreater than
any dimension from the optimum fisherface systesin@slbcimage pre-processing). Therefore, it is not usmeable
to assume (given thajrey_world normalises colour andlbc enhances edges) that if these two dimensions were
extracted and combined with the existsljc face space, a further reduction in error may qcdue to the additional
discriminatory information being introduced.

In order to combine multiple dimensions from a margf face spaces, we require some criterion todaeerhich
dimensions to combine. It is not enough to relgepuon the discriminant value itself, as this oglyes us an indication
of the discriminating ability of that dimension a& without any indication of whether the inclusiginthis dimension
would benefit the existing set of dimensions. {f axisting face space already provides a certaiuain of
discriminatory ability, it would be of little beriefor could even be detrimental) if we were tar@guce an additional
dimension describing a feature already presentimvitie existing set, unless it was of a discrimirgignificantly high
as to provide a valued contribution. Ideally wewldbuse the EER as this criterion, such that a dievension would be
incorporated into any existing system if it resdlie a reduced EER. However, such an approactoldgmatic in that
the time taken to process a complete verificatiealeation for all dimension combinations would bdaasible, unless
we used a particularly small test set, in whichecag run the risk of over-training: only selectithgpse dimensions
particularly suited to the small amount of testadat



Ten Dimensions with the Highest Discrininant Values of Each Fisherface System
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Fig. 5. Ten greatest discriminant values of din@msfrom fisherface face spaces using a rangmafé pre-processing techniques.

What we require is some method of providing andation of how effective a given combination of faggace
dimensions is likely to be, without the need of qassing a complete evaluation of all verificatiqgre@ations. An
obvious solution, already used to analyse indiVidaee space dimensions is that of FLD, which veittmall amount of
adaptation can be applied to whole face-key vectmather than individual vector elements, providiagglobal
discriminant valuel for the entire face space,

S la-al o
d=—=
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where w is the face-key of some single or combined facgcspto which we apply the recognition distancerimet
(equation 4) to the averageéand class averag®,. Applying equation 6 to each fisherface systepwshin Fig. 3 and

comparing the result with their respective EERshbdtomes evident there is some correlation betwhisnglobal
discriminant value and the effectiveness of a facegnition system, as seen in Fig. 6.



Correlation of EER and Discriminant Values for All Fisherface Systems
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Fig. 6. Scatter graph showing the correlation betwthe global discriminant value and EER of fishegfsystems.

5. COMBINING SYSTEMS

In this section we describe how the analysis methdidcussed in section 4 are used to combine railfgce
recognition systems. Firstly, we need to addresgptoblem of prioritising face space dimensioBscause the average
magnitude and deviation of face-key vectors fronarege of systems are likely to differ by some osdafr magnitude,
certain dimensions will have a greater influenantbthers, even if the discriminating abilities avenly matched. To
compensate for this effect, we normalise momentsdibiding each face-key element by its within-claandard
deviation. However, in normalising these dimensiare have also removed any prioritisation, such dligface space
components are considered equal. Although notobl@m when applied to a single face space, whenboong
multiple dimensions we would ideally wish to giveegter precedence to the more reliable componddtherwise the
situation is likely to arise when a large numbetest discriminating (but still useful) dimensidmsgin to outweigh the
fewer more discriminating ones, diminishing theiflience on the verification operation and henc@dasing error
rates. In section 4 we showed how FLD could bel tsemeasure the discriminating ability of a sindimension from
any given face space. We now apply this discrimingalue d (equation 5) as a weighting for eacte fapace
dimension, prioritising those dimensions with thghlest discriminating ability.

With this weighting scheme applied to all face-kpysduced by each system, we can begin to combinensgions into
a single unified face space. The criterion requiicr a new dimension to be introduced to an exisface space is a
resultant increase in the global discriminant, wlaied using equation 6. However, as can be seen Fig. 6 this
method can only provide a rough indication of systffectiveness and if we were to build up the cimaion from a
single dimension, we may achieve a greater disoanti but not necessarily the lowest EER. Thereforerder to
provide the combination with the best head stagtjnitialise the dimension set with the optimumeapace achieved so
far (intensityandslbc for eigenface and fisherface systems respectiveBgginning with this small preliminary set of
dimensions (the face space of the optimum eigenfacisherface system), we then iteratively testheadditional
dimension from other face spaces for combinatich thie existing dimension set as shown in Table 2.

The result is a new face space consisting of theedsions taken from the original optimum systerasa selection of
additional dimensions from other systems. Each demension will have increased the global discrianity such that
the final combination has a significantly highesatiminant value and will therefore also have redithe EER when
evaluated on test set B.



Combined face spaceface space dimensions of current optimum system
Calculateglobal FLD of combined face space
For each face space system:
For eachdimensionof face space system:
Concatenate nedimensionontocombined face space
Calculateglobal FLD of combined face space
If global FLD has not increased:
Remove nevdimensionfrom combined face space
Savecombined face spageady for evaluation

Table 2 Combination algorithm used to select andline dimensions from multiple face spaces.

6. THE TEST PROCEDURE

The effectiveness of the face recognition systenevaluated by means of error rate curves (FRIRAR) generated by
performing a large number of verification operaiam the database test sets. The images in theeteare verified
against every other image, producing a distancgevasing equation 4. No image is compared witifiend each pair
is compared only once (the relationship is symrogtrirhis provides 64,620 verification operatiortsew performed on
all images in test set B or 258,840 operationsothktest sets A and B are combined. After caloudathe distance
values for each comparison, a threshold is appliearder to derive the rejection/acceptance degiéim each image
pair. FAR is calculated as the percentage of daoep decisions when images of different peoplecarepared and
FRR is the percentage of rejection decisions wheages of the same person are compared. By vatlyinthreshold
we produce a set of FRR FAR plots, forming the rerate curve, as shown in Fig.8.
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7. RESULTS

In this section we present results obtained fromuating the optimum single systems and combined facognition
systems formed using the eigenface and fisherfagthads. The results are presented in the formrrof eate curves
(FAR vs. FRR) generated using the procedure destiibsection 6, taking the EER as a single contiparaalue.
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Fig. 8. Error rate curves of single optimum, wegghand combined eigenfadeff) and fisherfaceright) systems, produced when
applied to test set B.

Fig. 8 (left) shows the error rates obtained ugimg eigenface approach, when applied to test sghd3 previously
unseen test set). We see that applying the optimig@nface system (incorporating the best imageppreessing
technique as described by Heseltine & @l test set B, produces an EER of 19.7%. A §iganit improvement is
witnessed when the discriminant values (calculaisidg test set A) are applied as a weighting schéfescribed in
section 5), prioritising the most discriminatingnmipal components, reducing the EER to 15.4%. hwthis weighting
scheme in place for all eigenface systems, we dppty the combination algorithm in Table 2, prodwgcihe third error
rate curve in Fig. 8. Unfortunately, this combirssgtem substantially increases the error ratejtieg in a final EER
of 22.8%.

Fig. 8 (right) shows the results obtained when qrenfng the same evaluation experiments using thkefface
approach. The initial EER, using the optimum image-processing technique is 17.9%. Weightingdateaponents
according to discriminant values, unlike the eigeefsystem, has very little effect on system peréorce and although
provides marginal improvement at some points altrg error curve, actually results in the same EER %©9%.
However, combining the weighted dimensions, froinfigherface systems, produces a significant eregiuction to
13.0% EER. Displaying the face space dimensiolestga for inclusion in this final combined fishacé system in Fig.
9 shows that those systems with lower EERs geyepativide more highly discriminating dimensions foclusion in
the final system than systems with higher EERss #lso evident that dimensions with higher eigéues provide the
most discriminating information, as expected. Heeveit is interesting to note that even a few lué teast effective
systems provide some contribution to the final cored face space.

Having evaluated the initial baseline systems aodhlined systems on the unseen test set B, demtimgtthe
improvement gained by combining multiple fisherfatimmensions, we now explore how these results vérgn the
images used to compute the optimum combinationatge present in the evaluation test set. This mxgat is
analogous to training the face recognition systamtte database (or gallery set) of known peoplechviare then
compared to newly acquired (unseen) images.
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Fig. 10 shows the results obtained when the optirfisherface system and combined fisherface systenapplied to

test set A (used to construct the combined systtas),set B (the unseen test set) and the fullsits(all images from
sets A and B). We see that the combined systers pi@eluce lower error rates (11.7% EER) when appbeimages



used to construct the combination, as would be erpe However, we also see that test set A pradbegier results
(16.6% EER) than test set B for the single fishe¥faystem, suggesting that it is actually a shglethsier test set
anyway. Performing the evaluation on the largdr geviding 258,840 verification operations, theoe rate drops
slightly to 12.8% EER, showing that a small impnmemt is introduced if some test images are avalfdl training, as
well as suggesting that the method scales wellsidening the large increase in image comparisoibe distinct

separation between the error curves of the singfienom fisherface system and those using the coedb@iystem further
enforces the fact that combining multiple face spdicnensions provides a substantial advantageiod®idual systems
that use a single image processing technique.

8. CONCLUSION

We have highlighted the importance of using image@ssing as a pre-processing step to two well-knmethods of
face recognition and discussed the possibilitiesoofibining face space dimensions of multiple systeman attempt to
utilise the advantages offered by numerous imagegssing techniques. Using FLD as an analysis waolhave
confirmed the hypothesis that although an imagesgate may not perform well when used for recogmitio may

harbour highly discriminatory components that cootnplement other more superior systems and hemcéave
shown the potential to improve recognition errotesaby combining multiple dimensions from a randeface

recognition systems.

Using this method of FLD analysis, we have overcame problems presented when combining face retiogni
systems. Firstly, using the respective discrimingalues to weight face space dimensions, accordingheir
discriminating ability, has allowed us to combinaltiple dimensions yet maintain a bias towards ¢hthst present the
most distinguishing features. We have shown thésghting scheme to be highly beneficial when uséth \the
optimum eigenface system, reducing the EER fronT%9to 15.4%, but have little influence on the efifemness of
individual fisherface systems. Secondly, applyffidd to entire face-keys and comparing these glalstriminant
values with the EERs of existing systems has detretesl how this analysis can be used to provideughr indication
of the effectiveness of a given face recognitiostamy, requiring significantly less processing tiitm@n completing a full
set of verification operations on the same datasind) this global discriminant as criteria for sé¢ileg face space
dimensions as potential sources of additional @rgoatory information to an existing system haslded an iterative
approach of appending new face space dimensiogsigting combinations, increasing the global diséniant value and
hence improving the performance of the combined facognition system.

Testing this method of combination on face spapeasentations produced using the eigenface appitackhown it to
be ineffective for this method of face recognitioim;reasing the EER significantly from 15.4% to&2. However,
applying the same combination process to fisherlaeems has shown that combining multiple facecespacan
improve system performance substantially, reduttiegeER from 17.9% down to 13.0%.

This key difference between the eigenface and fiabe approaches is of particular interest andrsttthought perhaps
quite surprising. In order to understand this mmea@non, we must consider the method of combinatgad. We have
created a criterion in which face space dimens@asincorporated into an existing set if they iaseethe discriminant
of the combined face space. This criterion onkesainto account the discriminating ability of thew dimension when
compared with the level of discrimination alreadhiaved within the existing combination. It doest allow for the
inter-dependency of facial features or the possitithat features represented in the additionaledision may already be
present in the existing face space. For examplasider a combined face space, in which its cursethbf dimensions
encapsulates such features as the nose base tiidipe curvature and nose length. Now supposedemtify a new
dimension for inclusion in the face space, repriaisgrthe more general feature of nose shape, wthighto its high
between-class variance will increases the globsdrahinant. However, this new dimension represarfesature that is
largely dependent on those already representdukiface space. Therefore the discriminatory infdiom available in
this new dimension is predominantly redundant, rirgathat the only real contribution to the combiriade space is the
additional noise of within-class variance.

This reasoning begins to uncover the grounds fitingato successfully combine multiple eigenfacesteyns. The
eigenface approach creates a face space that nsasinmnage distribution, but uses no examples offinvitlass
variance, therefore doing nothing to reduce norsenwironmental features. Any dimension combinéith &n existing



face space not only introduces the primary diserating feature (which may have been present bedmcanyway) but
also incorporates substantial within-class varianadini et al® have shown that differences due to lighting coodit
and facial expression are greater than the difteygrbetween images of different people, suggestiagthe noise
introduced when combining dimensions will be morese and cumulative than the discriminating fezguwhich will
often reoccur and hence be redundant. The fisted@proach differs in its ability to formulate daspace such that
within-class variation is minimised, hence reducamyironmental influence, allowing multiple dimemss to combine
with relatively little increase in noise contentherefore, even if the dimension contribution iduedant, little or no
degradation is introduced.

The criterion used to select dimensions is obvipasl important factor in the combination proces&s.this paper we
have developed a method of using FLD to predictesyseffectiveness, which due to its short processime allows
many combinations to be tested in a relatively smadount of time, yet we see from Fig. 6 that tlgsteam with the
greatest discriminant value does not necessarilg tize lowest EER. Therefore it is highly likehat other face space
combinations exist that will produce a lower EERrthihe best combination presented in this papech & face space
combination could easily be found if a more acairapresentation of system effectiveness was ustgticombination
selection criteria. One obvious choice is the BERBIf. Although this would take an extremely lotigne to process,
once the dimensions have been identified, the coeabface space projection matrix can be storedafter use and
providing the training set is sufficiently largedawvaried, re-training and re-combining would notreguired.

Previous work had shown that image processing imgwdhe fisherface method of face recognition faamEER of
20.1% using no image processing, to 17.8% usingoptEnum processing technique. We have extendisditte of
research to show that creating a face space cotidnnancorporating multiple fisherface systemsuess the EER
further, down to 12.8% when tested on a large amnaindata presenting typical difficulties when perhing
recognition. Evaluating this system at its fundataklevel, using 258,840 verification operatiomtvizeen face images,
demonstrates that combining multiple face spaceedgions improves the effectiveness of the core facegnition
engine. We have not applied any additional hdasstypically incorporated into fully functionalommercial and
industrial systems. For example, we have not exyeated with different distance metrics, multipéeitil alignments,
optimising crop regions or storing multiple gallényages. All of which are known to improve erratas and can easily
be applied to the combined face recognition systemasented in this paper. With these additionasuees in place, it
is likely that the improvements made to the coreogaition engine will bring the error rates of fulfunctional
commercial and industrial systems substantiallgeldo those required for the application scenaniasind.
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