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Background

�e technology of brain–computer interface (BCI) has recently gained increasing atten-

tions and has great potentials in improving the quality of life for people suffering from 

severe motor disabilities, such as cerebral palsy and paralysis [1]. �e goal of BCI is to 

establish a communication channel between human brains and ambient environment 

[2], by directly decoding brain signals in order to control external devices. Electroen-

cephalography (EEG) is one of the most popular measurement techniques used in BCI, 

which acquires electrical signals of the human brain with electrodes attached to the 
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scalp. Comparing to other measurement techniques, EEG has the advantages of nonin-

vasive, low cost, and easy setup. �erefore, it has been widely adopted in BCI technolo-

gies [3]. Brain patterns in EEG utilized in BCI applications include P300 [4, 5], motor 

imagery [6, 7], steady-state visually evoked potentials (SSVEP) [8, 9], error-related nega-

tivity (ERN) [10] and so on [11, 12].

While successful demonstrations have been achieved in laboratory settings, the appli-

cation of BCI technologies in real-life scenarios still faces critical challenges. Due to its 

noninvasive nature, EEG recordings are relatively far from signal sources and are further 

smeared by the scalp, cerebrospinal fluid and other soft tissues sitting in between. �ese 

factors result in useful EEG signals that are usually weak and susceptible to static and 

electromagnetic interference, as well as other spontaneous activities, such as electromy-

ography from movements of head and eyes [13]. �ese limitations of EEG make inevita-

ble errors in the process of detecting users’ intentions in BCI systems [14]. It is thus of 

great importance in improving the robustness and reliabilities of BCI systems in order to 

achieve real-life applications.

Human and other species [15] learn and adapt their behaviors through the perception 

of errors. Past studies found that a time-locked negative deflection in EEG, mostly vis-

ible in frontal and central cortical sites, accompanies the occurrence of errors, namely, 

error-related negativity (ERN) [16]. Similar negativities in EEG signals have been 

reported in BCI studies when subjects observe incorrect outputs from BCI systems [17, 

18]. �e negative potentials detected at the onset of unexpected feedbacks (feedback 

ERN, or fERN) [19, 20] can be utilized to adjust command outputs of BCI systems. �us, 

improvements on detection of error potentials (ErrPs) could facilitate the development 

of BCI systems with improved accuracy. Spuler et al. [21, 22] implemented an error–cor-

rection scheme in a P300 speller to correct error outputs in order to improve writing 

speed, which instantiates the application of ErrP detection in EEG data for promoting 

performance of BCI systems. However, both scanty knowledge about the neural mecha-

nism of ErrPs and their temporal variations in status, amplitude and latency impose dif-

ficulties on the investigation [23].

�e key factor in error detection is to effectively extract specific features from raw 

EEG data that are with abundant information, but of low signal-to-noise ratio. Various 

algorithms have been developed in searching for effective methods to extract charac-

teristic features of ErrPs. Dal Seno et  al. [24] proposed a genetic algorithm to extract 

features based on encoding different weight functions. Such algorithm is not only appli-

cable to the extraction of P300 features, but also ERN signals. Omedes et al. [25] utilized 

low-frequency components as features on top of traditional feature extraction method 

in the temporal domain. Zhang et al. [26] came up with a method using directed trans-

fer function (DFT) to extract continuous features that can improve the detection rate 

of error-related potentials, such as ERN. In term of spatial features, Ramoser et al. [27] 

proposed a spatial filtering method to extract features related to motor imagery in EEG, 

i.e., common spatial pattern (CSP). Such method searches for a set of weight coefficients 

at different channels of EEG to combine multiple-channel data to one, on which vari-

ance from different task conditions can be maximized in order to improve classification 

rate. Due to the vulnerability of CSP algorithm to overfitting, Song and Yoon proposed 
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an adaptive CSP [28], Lotte and Guan investigated means in regularizing CSP [29], and 

Li et al. proposed L1-norm based CSP [30], all in an effort to overcome the overfitting 

problem. Shou and Ding [31, 32] proposed blind source analysis and studied EEG signals 

including ErrP associated with errors.

Because of the nonstationarity of EEG, no optimal features can be extracted from tem-

poral or spectral domain alone. Meantime, due to the fact that various activities take 

place across different brain regions, overfitting might occur if using features from all 

channels for classification [33]. On the other hand, it is a critical challenge to select fea-

ture channels containing large inter-condition differences, without affecting the perfor-

mance of BCI systems [34]. To tackle these problems, a procedure is proposed in the 

present study, which includes two times of dimensionality reduction on three types of 

features from temporal, spectral, and spatial domains with the use of neural network, 

and then the features are combined for classification. �e present results from experi-

mental data suggest superior classification performance of combined features over any 

individual features alone.

Methods

Experimental protocol

EEG data from the BCI challenge in IEEE EMBS NER 2015 conference were chosen for 

evaluation [35]. Perrins et al. designed the experimental protocol and collected the EEG 

data [36]. Twenty-six healthy subjects took part in this study (13 males and 13 females, 

mean age = 28.8 ± 5.4, range 20–37). All subjects went through five copy-spelling ses-

sions. Each session consisted of 12 five-letter words, except the fifth which consisted of 

20 five-letter words.

All subjects reported normal or corrected-to-normal vision and had no previous expe-

rience with the P300 speller paradigm or any other BCI applications. EEG data were 

recorded with 56 passive Ag/AgCl EEG sensors whose placement followed the extended 

international 10–20 system. �eir signals were all referenced to a reference sensor at the 

nose. �e ground electrode was placed on the shoulder and impedances were kept below 

10 kΩ. Signals were sampled at 600 Hz.

In order to evaluate the generalization ability across subjects, the data from 16 partici-

pants was used for training and the rest 10 for testing.

Preprocessing

�e downloaded EEG data have been downsampled to 200 Hz.

Since previous literatures indicate that information of error related potentials mainly 

falls into the theta band and mu rhythm [17, 25], before further processing, we firstly 

used a fourth order Butterworth bandpass filter (1–20  Hz) to remove DC component 

and high-frequency noise [37]. After that, independent component analysis (ICA) was 

applied to filtered EEG data to remove common artifacts, such as eye movements, elec-

trocardiography (ECG) and so on. EEG data from all channels were then referenced to 

a common average reference (CAR) to further increase signal-to-noise ratio [38]. At 

last, all data points of each epoch between 200 and 1000 ms after feedback onset were 

selected as one sample.
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Feature extraction

�e features from temporal, spectral, and spatial domains were extracted from EEG sig-

nals, and then the back-propagation neural network (BP neural network) was adopted 

to perform two times of dimensionality reduction, in the end the acquired three levels 

of features from temporal, spectral, and spatial domains were used in another BP neural 

network for classification. �e procedure is detailed in Fig. 1.

Step 1: Extract temporal feature F1 from each EEG channel as the level-1 features.

Step 2:  Using the level-1 features F1 from the training group to train a BP neural net-

work, which was applied to classify F1 features. �e derived one-dimensional 

post-hoc probabilities were the level-2 features F1′.

Step 3:  Using the level-2 features F1′ from all channels to train another BP neural net-

work, which was applied to classify the 56-dimensional level-2 features F1′, 

resulting in one-dimensional level-3 temporal features F1′′.

Step 4:  Extract level 1 features F2 in the spectral domain and repeat step 2 and 3 to 

achieve one-dimensional spectral features F2′′.

Step 5:  Extract level 1 features F3 from in the spatial domain and repeat step 2 and 3 to 

achieve one-dimensional spatial features F3′′.

Step 6:  Combine three features [F1′′ F2′′ F3′′] from the training group to train a feed-

forward neural network, which was applied to classify samples from the testing 

group.

To extract the level-1 features at different domains, a series of algorithms were imple-

mented and described as below.

①Extraction of the level-1 features in the temporal domain (F1): the training data were 

separated into two classes based on their labels, i.e., positive and negative feedbacks. 

ȳ ∈ [Position,Negative] denotes the mean of each class. �en the correlation Rxy and 

covariance Cxy between each sample x and ȳ were computed as the feature set F1, using

(1)Rxy(m) =







N−m−1
�

j=0

xj+myj , m ≥ 0

Ryx(−m), m < 0

(2)Cxy(m) =







N−m−1
�

j=0

(xj+m −
1
N

N−1
�

i=0

xi)(yj −
1
N

N−1
�

i=0

yi), m ≥ 0

Cyx(−m), m < 0

Fig. 1 Feature extraction diagram
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where x denotes each sample, N is the length of each sample and m is the corresponding 

latency.

②Extraction of the level-1 features in spectral domain (F2): the extraction was 

achieved following the approach from Huang et al. [39]. �e empirical mode decomposi-

tion (EMD) was firstly performed to decompose samples from each channels into intrin-

sic mode functions (IMF) using

where ci is IMF, n is the number of IMF decomposed, rn is residue after EMD decompo-

sition. �en Hilbert transformation was performed on each IMF component:

�e analytic signal zi(t) was achieved by:

where ai(t) and θi(t) were instantaneous amplitude and phase respectively, which were 

calculated by:

�en instantaneous frequency of the ith IMF component was acquired by taking the 

derivative of θi(t) as

�us, signal x(t) can be describe as below in reflecting its changing amplitudes along 

time and frequency:

�e Hilbert spectrum for each IMF component was denoted as:

Finally, relative energy coefficient (E), mean frequency (�), mean slope (MS), and coef-

ficient of variance (CV) were calculated as below to form the level-1 features in the spec-

tral domain F2 = [Ei Φi MSi CVi], (i ∈ 1, 2, . . . , n).

(3)x(t) =

n∑

i=1

ci + rn

(4)yi(t) =

1

π

∫
∞

−∞

ci(τ)

t − τ

d(τ)

(5)zi(t) = ci(t) + jyi(t) = ai(t)e
iθi(t)

(6)ai(t) =

√

y2i (t) + c2i (t)

(7)θi(t) = arctan
yi(t)

ci(t)

(8)ωi(t) =

dθi(t)

dt

(9)x(t) =

n∑

i=1

ai(t)e
j
∫

ωi(t)dt
= H(ω, t)

(10)Hi(ω, t) = ai(t)e
j
∫

ωi(t)dt
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where μi and σi are the mean and standard deviation of the ith IMF component.

③Extraction of the level-1 features in the spatial domain (F3): the extraction was 

implemented through four steps based on the approach from Ramoser et al. [27]

a. Calculate the mean covariance matrices R̄p and R̄n for the two classes (positive and 

negative feedbacks), and eigenvalue decomposition as R̄p + R̄n = UC�CU
′

C

b. Calculate the whitening transfer matrix P =

√

�
−1

C
U

′

C

c. Whitening transformation on the mean covariance matrix Si = PR̄iP
T , i ∈ [n, p]

d. Sn and Sp share common eigenvectors B, i.e., Si = BλiB
T, i ∊ [n, p]

e. Each row in the projection matrix W = BTP is the common spatial pattern of the two 

classes

f. �e feature set F3 consisted of Yi = Wi
TX, (i ∊ 1, 2, …, 56).

While the common spatial pattern filter (each row of W56×56) provides a mathematical 

mean of combining features in the spatial domain, manual adjustment is still required 

to further improve the performance [33, 40]. Otherwise, overfitting could occur in clas-

sification due to the hyper-dimensional space [33]. However, in our method, we need 

not choose the filter manually, because we have realized the dimensionality reduction 

of spatial features using neural network from level 2 to 3 and could use all spatial filters, 

bypassing the redundant manual work.

Dimensionality reduction

Each type of features was with different dimensionalities. �ere were 164, 12 and 161 

dimensions in temporal, spectral and spatial features, respectively. �us, the total length 

of the level-1 feature vector was 56 ×  (164 + 12 + 161). For convenience, we wrote it 

as 56 × 3 × M, where 56 was the channel number, the number 3 represented the num-

ber of kinds of features, and M ∊  [164, 12, 161] represented the length of correspond-

ing features. �e whole dimensionality reduction process is illustrated in Fig. 2. �e 1st 

dimensionality reduction led to the collapse of level-1 features from a 3D space to level-2 

features on a 2D plane, by replacing samples in level-1 features with posteriori probabili-

ties. �e dimension of the level-2 feature from all channels was then further collapsed, 

which could be visualized as the linearization of a plane (Fig. 2).

(11)Ei =

∫
∞

−∞
H

2
i
(ω, t)dω

∑3
i=1

∫
∞

−∞
H

2
i
(ω, t)dω

(12)�i =

1

N

∑
ωi(t)

(13)MS =

1

N

∑ dci(t)

dt

(14)CVi =

σi

µi
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�e feedforward BP neural network was used to reduce dimensionality of features. By 

inputting multi-dimensional level-1 features F, one-dimensional level-2 features F′ were 

acquired after dimension deduction, by

where i ∊ [1, 2, 3] denotes different features. WT and b are weights of the neural network 

and bias, respectively, acquired from training datasets. Tansig indicates the hyperbolic 

tangent sigmoid transfer function that calculated a layer’s output from its net input.

When repeating the same steps with level-2 features, the outputs were level-3 features 

as F″.

Classi�cation

For classification, the feedforward neural network was implemented after obtaining 

level-3 features p = [F1″F2″ F3″]. �e neural network can be described as

where Output is the classification results. WT and b are weights of the neural network 

and bias, respectively, obtained from level-3 features p using training data. Logisg is a 

transfer function as

Results

The features from di�erent domains

F1, F2, F3 are features extracted from temporal, spectral, and spatial domains, respec-

tively. �e magnitude differences represent the ability to distinguish two types of signals.

�e feature set F1 consists of Rp, Rn, Cp and Cn, and is shown in Fig. 3.

F2 is the intrinsic mode functions (IMF) decomposed by EMD decomposition. Sam-

ples from each channel are decomposed into four IMF components. Due to the reason 

that the fourth IMF is a monotonic curve, the first three components are chosen as F2 

features, as shown in Fig. 4.

F3 features are the projections of EEG from each channel on the projection matrix W 

from CSP. �e projections of EEG onto the first or last eigenvector or some eigenvector 

(15)F
′

i = tansig(W T
Fi + b)

(16)tansig(n) =
2

1 + e−2n
− 1

(17)Output = logsig(W Tp + b)

(18)logsig(n) =
1

1 + e−n

Fig. 2 The procedure of dimensionality reduction
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in B were commonly used. Although that would decrease the difficulty, signal leakage 

could occur [41]. Figure 5 presents the projections of EEG onto the 1th eigenvector in B.

Performance in error detection

�e training and predict programs run on the personal computer (CPU: Intel(R) 

Core(TM) i5-4590 @ 3.30 GHz, RAM: 8 GB, System: Windows 10 64-bit, Platform: Mat-

lab R2014a). �e data from 16 participants (total 5400 samples) were used as the training 

set, which took 137 min for training. And it took 3.56 s to predict one sample in testing 

set.

�e confusion matrix is implemented to evaluate the performance of classification. 

Figure 6 shows the results of multiple features (F1′′ + F2′′ + F3′′) from testing group 

Fig. 3 The grand average of temporal statistic characteristics F1 (Rp, Rn, Cp and Cn)

Fig. 4 The grand average of F2 features (IMF1, IMF2, IMF3)
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including true negative (13.9 %), false positive (8.1 %), false negative (15.2 %) and true 

positive (62.8 %). �e total accuracy is the sum of true positive and true negative, i.e., 

76.7 %.

In�uence of features and individual variance

In order to further evaluate the effectiveness of feature extraction and the performance 

of classification, receiver operating characteristic (ROC) curves using different features 

and their combinations are shown as Fig. 7. F1, F2 and F3 represent the temporal, spec-

tral, and spatial features, respectively. �e combination of three features leads to the best 

performance. Table  1 shows the results of the variance among individual subjects for 

accuracies of error detection using the metric of area under ROC curves, from different 

types of features. It demonstrates the combination of features could improve the perfor-

mance of classification, the results of a one-way Analysis of Variance (ANOVA) show 

significant difference (F = 7.24, p < 0.005) between single features and combination of 

three features.

Fig. 5 The grand average of projections of EEG onto the 1th eigenvector in B

Fig. 6 Confusion matrix for error detection. TN true negative; FP false positive; FN false negative; TP true posi-
tive (Testing group results)
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�e data also reflect variance among individuals. Based on the classification perfor-

mance from the combination of three features, the participants generally fall into two 

groups. One group contains 6 subjects with the average AUC of 0.8339, and another 

group contains 4 subjects with the average AUC of 0.6585. �e performance using three 

single features in the first group also surpasses the second one, as shown in the first three 

columns of Table 1. One possible reason is that the participants in the first group were 

more concentrated in the task and the signal-to-noise ratios (SNR) of EEG data were 

higher than the second group during the extraction of useful features. Some previous 

Fig. 7 ROC curves from using different features (testing group result)

Table 1 Individual AUC metric values from using di�erent features

Subjects F
1
′′ F

2
′′ F

3
′′ F

1
′′ + F

2
′′ F

1
′′ + F

3
′′’ F

2
′′ + F

3
‴ F

1
′′ + F

2
′′ + F

3
‴

2 0.7475 0.6163 0.7493 0.7550 0.7908 0.7554 0.7990

3 0.8961 0.5662 0.8024 0.8638 0.8706 0.7992 0.8788

5 0.7497 0.6774 0.7870 0.7691 0.7896 0.8111 0.7968

6 0.7596 0.5642 0.7004 0.7486 0.7797 0.7071 0.7856

7 0.8169 0.6115 0.7843 0.8257 0.8381 0.7992 0.8531

8 0.7503 0.7161 0.9031 0.7878 0.8967 0.9238 0.8902

1 0.6547 0.5599 0.6280 0.6576 0.6507 0.6323 0.6645

4 0.6214 0.5950 0.5943 0.6382 0.6122 0.6146 0.6369

9 0.7430 0.5144 0.5488 0.7135 0.6184 0.5486 0.6617

10 0.6510 0.4981 0.6844 0.6246 0.6961 0.6570 0.6711

Average 0.7270 0.6376 0.7330 0.7501 0.7608 0.7520 0.7818
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studies have shown that electrophysiological responses are known to reflect participant’s 

involvements in the task [36, 42, 43].

In�uence of electrodes

Although multi-channel EEG signals could provide more comprehensive and complete 

information about different conditions, the added dimensionalities would also lead to 

overfitting and reduced the classification performance.

Figure 8 presents the influence of electrodes on the classification performance from 

using the combination of three features. Firstly, it reveals the effect of electrode loca-

tion to the classification results. Features from electrodes in central brain regions gen-

erally exceed those at peripherals in classification performance. Secondly, it shows that 

single electrodes have poor performance in detecting errors with the average AUC of 

0.5726. �e AUC values of features from electrodes (AF4, F4, F6, O2) are near 0.5, which 

demonstrate the poor ability of classification. With added features from more electrodes, 

the classification generally show increasing pattern except for a few electrodes (i.e., AF4, 

F8 and T8), illustrated by stars in Fig. 8. �e added features lead to the adjustment of 

weights in neural network toward desired directions, which in turn contribute to the 

improvements in classification performance.

Discussion

Feature extraction and representation are critical factors in error detection. Single fea-

tures from temporal, spectral, and spatial domain have been widely investigated in many 

studies [25, 27]. In the present study, we proposed a method of error detection using 

neural network to combine various features from multiple-electrode EEG, which not 

only combines features of different domains, but also addresses the overfitting issue 

caused by the curse of dimensionality. In the contest, our performance score was 0.7818 

and ranked fourth among all the 260 teams attending the challenge, as shown in Table 2.

�e abilities in error detection of the three features F1, F2, F3 can be observed in Figs. 3, 4, 

Fig. 8 The influence of number of electrodes on AUC. Each bar denotes AUC of features from only one elec-
trode. Each star presents AUC of combined features from FP1 to each of the following electrodes
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and 5, respectively, revealed by the magnitude differences in various features. �e obser-

vation is in line with the classification performance in Fig. 7 and Table 1. For example, 

the magnitude differences are small for F2, comparing to other two features, and its clas-

sification performance are also worse than others as shown in the 3rd column in Table 1. 

Nevertheless, there is still constructive information in F2 for error detection, suggested 

by the improved detection performance with F2 added to the combination of features in 

Table 1. Such combinations make use of information from temporal, spectral, and spa-

tial domains, and provide more comprehensive information about errors than individual 

features. However, simple combination of features would result in long feature vectors. 

When further considering added information from different electrodes, the complex 

model is very susceptible to the overfitting problem in classification, which might lead 

to degeneration in performance. �erefore, feature extraction and dimensionality reduc-

tion play important roles in error detection in the present study. �e feedforward BP 

neural network is implemented to reduce the dimensionality of features. �e outputs of 

neural network are essentially the posterior probability of the primary inputs, and the 

values are between [0, 1] (values close to 1 favor the labeling towards positive class, and 

0 to the negative class). After two times of dimensionality reduction, the level-3 features 

become just one dimension.

In previous studies, some researchers realized dimensionality reduction through chan-

nel selection. �ey selected electrodes via observing topographic EEG power maps 

over the scalp [36, 37]. In addition, there are some other studies that implement PCA 

[44], ICA [45, 46] or other channel selection algorithms [39], for the selection of spatial 

features.

In term of detection performance, the following factors pose impacts in the proposed 

method. �e first factor is the preprocessing of raw EEG data, such as removal of eye 

artifacts, time window length and cutoff frequency of bandpass filter. It is found that 

eye-movement artifact removal during EEG preprocessing could enhance the accuracy 

about 2 %. Another factor is the feature extraction process, such as the selection of time 

delay parameter m in the process of temporal feature extraction. �e larger the m value 

is, the more information about error detection in F1 features. When extracting features 

in the spatial domain, it is found that other spatial filter method such as xDAWN [47] 

could also be used to improve performance.

�e error detection is essentially a binary classification problem. Such type of classi-

fication usually suffers greatly from unbalanced sample numbers from different classes. 

�is imbalanced sample numbers result in biased classification towards the majority 

Table 2 The score and ranking of our method

Rank AUC

1 0.8722

2 0.8566

3 0.8180

Our method 0.7818

 5 0.7692

 6 0.7479
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class and lower detection rate in the minority class [48, 49]. To tackle such a problem, 

different techniques were explored to compensate inter-class sample differences, such 

as over-sampling and under-sampling [50]. In addition, some researchers improved the 

prediction rate of the minority class by adopting classifier algorithms [51]. In future 

works, it could be an important aspect to investigate in order to improve the accuracy of 

error detection.

Conclusions

In the present study, to capture the discriminative information about error potentials 

in features from different domains and avoid overfitting caused by features of multiple 

dimensionalities, we proposed a new approach of combining multiple-channel features 

from temporal, spectral, and spatial domains through two times of dimensionality reduc-

tion based on neural network. It took advantage of information from multiple electrodes 

and combination of features from different domains rather than single features. �e clas-

sification results using ROC curves and AUC metrics suggest superior performance with 

combined features over single features, and show the good generalization ability across 

subjects of the proposed algorithm. �e improved accuracy in error detection in pre-

sent study demonstrate great potentials in promoting the performance for BCI systems 

integrated with scheme of error correction. �is could facilitate developing robust BCI 

systems towards real-life environment.
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