
Combining Multiple Sources of Knowledge in Deep CNNs for Action Recognition

Eunbyung Park, Xufeng Han, Tamara L. Berg, Alexander C. Berg

University of North Carolina at Chapel Hill

{eunbyung,xufeng,tlberg,aberg}@cs.unc.edu

Abstract

Although deep convolutional neural networks (CNNs)

have shown remarkable results for feature learning and

prediction tasks, many recent studies have demonstrated

improved performance by incorporating additional hand-

crafted features or by fusing predictions from multiple

CNNs. Usually, these combinations are implemented via

feature concatenation or by averaging output prediction

scores from several CNNs. In this paper, we present new

approaches for combining different sources of knowledge

in deep learning. First, we propose feature amplification,

where we use an auxiliary, hand-crafted, feature (e.g. opti-

cal flow) to perform spatially varying soft-gating on inter-

mediate CNN feature maps. Second, we present a spatially

varying multiplicative fusion method for combining multi-

ple CNNs trained on different sources that results in robust

prediction by amplifying or suppressing the feature activa-

tions based on their agreement. We test these methods in the

context of action recognition where information from spa-

tial and temporal cues is useful, obtaining results that are

comparable with state-of-the-art methods and outperform

methods using only CNNs and optical flow features.

1. Introduction

As deep convolutional neural networks (CNNs) have

shown remarkable performance for computer vision tasks

on static images[11, 2, 15], there has been interest in ap-

plying deep CNNs to video generally and to human action

recognition in particular. However, for action recognition,

the discriminative performance of spatio-temporal features

learned by deep CNNs has fallen short compared to accu-

racy gains seen in the image domain[10, 24]. There are two

potential reasons for this: 1) existing datasets are not large

or representative enough to learn robust features, and 2) it

is difficult to either design or train networks to learn spatial

and temporal features simultaneously. In order to overcome

these challenges, recent studies have proposed methods to

incorporate hand-crafted features in combination with tra-

ditional CNN based approaches that operate directly on raw

pixels from video frames[18, 28, 13, 27, 25].

Notable progress was made by Simonyan et al[18] who

proposed a two-stream network architecture designed to

mimic the pathways of the human visual cortex for object

recognition and motion recognition. One stream of their

approach used a network focused on learning spatial fea-

ture from RGB input images (spatial network), while the

other stream used a network focused on learning temporal

features from optical flow inputs (temporal network). Final

predictions were computed as an average of the outputs of

these two networks, demonstrating improved performance

over single stream approaches. Results indicated that errors

made by the two networks were tuned to the particular input

feature type, with the temporal network confusing different

classes with similar motion patterns and the spatial network

confusing different classes with the same depicted objects

(e.g. human’s face).

Given these results, we believe that the two-stream ap-

proach is promising, but could be strengthened by enhanc-

ing each network with knowledge from the other stream.

For the spatial network, it could be useful to know which

parts of the image are moving. For example, the spatial

network could be improved by knowing that the hands and

hammers are moving (in a hammering activity) so that the

network could focus on these portions of the frame rather

than other non-essential parts of the frame. On the other

hand, for the temporal network, it would be useful to have

knowledge about “what” is depicted in the moving parts of

a video. For example, if the temporal network knew that

the repetitive up-down motion was a hammer, it could more

reliably label the video as hammering. Therefore, rather

than simply averaging the final outputs from the two net-

works, we propose to incorporate this knowledge directly

into the networks to allow for earlier cross-communication

of knowledge between the two streams.

In this paper, we present two ways of combining spatial

and temporal cues in deep architectures for action recogni-

tion. First, we propose feature amplification, where we use

an auxiliary, hand-crafted, feature (e.g. optical flow) to per-

form spatially varying soft-gating on an intermediate CNN

feature map. In particular, we amplify the activations of the



last convolutional layer of a deep network by the magni-

tude of optical flow, allowing a previously spatial-only net-

work to understand which parts of image are moving be-

fore the fully-connected layers are evaluated. Second, we

present a spatially varying multiplicative fusion method for

combining spatial feature maps (e.g. the last convolutional

layers) from multiple CNNs trained on different sources.

This method amplifies or suppresses activations based on

the agreement between the networks in each part of the

image. Experimental results on two popular action recog-

nition datasets, UCF101[21] and HMDB51[12], show that

this outperforms previous additive fusion methods.

2. Related Work

There have been many approaches for applying deep

learning methods to video classification. 3D CNN was pro-

posed to train networks to learn spatio-temporal features[7,

24]. [10] collected a large scale You-tube video dataset

and applied several variants of CNN architectures, includ-

ing early fusion, late fusion, and 3D CNN. [18] proposed

a two-stream network to decouple spatial and temporal fea-

tures. Some fusion methods based on fully connected lay-

ers have been suggested to improve video classification[9,

26]. Recently, efforts to learn long-term temporal features

have been proposed to train recurrent neural networks (e.g.

LSTM[6]) [1, 26] using hand-crafted features (as opposed

to raw pixels) as inputs[25, 27].

Multiplicative interactions have been explored in sev-

eral places. [23] introduced a bilinear model that has mul-

tiplicative interaction between two factors, such as con-

tent and styles. [20] proposed a point-wise gated boltz-

mann machine (PGBM) that can distinguish task-relevant

features from distracting task-irrelevant features by intro-

ducing switching units that have multiplicative interactions

between visible and hidden units. [22] introduced a mul-

tiplicative RNN which considers the multiplicative interac-

tion between the current input and previous outputs of hid-

den units. Additionally, many variants of gated RNNs, such

as LSTM, have introduced multiplicative gates to control

the amount of information that can be passed to successive

layers.

Bilinear CNNs were proposed very recently [14], using

two CNNs pre-trained on the ImageNet dataset and fine-

tuned on fine-grained image classification datasets. Their

combination method extracts features from the last convo-

lutional layer of each network and performs a dot-product

between all possible pair-wise interactions to get a feature

vector. Then they add one final fully-connected layer on

top of this for classification. This means that their model

is a linear combination of all possible pair-wise interactions

between feature maps. In terms of model capacity, their

method is similar to our multiplicative fusion method. How-

ever, their method is less scalable because the size of the

CNN

Element-wise

Product

Last 

conv features

Optical flow 

magnitude

Fully connected layers 

for classification

Amplified

conv features

RGB image

Figure 1: Feature amplification with optical flow magnitude

feature vectors are exponential with respect to the number

of feature maps, whereas ours does not depend on the size

of feature maps and the number of networks. Additionally,

their networks are both trained for the same object classi-

fication task, whereas our two-stream approach can incor-

porate two explicitly different types of features, e.g., spatial

and temporal, into the classification process.

3. Feature Amplification

CNNs have been successful for feature learning and se-

lection that directly affect the discriminative power of clas-

sifiers for many computer vision tasks. Especially for the

image classification task, where CNNs have outperformed

hand-crafted features by a significant margin, extremely

good performance has been achieved using only categori-

cal labels for images, leaving the CNNs to learn everything

else such as objects, parts of objects, background, etc. It is

widely accepted that large-scale datasets and high computa-

tional power have played an important role in these achieve-

ments. Recent work has shown that CNNs can even recog-

nize and take advantage of characters on signs of store for

store front classification in large scale street view datasets

without any supervision about where the text is located or

what type of characters are depicted[16].

However, collecting large-scale labeled datasets is very

expensive. In some cases, such as the video domain, the sit-

uation is even more challenging. However, without a large

enough dataset, CNNs may fail to learn and extract use-

ful features since they could be easily distracted by noisy

and unimportant features. They may also overfit to noisy

and small training datasets, making generalization to the

real world infeasible. For example, for action recognition

datasets in the video domain, such as UCF101, we found

out that existing spatial networks can easily be trained to

achieve 100% accuracy on training dataset, but with rela-

tively lower accuracy on testing dataset. In addition, train-

ing deep and large CNNs on multiple frames for learning



concatenated conv5

Spatial 

CNN

Temporal

CNN

FC 

layers

(a) Baseline A

concatenated conv5

1x1 

conv

Spatial 

CNN

Temporal

CNN

combined conv5

(b) Baseline B

conv5

1x1 

conv

Spatial 

CNN

Temporal

CNN

conv5

combined conv5 combined conv5

elt-wise prod

multiplicative fused conv5

(c) M-fusion(conv5)

Spatial 

CNN

Temporal

CNN

fc6 fc6

fc7 fc7

combimed fc7 combined fc7

multiplicative fused fc7

(d) M-fusion(fc7)

Figure 2: Various fusion alternatives

spatio-temporal features is also very expensive even with

GPU and distributed computing frameworks[10]. Many

studies try to reduce computational cost by collapsing tem-

poral information after the first convolutional layer, consid-

ering only short-term temporal information (e.g. 10 or 20

frames), or ignoring temporal information completely.

The proposed feature amplification aims to alleviate both

problems by introducing additional supervision along with

the category label during training of spatial networks (Fig-

ure 1). First, we extract features from the last convolutional

layer of the spatial network. We then compute optical flow

magnitudes given a pair of consecutive frames and resize it

to be the same size as the feature maps in the last convolu-

tional layer (13x13 or 14x14 depending on the architecture).

Then, we simply perform element-wise product to amplify

feature activations and fine-tune the rest of fully connected

layers. Optical flow magnitude is scaled from 1 rather than

0 so as not to zero out other parts of the image features

which might also be important for classification. By doing

this, we are able to reduce the burden of learning temporal

features, which results in lower computational cost. Fur-

thermore, it provides hints about which parts of images are

important, allowing us to learn better CNNs from smaller

datasets.

4. Multiplicative fusion of multiple CNNs

In addition to our feature amplification technique which

directly enhances the spatial network CNN, we also develop

a method to combine multiple networks. In this paper, we

use this to combine networks trained on temporal and spa-

tial information, but this could be applied more generally

to combine any given set of networks. One straightforward

way of combining multiple networks is to add additional

fully connected layers to combine the outputs (or internal

layers) of the networks. This has an additive property be-

tween different feature activations and has been success-

fully adopted in several applications, such as similarity met-

ric learning[4]. We, however, found that this approach tends

to suffer from overfitting when applied directly to the spa-

tial and temporal networks[18]. Motivated by the promis-

ing performance of our feature amplification technique, we

propose a new multiplicative fusion method. The proposed

method aims to find important features of each network and

give a higher score to the prediction only when multiple

networks agree with each other. For example, activations

of feature maps from convolutional layers will be amplified

if both networks produce high activations at the same loca-

tion, otherwise they will be suppressed.

4.1. Formulation

In this section, we introduce a formulation of our pro-

posed fusion method. Suppose we are given two CNNs,

for instance, a spatial network and a temporal network. Let

matrix A ∈ R
d×M and B ∈ R

d×N be extracted features of

the last convolutional layer from each network. M and N

are the number of feature maps which can vary according

to the particular CNN architecture (in our experiments 512

for conv5). d is the size of feature maps, which is usually

13×13 or 14×14 (7×7 or 6×6 after last max pooling). ai
and bi are the ith column of each matrix, which corresponds

to one feature map. The output of our proposed fusion C is



then:

ck =

(

M
∑

i=1

αkiai + γk

)

⊙





N
∑

j=1

βkjbj + δk



 (1)

where ⊙ is element-wise product (this could be replaced

with dot product if spatial information is deemed less im-

portant), γ and δ are bias terms (we fix them to 1 for our

experiments so as to not-zero out other input features). α

and β are weights for each feature map and learnable pa-

rameters. This can also be extended to fuse fully connected

layers. Unlike in the convolutional layer, for the fully con-

nected layer, d is 1, so the dimensions of A and B will be

1×M and 1×N respectively.

The α and β will play a key role to select good features in

each network, giving higher weights to features that are use-

ful for prediction. K is the only additional hyper-parameter

we introduce, where a larger value means larger capacity

of the fused networks. From our experiments, we find that

2048 was large enough to successfully fuse the spatial and

temporal networks. Note that this method is scalable with

respect to the number of networks that we are trying to

combine, since the size of the fused network depends on

K rather than the number of networks.

The proposed fusion layer can be trained with standard

back-propagation and stochastic gradient descent. Taking

derivatives of this layer is straightforward and can be easily

plugged into many popular CNN software platforms, such

as caffe[8]. In practice, it can be easily implemented in two

steps, 1×1 convolutions followed by element-wise product

(Figure 2 illustrates the fusion process).

5. Experiments

5.1. Datasets

UCF101 dataset[21] has been widely used by action

recognition studies. There are total 13320 short video clips

and each clip present only one (repetitive) action out of the

101 categories of human actions. The HMDB51 dataset[12]

is another popular action recognition dataset that was col-

lected from movies and internet videos. The dataset has

6,766 short video clips and 51 action categories. Both

datasets provide standard 3 train/test splits and final scores

are normally reported as the average of the accuracies ob-

tained for each split. We decode all videos into static images

for entire frames with ffmpeg library and store the frames

compressed in jpeg files. We resized all frames to a fixed

size that makes the smallest side of the frame 256 pixels

long.

5.2. Implementation details

Optical Flow. We strictly followed the directions in [18]

for fair comparison. Using the pre-decoded images, we

UCF101 HMDB51

models base amp base amp

T[18] 80.3 – 47.3 –

S[18] 70.6 75.0 35.4 38.0

S(VGG19)[19] 78.8 81.0 40.3 44.9

S + T 85.0 85.5 50.6 51.2

S(VGG19) + T 87.8 88.5 50.1 54.5

Table 1: Classification accuracy on the UCF101 and

HMDB51 dataset with amplified spatial network (for 3 stan-

dard train/test splits). ’+’ indicates taking the average of the

l2-normalized softmax scores of two networks[18], S and T

stands for spatial and temporal networks respectively, and

’amp’ indicates the use of our feature amplification method.

compute optical flow between pairs of consecutive frames.

For optical flow magnitude, we computed euclidean norm,

quantized them into natural numbers, and saved them in

jpeg files. For optical flow, we concatenated x and y op-

tical flow into one jpeg file, which reduces the number of

file operations when we provide data into the network.

Training. All spatial networks were pre-trained on the

ImageNet Challenge classification dataset. All training was

performed in the caffe[8] framework with relatively simple

modifications. Dropout 0.7 and 0.5 were evaluated and we

empirically found that 0.7 ratio gave slightly better results.

For every iteration, we applied random flipping and crop-

ping, a standard procedure for data augmentation. Weight-

decay and momentum were set to 0.0005 and 0.9 respec-

tively. For training each spatial and temporal network, We

followed the learning rate policy in [18]. For fusion net-

works, batch size was set to 128 and initial learning rate

was set to 10−3. After 20K iterations, it was changed to

10−4, then changed again to 10−5 after another 20K iter-

ations. For multiplicative fusion networks, we sample one

image from the video as an input to the spatial network, and

selected 10 consecutive optical flow frames starting at the

point we sampled the image for the spatial network.

Testing. We also adopted the approach in [18] for test-

ing. Given a video, we sample 25 frames with equal tem-

poral spacing between them. For each frame, we computed

10 CNN features by cropping and flipping four corners and

the center of the frame. The average of total 250 scores was

used for final prediction.

5.3. Results of feature amplification

We adopt two widely used CNN architectures for the

spatial networks, one from [18] and the other from very

deep CNNs [19], both pre-trained on 1000 categories from

the ImageNet Challenge dataset. We then fine-tune the fully

connected layers using our optical-flow based feature am-

plification approach. Table 1 shows that this simple trick



Figure 3: Effects of feature amplification in UCF101 dataset. Top row shows sample images from videos where our amplified

spatial networks provide a correct activity classification while the original spatial network’s predictions are incorrect (from

left to right, predictions by the amplified network vs original network are [’jumping jack’, ’boxing punching bag’], [’tennis

swing’, ’trampoline jumping’], [’playing daf’, ’drumming’], and [’head massage’, ’mopping floor’] ). Bottom row shows

example images from the incorrect activity class predicted by the original spatial network. The middle row visualizes the

optical flows y-axis images corresponding to top row images.

achieves significant improvement in accuracy of the spatial

network. Rows 2 and 3 of the table show performance for

the [18] and [19] networks respectively, demonstrating im-

provements from an average of 70.6% accuracy to 75% ac-

curacy(35.4% accuracy to 38% for HMDB51) for the base-

line vs feature amplified versions of the [18] network and

78.8% to 81.0%(40.3% accuracy to 44.9% for HMDB51)

for the [19] network. Subsequently this also results in su-

perior two-stream classification accuracy when combined

with the temporal network (base vs amp columns of rows 4

and 5 respectively).1

We also perform a qualitative study to analyze effects of

the amplified spatial network. First, we select some classes

where the amplified spatial network provides the correct an-

swer while the original network produces the wrong answer.

Then, we study why the original spatial networks failed to

produce the right answer.

Figure 3 shows some examples in UCF101 dataset. In

the first column, the original spatial network predicts the

1Pretrained spatial and temporal networks of [18] are not publicly

available. We did our best to reproduce their result and put the num-

bers from our version, which are slightly lower than original performance.

In addition, [18] applied multitask learning approach witn combined both

UCF101 and HMDB51 datasets when they trained networks for HMDB51

dataset for better accuracy while we only used HMDB51 dataset.

video to show the action ‘boxing punching bag’ rather than

’jumping jack’ since there are several punching bags in the

image in question. However, the amplified spatial network

is able to predict the right answer because it focuses on the

moving portions of the image rather than the punching bags.

We observe similar patterns in other examples. In the sec-

ond column, the amplified spatial network can focus on the

human and tennis racket while the original network mis-

classifies the action as ‘trampoline jumping’ since the tram-

poline and tennis court look visually similar. In the third

column, there are drums in the sample image, confusing

the original spatial networks, but not the amplified network.

Lastly, the amplified spatial network is able to focus on the

hands and head in the last column, enabling a correct clas-

sification of ‘head massage’.

5.4. Results of multiplicative fusion

We evaluate our multiplicative fusion method compared

to baseline fusion methods. Figure 2 shows various alter-

natives. First, baseline A represents a straight way of com-

bining two CNNs, putting a fully connected layer on top of

concatenated conv5 features followed by a few of fully con-

nected layers for classfication. For baseline B, we combine

networks as a linear combination of concatenated conv5



UCF101 HMDB51

methods basic VGG19 basic VGG19

baseline A 75.3 82.2 37.4 36.9

baseline B 76.0 81.0 39.2 38.7

m-fuse(conv5) 82.1 84.4 51.6 52.7

m-fuse(fc7) 83.4 87.6 52.0 53.3

Table 2: Classification accuracy of fusion networks on

UCF101(split1) and HMDB51(split1). The ‘basic’ results

use the spatial network from [18], ‘VGG19’ results use [19].

Note that using the more advanced spatial model already

significantly improves performances, but our proposed fu-

sion combination techniques improve both versions of the

networks. See Fig. 2 and Sec.5.4

features, which can be easily implemented in the form of

1x1 convolution plus a few of fully connected layers for

classification. M-fusion(conv5) and M-fusion(fc7) are our

proposed multiplicative fusion methods on conv5 and fc7

features respectively.

Table 2 shows performance of various fusion methods.

For UCF101 dataset, we achieve performance gains from

75.3% (baseline A) or 76% (baseline B) to 82.1% and

83.4% for our proposed fusion methods on the network

from [18]. For the network from [19], we see improvements

from 82.2% (baseline A) or 81% (baseline B) to 84.4% and

87.6% by our proposed fusion. This is potentially because

our method can avoid overfitting due to the fact that only

pairs of features that two network have agreed upon can

contribute to the final classification. In other words, many

of the features that could lead to do overfitting were effec-

tively suppressed by the multiplicative operation. Note that

the over-fitting problem for baseline fusion methods with

HMDB51 dataset are very serious because of the smaller

size of the dataset. With our multiplicative fusion tech-

nique, we can achieve significant performance gains from

39.2% to 52.0% on the network from [18], 38.7% to 53.3%

on the network from [19].

We also performed a qualitative study to analyze the im-

pact of multiplicative fusion networks in similar way in

section 5.3. Figure 4 shows some examples in UCF101

dataset. In the first row, the correct action class was

‘Archery’, which is very difficult to identify since the per-

son and bow are far away in the image making them quite

small in size. Thus, the spatial net predicted ‘CliffDiving’

which has a similar background(the third column in the first

row). The temporal net also confused this example with

‘GolfSwing’ since the motion pattern of arrows and golf

clubs are similar(the second column in the first row). In ad-

dition, both networks are very confident in their beliefs, so

the two-stream network using averaging based fusion also

provided the wrong answer. Our method was able to pre-

models UCF101 HMDB51

S + T 85.0 50.6

S(VGG19) + T 87.8 50.1

S + T + m-fusion 86.0 52.7

S(VGG19) + T + m-fusion 88.3 54.4

S(amp) + T + m-fusion 88.9 56.2

S(amp) + T + m-fusion(fc7) 89.1 54.9

Table 3: Classification accuracy on UCF101 and HMDB51

using various combinations of spatial (S) and temporal

(T) streams. The baseline S and T implementations were

trained following [18]. ‘m-fusion’ stands for multiplicative

fused network and ‘amp’ uses the VGG19 spatial network

with feature amplification. Combining our amplification

technique for gating the spatial network with multiplicative

fusion in the last convultional layer or in fc7 led to the best

results. Details in Sec.5.4.

dict the correct activity with high belief since it could ef-

fectively suppress the background feature activations and

amplify feature activations for the arrow. The second row

shows another example. Here both the temporal and spatial

networks predict the same incorrect answer (‘HighJump’ vs

the correct answer of ‘JavelinThrow’) with high confidence.

Therefore, the averaging based fusion also produces this in-

correct answer. However, our method predicts ‘HighJump’

with strong belief by effectively selecting the moving pole

as one of the important features.

However, We noticed that many action classes are eas-

ily classified by either the static visual information or mo-

tion information alone. Therefore, we simply performed

a weighted average of the m-fusion, spatial, and temporal

network predictions together (empirically, 2:3:4 was good

ratio for all experiments) to make our final prediction. This

provides superior results to the two-stream networks (Table

3).

Overfitting and regularization. It turns out that mul-

tiplicative fusion works as well as a regularizer. When it

comes to regularization of deep CNNs, weight-decay and

dropout[5] are easily applicable and commonly used. We

have tried to make our baseline methods avoid overfitting

by using these techniques, but even with aggressive weight

decay and dropout we still observed low performance on the

testing dataset.

Finetuning. Our proposed methods is a simple multi-

plication between a linear combination of previous layers.

One may argue that the linear combination layer before the

multiplication may not be necessary since previous layers

should already perform this function (e.g. the convolution

operation can be interpreted as linear combination with con-

volutional filters). However, from our experimental results,

fine-tuning the layers before the fusion layer was not very



Spatial net : CliffDiving(X)M-fused net: Archery (O) Temporal net: GolfSwing(X)

Spatial net : HighJump(X)

Score: 0.937

Temporal net: HighJump(X)

Score: 0.702

Score: 0.978

M-fused net: JavelinThrow(O)

Score: 0.851 Score: 0.662

Score: 0.948

Figure 4: Examples of the results with multiplicative fusion network in UCF101 dataset.

helpful. Therefore, we fine-tuned the layers only after the

fusion layer for all of our experiments, which is the case

where the linear combination layer plays a very important

role. Normalization after or before the fusion layer might

help to fine-tune all the way down to the first convolutional

layer. We also might get benefits from training whole fusion

networks from the scratch rather than fine-tuning from the

pre-trained networks.

5.5. Performance comparison to other methods

models accuracy

Twostream with extra data[18] 86.9

Twostream with extra data, SVM fusion [18] 88.0

Twostream, regularized fusion[26] 88.4

Twostream, regularized fusion , LSTM[26] 91.3

CNN, IDT, FV[28] 89.6

CNN, optical flow, LSTM [27] 88.6

IDT, FV, temporal scale invariance[13] 89.1

CNN, IDT, FV, trajectory, SVM[25] 91.5

Ours 89.1

Table 4: Performance comparison to state-of-art results on

UCF101. Our results are the best of the two stream ap-

proaches that do not add an extra LSTM stage, and com-

pares favorably to the state of the art that adds many addi-

tional, somewhat complex, stages to processing.

Table 4 shows state-of-art methods on UCF101 dataset.

Among the methods [18, 26] that only depend on convolu-

tional networks, we achieved the best result. Also note that

we didn’t use any extra data that might lead us to have bet-

ter result, e.g. multi-task learning for training the temporal

network[18]. Another straightforward way to improve per-

formance would be to combine various hand-crafted fea-

tures with CNN features, which might also be helpful for

our method[28]. Several recent works have also considered

longer temporal information while our CNN feature only

contains short temporal information. For example, [26]

trained an LSTM over entire frames of video, [27] proposed

various pooling methods on LSTMs, and [13] considered

temporal scale invariance. All of these could also incorpo-

rated directly into our method.

6. Conclusion and Future Work

In this paper, we proposed new ways of combining

knowledge in convolutional networks for action classifica-

tion. Simple feature amplification for spatial networks us-

ing optical flow features yeilded significant improvement

in accuracy over the original spatial networks. In addi-

tion, we proposed a multiplicative fusion approach to com-

bine multiple CNNs, which also demonstrated better perfor-

mance compared to normal additive fusion with fully con-

nected layers. Lastly, using deeper and larger networks,

which is a straightforward way to improve performance,

also worked well as expected. When we combine all of

these ideas together, we achieve superior results on UCF101

and HMDB51 datasets compared to previously proposed

two-stream CNNs.

As commercial depth sensors become easily available,

understanding the visual world via RGB-D images has re-

ceived a lot of attention. State-of-art object detection and

semantic segmentation methods for RGB-D data have ex-

tensively used multiple stream convolutional networks[3,



15]. Each stream takes static images and hand-crafted depth

feature images as the inputs respectively, and the simple av-

eraging late fusion approach was used for final prediction.

Given the promising evidence in this paper, we believe that

our proposed method could also improve performance on

RGB-D data.

Even if each network is trained on the same input modal-

ity, it is known that each network converges to different lo-

cal minima. Since each local minima has slightly different

knowledge, it has been shown that performance increases

when combining multiple networks together with simple

late fusion approach. For example in the ILSVRC image

classification challenge[17], all winning methods have used

CNN ensemble approaches. As future work, we plan to ap-

ply our methods to multiplicatively combine multiple CNNs

for the image classification task.

References

[1] J. Donahue, L. Anne Hendricks, S. Guadarrama,

M. Rohrbach, S. Venugopalan, K. Saenko, and T. Dar-

rell. Long-term recurrent convolutional networks for visual

recognition and description. In CVPR, June 2015.

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, June 2014.

[3] S. Gupta, R. Girshick, P. Arbelaez, and J. Malik. Learning

rich features from RGB-D images for object detection and

segmentation. In ECCV, September 2014.

[4] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg.

Matchnet: Unifying feature and metric learning for patch-

based matching. In CVPR, June 2015.

[5] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,

and R. Salakhutdinov. Improving neural networks by pre-

venting co-adaptation of feature detectors. arXiv preprint

arXiv:1207.0580, July 2012.

[6] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural Computation, November 1997.

[7] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neu-

ral networks for human action recognition. TPAMI, January

2013.

[8] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, June 2014.

[9] Y. Jiang, Z. Wu, J. Wang, X. Xue, and S. Chang. Ex-

ploiting feature and class relationships in video categoriza-

tion with regularized deep neural networks. arXiv preprint

arXiv:1502.07209, Feburary 2015.

[10] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In CVPR, June 2014.

[11] A. Krizhevsky, S. Ilya, and G. E. Hinton. Imagenet classi-

fication with deep convolutional neural networks. In NIPS,

December 2012.

[12] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.

HMDB: a large video database for human motion recogni-

tion. In ICCV, November 2011.

[13] Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj. Be-

yond gaussian pyramid: Multi-skip feature stacking for ac-

tion recognition. In CVPR, June 2015.

[14] T. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN

models for fine-grained visual recognition. arXiv preprint

arXiv:1504.07889, April 2015.

[15] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, June 2015.

[16] Y. Movshovitz-Attias, Q. Yu, M. C. Stumpe, V. Shet,

S. Arnoud, and L. Yatziv. Ontological supervision for fine

grained classification of street view storefronts. In CVPR,

June 2015.

[17] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. IJCV, 2015.

[18] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In NIPS, Decem-

ber 2014.

[19] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. May 2015.

[20] K. Sohn, G. Zhou, C. Lee, and H. Lee. Learning and se-

lecting features jointly with point-wise gated boltzmann ma-

chines. In ICML, June 2013.

[21] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A dataset

of 101 human actions classes from videos in the wild. arXiv

preprint arXiv:1212.0402, December 2012.

[22] I. Sutskever, J. Martens, and G. Hinton. Generating text with

recurrent neural networks. In ICML, June 2011.

[23] J. B. Tenenbaum and W. T. Freeman. Separating style and

content with bilinear models. Neural Compututation, June

2000.

[24] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and

M. Paluri. C3D: generic features for video analysis. arXiv

preprint arXiv:1412.0767, December 2014.

[25] L. Wang, Y. Qiao, and X. Tang. Action recognition with

trajectory-pooled deep-convolutional descriptors. In CVPR,

June 2015.

[26] Z. Wu, X. Wang, Y.-G. Jiang, H. Ye, and X. Xue. Modeling

spatial-temporal clues in a hybrid deep learning framework

for video classification. arXiv preprint arXiv:1504.01561,

April 2015.

[27] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan,

O. Vinyals, R. Monga, and G. Toderici. Beyond short snip-

pets: Deep networks for video classification. In CVPR, June

2015.

[28] S. Zha, F. Luisier, W. Andrews, N. Srivastava, and

R. Salakhutdinov. Exploiting image-trained CNN architec-

tures for unconstrained video classification. arXiv preprint

arXiv:1503.04144, March 2015.


