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Abstract 
This paper describes a process for automatic combination of testing reports for the accessibility 
of Web applications, obtained by different testing tools and applying different standards on Web 
accessibility. Interoperability is guaranteed using semantic Web technologies, which allow 
describing the reports by RDF (Resource Description Framework) triples. The reports refer to 
elements of a knowledge base consisting of vocabularies, ontologies and rules of inference, in 
which the conceptual relations between accessibility standards, as WCAG (Web Content 
Accessibility Guidelines) or Section 508 among others, are formalized previously. A software 
prototype that uses the Apache Jena framework for implementing the process is presented. 
Keywords: Interoperability, Semantic Web, Software Testing, Web Accessibility. 

1. Introduction  
The accessibility of a Web application is essential to make it understandable, usable and 
practical for all users, including disabled people. The evaluation of the accessibility of a website 
must be done checking the compliance of accessibility requirements established by well-known 
specifications, standards or laws. The most used standard is WCAG (Web Content Accessibility 
Guidelines) [20], created by the World Wide Web Consortium (W3C) and adopted as a standard 
by the International Organization for Standardization (ISO) [8]. Another important set of 
accessibility requirements are the ones included in the American Law known as Section 508 
[21]. 
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When the accessibility of a website is analyzed, the results are collected in an evaluation 
report, which describes Web pages reviewed, assessment rules applied, automatic evaluation 
tools used, etc. 

It is usual that the results of the assessment depend on the evaluators involved and the 
testing tools used, obtaining different reports for the same Web page. For instance, an evaluator 
could use an automated tool that checks that all page images have alternative text, which is 
necessary so that screen readers can read the text to visually impaired users who cannot see the 
images, while another evaluator could use a more intelligent tool which also verifies the content 
of the alternative text makes sense. The first report would appear that everything is ok, while 
the second could indicate that an image has associated an incorrect alternative text. It might 
also happen that accessibility standard applied in a report is more demanding than the other 
one. For example, this occurs with flickering images on the screen, since the requirements of 
American legislation are more stringent than those of the WCAG standard. 

In this context, it is necessary to implement mechanisms that allow interoperability between 
accessibility assessment tools. The Semantic Web technologies can be very suitable to solve 
the problem. The term “Semantic Web” refers to W3C’s vision of the Web of linked data. 
Semantic Web technologies enable people to create data stores on the Web, build vocabularies, 
and write rules for handling data [13]. 

This article describes the process shown in Figure 1 to combine Web accessibility 
evaluation reports. The starting point are reports of accessibility expressed using Semantic Web 
vocabularies. It should also have a knowledge base containing information on accessibility 
standards and relations between them. From this, it uses the open source Semantic Web 
framework Apache Jena, which allows the application of reasoners to generate new knowledge. 
Finally, a query language created by the W3C for the Semantic Web is used, in order to obtain 
the final result of the evaluation. 

 

 
Fig. 1. Process of combining accessibility reports. 

The following section describes the Semantic Web technologies used. In Section 3, the 
structure of accessibility reports according W3C recommendations is presented. Section 4 
describes the steps for combining reports using the Semantic Web technologies. In the final 
section, some conclusions and other related works are presented. 

2. Semantic Web Technologies  
In this paper we have used the following technologies that are part of the Semantic Web [12]: 

- RDF(S): RDF is the original core technology of the Semantic Web, named Resource 
Description Framework, for describing information resources in the form of triples with 
the following structure, using Turtle notation [10]: 
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Subject Predicate Object . 
 
An example of a RDF triple may be the following, extracted from DBPedia.org, which is a 

RDF representation of the Wikipedia content. It indicates that ACM (Subject) has a 
headquarter (Predicate) in New York (Object): 

 
dbr:Association_for_Computing_Machinery  
dbo:headquarter dbr:New_York_City . 
 
For simplicity, we have used prefixes for each element of the triple. These prefixes identify 

the vocabulary in which defined the meaning of each element, which will be associated with an 
IRI (Internationalized Resource Identifier). Prefix dbo refers to 
http://dbpedia.org/ontology/, where it is defined what is meant by headquarter. 

Coding 1 shows an excerpt of a RDF triples files used in this work. For simplicity, Turtle 
notation allows combine two or more triples with the same subject (s) in a unique sentence 
using “;”. And triples with the same subject (s) and predicate (p) using “,”. Another 
simplification is the predicate rdf:type, that is expressed only as “a”. 

Coding 1. Extract of the RDF(S)/OWL knowledge base (knowledgeBase.ttl). 

@prefix owl: <http://www.w3.org/2002/07/owl#> . 
@prefix s508: <http://example.org/section508.owl#> . 
@prefix wcag2: <http://www.AccessibleOntology.com/WCAG2.owl#> . 
 
##################################################### 
# Knowledge about the US Law Section 508 
 
s508:req_1194_22_a a s508:Requirement; 
s508:hasDescription "1194.22(a) A text equivalent for every non-
text element shall be provided"@en . 
 
s508:req_1194_22_j  a s508:Requirement; 
s508:hasDescription "1194.22(j) Pages shall be designed to avoid 
causing the screen to flicker with a frequency greater than 2 Hz 
and lower than 55 Hz."@en . 
 
##################################################### 
# Knowledge about the standard WCAG 2.0 
 
wcag2: SuccessCriterion_111 a wcag2:SuccessCriterion; 
wcag2:hasDescription "Non-text Content: All non-text content that 
is presented to the user has a text alternative that serves the 
equivalent purpose, except for the situations listed 
below."^^xsd:string . 
 
wcag2:SuccessCriterion_231  
    a wcag2:SuccessCriterion; 
    wcag2:hasDescription "Three Flashes or Below Threshold: Web 
pages do not contain anything that flashes more than three times in 
any one second period, or the flash is below the general flash and 
red flash thresholds."^^xsd:string . 
 
##################################################### 
# Knowledge about relations between WCAG 2.0 and Section 508 
 
s508:req_1194_22_a owl:sameAs wcag2:SuccessCriterion_111 . 
wcag2:SuccessCriterion_111 owl:sameAs s508:req_1194_22_a . 
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The ability to reference vocabularies allows a semantic extension of RDF. For this purpose, 
other associated technology is RDF Schema (RDFS), a vocabulary for data modeling [11]: 

- OWL (Ontology Web Language): An RDF triple store is a knowledge base. In this 
context, OWL can be understood as an RDF vocabulary based on descriptions logics 
that can be used in triples. The goal is that a reasoner can subsequently make inferences 
about them, generating new triples automatically and obtaining therefore new 
knowledge [9]. Coding 1 shows a knowledge base which will be explained in the next 
section, where there is a predicate from the OWL vocabulary, it is owl:sameAs. 

- Rules: When in a knowledge base in the form of RDF triples, we want to add rules 
such as "if / then", it is not sufficient to use OWL, we need a language to express rules. 
For this, some languages have been created, as RuleML or SWRL (Semantic Web Rule 
Language), still under discussion by the W3C [15]. But there are other languages 
defined for this purpose, as the one created by the Apache Jena project [11], which has 
been used in the example of Coding 2. 

- Reasoners: These are programs that can generate new RDF triples in a knowledge base 
from existing triples described with OWL, and from rules. Some of the best known are 
Pellet, Racer or FaCT [12]. 

- SPARQL (SPARQL Protocol and RDF Query Language): To consult on an RDF 
triple store, the SPARQL language [14] is used. Coding 10 shows an example of query. 

 
Coding 2. Extract of the rules base (knowledgebaserules.txt). 

@prefix earl: <http://www.w3.org/nss/earl#>. 
@prefix s508: <http://example.org/section508.owl#>. 
@prefix wcag2: <http://www.AccessibleOntology.com/WCAG2.owl#>. 
 
[rule_epilepsy:  
  (?aser earl:test wcag2:SuccessCriterion_231), 
  (?aser earl:result ?res), 
  (?res earl:outcome earl:failed) -> (?aser earl:test 
s508:req_1194_22_j)] 

2.1. Knowledge base with OWL and rules  

The process of combining reports of the same website shown in Figure 1 requires the existence 
of a knowledge base with the description of the accessibility standards or laws that apply when 
evaluating the website. Coding 1 shows an extract of the created knowledge base. It contains 
RDF triples, where it can be distinguished a first part in which the American Law on 
accessibility (known as Section 508) is described. For simplicity only appears the description 
of two articles of the law. The first is the one that requires that all images in a page must have 
alternative text, so that screen readers used by visually impaired people can read the description 
aloud. The second article included is the one that sets the permissible range of flashing for the 
contents of a page, to avoid problems of epilepsy. 

The second part of the code of Coding 1 shows the description of the WCAG 2.0 
accessibility standard created by the W3C, which is the one legally in force in many countries. 
Only the description of two success criteria established by this standard are shown, the first one 
refers to the need for alternate text and the second one is about flashing. 

The last part of Coding 1 describes the relationship between the two accessibility standards. 
It only includes the relationship that indicates that the requirement of both standards for 
alternative text is the same. For this the predicate sameAs defined by OWL [8] is used. 

In the case of epilepsy requirement, it is different in both standards, as in the US law the 
minimum flashing allowed is 2 Hz, while in the WCAG standard is 3 Hz. So we can say that if 
a Web page violates the WCAG standard, also violates the American law. Otherwise not be 
true. This cannot be expressed with OWL, but we can use a rule language to indicate it. In this 
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case we have used the language provided by the Apache Jena [11] framework, and the code of 
the rule can be seen in Coding 2. 

3. Web accessibility evaluation reports using EARL  
When evaluating the accessibility of a page or website, the results are presented in a report. 
This report may contain information obtained through automatic evaluation tools as described 
in [19], combined with results achieved by manual testing or with the help of end users, 
including disabled people. The W3C has created the EARL vocabulary to express this kind of 
reports using RDF triples [5]. Coding 3 shows an excerpt of an evaluation report of a 
hypothetical Web page as http://www.example.org/page.html, applying the WCAG 2.0 
standard and using as support the automatic evaluation tool named OAW, whose URL is in the 
report itself. Some authors of this paper have participated in the development of OAW [16], 
and for this reason it is used in this example. 

Coding 3. Extract of a first EARL accessibility report. 

@prefix earl: <http://www.w3.org/nss/earl#> . 
@prefix ptr: <http://www.w3.org/2009/pointers#>. 
@prefix doap: <http://usefulinc.com/ns/doap#> . 
@prefix a11y: <http://example.org/a11yResources.owl#> . 
@prefix wcag2: <http://www.AccessibleOntology.com/WCAG2.owl#>. 
@prefix ex: <http://www.example.org#> . 
 
########################################################## 
# Definition of the accessibility evaluation tool used: OAW 
 
a11y:OAW a earl:Software; 
   doap:name "Analizador Web"; 
   doap:homepage <http://observatorioweb.ups.edu.ec/oaw/> . 
 
########################################################## 
# Failure 1 about Success Criterion 1.1.1 of ISO WCAG 2.0 in line 
37  
 
ex:assertion_OAW_1 a earl:Assertion ;  
  earl:assertedBy a11y:OAW ; 
  earl:subject <http://www.example.org/page.html> ;   
  earl:test wcag2:SuccessCriterion_111; 
  earl:result ex:OAWResult_1 .  
 
wcag2:SuccessCriterion_111 a earl:TestRequirement . 
 
ex:OAWResult_1 a earl:TestResult; 
  earl:outcome earl:failed;  earl:pointer ex:ptr_OAWResult_1 .  
 
ex:ptr_OAWResult_1 a earl:Pointer, ptr:LineCharPointer; 
  ptr:lineNumber  "37"; ptr:charNumber  "8" . 
 
########################################################## 
# Failure 2 about Success Criterion 2.3.1 of ISO WCAG 2.0 in line 
56 
 
ex:assertion_OAW a earl:Assertion ;  
  earl:assertedBy a11y:OAW ; 
  earl:subject <http://www.example.org/page.html> ;   
  earl:test wcag2:SuccessCriterion_231; 
  earl:result ex:OAWResult .  
 
wcag2:SuccessCriterion_231 a earl:TestRequirement . 
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ex:OAWResult_2 a earl:TestResult;  
  earl:outcome earl:failed;  earl:pointer ex:ptr_OAWResult_2 .  
 
ex:ptr_OAWResult_2 a earl:Pointer, ptr:LineCharPointer; 
  ptr:lineNumber  "56"; ptr:charNumber  "6" . 

 
Coding 4 shows the contents of another evaluation report about the same Web page, but 

using another tool called AChecker, and applying as accessibility standard the American Law 
Section 508. This tools is used in this example because is one of the few tools that allow the 
user to get the report in EARL format [17]. 

Coding 4. Extract of a second EARL accessibility report. 

@prefix earl: <http://www.w3.org/nss/earl#> . 
@prefix ptr: <http://www.w3.org/2009/pointers#>. 
@prefix doap: <http://usefulinc.com/ns/doap#> . 
@prefix a11y: <http://example.org/a11yResources.owl#> . 
@prefix s508: <http://example.org/section508.owl#> . 
@prefix ex: <http://www.example.org#> . 
 
########################################################## 
# Definition of the accessibility evaluation tool used: AChecker 
 
a11y:AChecker a earl:Software; 
   doap:name "AChecker: Web Accessibiilty Checker"; 
   doap:homepage <http://achecker.ca> . 
 
########################################################## 
# Failure about article 1192.22(a) of US Law “Section 508” in line 
25 
 
ex:assertion_AChecker a earl:Assertion ;  
  earl:assertedBy a11y:AChecker ; 
  earl:subject <http://www.example.org/page.html> ;   
  earl:test s508:req_1194_22_a; 
  earl:result ex:ACheckerResult .  
 
s508:req_1194_22_a a earl:TestRequirement . 
 
ex:ACheckerResult a earl:TestResult; 
  earl:outcome earl:failed;  earl:pointer ex:ptr1_ACheckerResult .  
 
ex:ptr1_ACheckerResult a earl:Pointer, ptr:LineCharPointer; 
  ptr:lineNumber  "25"; ptr:charNumber  "10" 

4. Combining multiple reports  
We have developed a software prototype for combining multiple accessibility evaluation 
reports of the same website. Considering that in the reports different assessment tools have been 
used, and different standards or accessibility laws have been applied. For this, we have used the 
library Apache Jena for Java, an open source Semantic Web framework that provides an API 
to extract data from and write to RDF stores (known as graphs); and provides support to execute 
reasoners on OWL triples and generic rules. In the following sections the operation of the 
prototype is described, which is based on the scheme in Figure 1. 
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4.1. Loading reports in memory  

As shown in Figure 1, the first step is to load in memory, in the Jena Model class object called 
reports, both reports to be combined, available in files with Turtle RDF triples (TTL) format. 
In Coding 5 the Java code used is shown. 

Coding 5. Java code to load the two EARL reports in memory. 

import org.apache.jena.rdf.model.Model; 
import org.apache.jena.rdf.model.ModelFactory; 
... 
String report1_file = "report1.ttl"; 
String report2_file = “report2.ttl"; 
Model reports = ModelFactory.createDefaultModel(); 
reports.read(report1_file,"TTL"); 
reports.read(report2_file,"TTL"); 

4.2. Loading knowledge/rules base in memory  

The next step is to load in memory the knowledge base described in Coding 1, available as RDF 
triples in a “TTL” file. Coding 6 shows the Java code for this, creating the object 
knowledgeBase. It must be also loaded into memory the rules that complete the knowledge 
base, in this case available in a separate file, with extension txt. The content of this file is in 
Coding 2. Coding 7 shows the Java code to store the rules in a variable named rules, containing 
a list of Jena Rule class objects. 

Coding 6. Java code to load the knowledge base in memory. 

import org.apache.jena.rdf.model.Model; 
import org.apache.jena.rdf.model.ModelFactory; 
 
String knowledgeBase_file = "knowledgeBase.ttl"; 
Model knowledgeBase = ModelFactory.createDefaultModel(); 
knowledgeBase.read(knowledgeBase_file, "TTL"); 

Coding 7. Java code to load rules in memory. 

import java.io.BufferedReader; 
import java.io.FileReader; 
import java.util.List; 
import org.apache.jena.reasoner.rulesys.Rule; 
 
String knowledgeBaseRules_file = "knowledgeBaseRules.txt"; 
 
BufferedReader knowledgeBase_rules = new BufferedReader(new 
FileReader(knowledgeBaseRules_file)); 
 
List rules = Rule.parseRules (Rule.rulesParserFromReader 
(knowledgeBase_rules) ); 

4.3. Using reasoners to infer new knowledge  

Once all the knowledge is stored in different objects in memory, it's time to infer new 
knowledge from the restrictions included in the knowledge base, expressed with OWL and with 
the rules that complement the base. 

First, the internal reasoner that Jena offers to work with OWL is executed. Coding 8 shows 
the Java code to do this. The reasoner starts from the knowledge base available in memory in 
the object knowledgeBase, and applies them to the reports stored in the object reports. The 
final result is the object infModel, which contains all the original RDF triples plus the new 
ones inferred. In this case, it is evident that new triples have been inferred because of the 
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restriction owl:sameAs, which establishes the equivalence between two accessibility 
requirements: the success criteria 1.1.1 of WCAG 2.0 and the article  1194.22(a) from Law 
Section 508. For every RDF triple in which one of these requirements appears, a new triple is 
created with the other, as it has been expressed that they are equivalent. 

Coding 8. Java code to use reasoner to infer new knowledge. 

import org.apache.jena.reasoner.Reasoner; 
import org.apache.jena.reasoner.ReasonerRegistry; 
import org.apache.jena.rdf.model.InfModel; 
 
... 
Reasoner reasoner = ReasonerRegistry.getOWLReasoner(); 
reasoner = reasoner.bindSchema(knowledgeBase); 
InfModel infModel = ModelFactory.createInfModel(reasoner, reports); 

 
Then, on the knowledge available in the object infModel (original plus generated), a new 

reasoner is executed, able to interpret the rules expressed in the Jena rule language, which were 
loaded into memory in the list rules. Coding 9 shows the Java code to do it, obtaining a final 
knowledge model in the object infModel2. 

Coding 9. Java code to run the rules reasoner. 

Reasoner reasoner2 = new GenericRuleReasoner(rules); 
InfModel infModel2 = ModelFactory.createInfModel (reasoner2, 
infModel); 

 
In this case, it is also clear that it should have generated new knowledge in the form of new 

RDF triples, since applying the rule of Coding 2 to the report of Coding 3, it must be inferred 
that if the website assessed did not meet the requirement on epilepsy according to WCAG 2.0, 
does not meet the American law on accessibility, which is more restrictive in this regard, as 
indicates the rule. 

4.4. Generating the final evaluation results using SPARQL  

After the steps above, we have in memory, in the object infModel2, a RDF model with all the 
knowledge associated with the accessibility evaluation of the website, both the included in the 
two original evaluation reports as new knowledge generated by the two reasoners. It is possible 
to make queries on the model, which is stored as RDF triples. To do this, we must use the 
SPARQL language, as stated in section 2. In this case, we will launch a query about the 
accessibility failures registered in the model, according to American Law Section 508. Coding 
10 shows the way to express that query with SPARQL. 

Coding 10. SPARQL sentence to obtain web accessibility evaluation results according US law 
section 508. 

prefix earl: <http://www.w3.org/nss/earl#>  
prefix ptr: <http://www.w3.org/2009/pointers#> 
prefix doap: <http://usefulinc.com/ns/doap#>  
prefix s508: <http://example.org/section508.owl#> 
SELECT ?tool ?desc ?line 
WHERE { ?a a earl:Assertion . 
        ?a earl:assertedBy ?tool . 
        ?a earl:test ?req . 
        ?req a s508:Requirement . 
        ?req s508:hasDescription ?desc . 
        ?a earl:result ?res . 
        ?res earl:outcome earl:failed . 
        ?res earl:pointer ?pt . 
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        ?pt ptr:lineNumber ?line . 
        ?pt ptr:charNumber ?char . } 

 
The query with the source code of Coding 10 is stored in a file named query.txt, and it must 

be loaded into memory and then run it using resources from the Jena framework. In Coding 11 
the corresponding Java code is shown. 

Coding 11. Java code to load and run the SPARQL sentence. 

import org.apache.jena.query.Query; 
import org.apache.jena.query.QueryExecution; 
import org.apache.jena.query.QueryExecutionFactory; 
import org.apache.jena.query.QueryFactory; 
import org.apache.jena.query.QuerySolution; 
import org.apache.jena.query.ResultSet; 
 
String sparql_file = "query.txt"; 
BufferedReader bf = new BufferedReader(new 
FileReader(sparql_file)); 
String line; 
String sparql_sentence = ""; 
while((line = bf.readLine())!=null) { 
  sparql_sentence += line; 
  } 
  bf.close(); 
 
Query sparqlQuery = QueryFactory.create(sparql_sentence); 
QueryExecution qe =    
                        
QueryExecutionFactory.create(sparqlQuery,infModel2); 
ResultSet rs = qe.execSelect(); 
while (rs.hasNext()) { 
  QuerySolution sol = rs.next(); 
  System.out.println(sol.toString()); 
  }   

 
The query results can be seen in Table 1. The query has been designed to obtain the 

accessibility requirements unfulfilled by the website evaluated, according to the American 
legislation. Three columns appear: the first one contains the assessment tool that, according the 
processed reports, detected the fail. The second column includes the textual description of the 
unfulfilled requirement. The third column shows the line in the HTML page code where the 
failure has been found. The importance of the example shown is that it has combined results of 
both reports, and that some of the results did not explicitly appear in any of the reports, and 
have appeared thanks to the information inferred by reasoners. Thus, the failure in line 37 
appears because of the restriction owl:sameAs on the requirements about alternative text. And 
the failure in line 56 has appeared thanks to the inference rule about the limits of screen 
flickering. 

Table 1. Results of the SPARQL query. 

Tool Description Line 
AChecker “1194.22(a) A text equivalent for every non-text . .” 25 

OAW “1194.22(j) Pages shall be designed to avoid . .” 56 
OAW “1194.22(a) A text equivalent for every non-text . .” 37 

5. Conclusions  
The relationship between Semantic Web technologies and Web accessibility can be treated 
from different points of view. This relationship is evident in the case of the W3C, because this 
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organization is involved in the development of both fields. Such is the case of EARL language 
for expressing accessibility test results in the form of semantic RDF triples. It is beginning to 
appear on the market accessibility evaluation tools that obtain their reports in this format, as is 
the case of the known AChecker, one of the most used by the evaluators [3]. The advantage of 
using EARL in reports is that we can apply technologies of the Semantic Web to process these 
reports, and take advantage of the great possibilities offered, such as those have been shown in 
this work. EARL 1.0 is a Working Draft since 2011, but it has been reactivated in 2017 mainly 
due to the creation of the Accessibility Conformance Testing (ACT) Task Force in the W3C, 
to develop a framework and repository of test rules, to promote a unified interpretation of 
WCAG 2.0 among different web accessibility test tools, including examples using JSON-LD 
and EARL []. Taking into account that the main developers of evaluation tools are part of this 
working group, the potential of EARL as a language that they use in the future for evaluation 
reports is clear. 

Semantic Web technologies will facilitate the interoperability between accessibility 
evaluation tools and will allow the creation of federated evaluation systems to ensure obtaining 
the best results, as the authors of this paper have proposed in [7]. 

Other studies have also combined semantic technologies in the context of the evaluation of 
Web accessibility. In [6] and [18] a semantic assessment environment called WaaT (Web 
Accessibility Assessment Tool) is presented. It uses semantic models, representing the most of 
main accessibility constrains and terms which are required for the design and development of 
Web applications, through the use of generic and domain ontologies. This tool evaluates the 
accessibility status of a Web page according to the WCAG 2.0 and WAI-ARIA [2] guidelines, 
and generate EARL reports. To do this, it accesses different ontologies to complete the 
information in reports. One of the ontologies created by the authors of this tool is about the 
WCAG standard, and has been used in our work as reference vocabulary in the evaluation 
reports based on this standard (Coding 3). The advantage of ontologies is that it is easy to reuse 
knowledge, as in this case. Unlike our work, the authors based their work on a single standard 
as WCAG and a single assessment tool. In our case, we combine several reports obtained from 
different tools and applying different accessibility standards. 

Another relevant work is [4], where a conceptual framework for automatic accessibility 
evaluation of Rich Internet Applications (RIA) is presented. RIA applications included widgets. 
In this work, the core semantics of the widgets are represented as OWL ontology. This ontology 
is used to test the conformance of the application with the WAI-ARIA specification, making 
use of the taxonomy about WAI-ARIA that has been published by the W3C in RDF format, as 
an appendix included in the specification itself [5]. Like in the first work, this one also used 
Semantic Web technologies for the evaluation of accessibility according to a single standard 
and using a single tool. 

In conclusion, we can say that there are no published studies using Semantic Web 
techniques to combine accessibility reports of different tools and applying different 
accessibility standards. In general, the published works are aimed at creating assessment tools 
that use these technologies to generate EARL reports semantically enriched with terms obtained 
from predefined vocabularies or ontologies. 

As future work, we intend to integrate the prototype in a complete service-based system for 
Web Accessibility Federated Evaluation, whose architecture was presented in [7]. The system 
will use the federation of RESTful services exposed by different accessibility evaluation tools 
returning EARL results. And will combining the results of evaluations of the same Website by 
different tools using Semantic Web technologies, applying different criteria or preferences 
established by the evaluator. 
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