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Abstract. An imaging system that simultaneously performs near infra-
red �NIR� tomography and magnetic resonance imaging �MRI� is used
to study breast tissue phantoms and a healthy woman in vivo. An NIR
image reconstruction that exploits the combined data set is presented
that implements the MR structure as a soft-constraint in the NIR prop-
erty estimation. The algorithm incorporates the MR spatially seg-
mented regions into a regularization matrix that links locations with
similar MR properties, and applies a Laplacian-type filter to minimize
variation within each region. When prior knowledge of the structure
of phantoms is used to guide NIR property estimation, root mean
square �rms� image error decreases from 26 to 58%. For a represen-
tative in vivo case, images of hemoglobin concentration, oxygen satu-
ration, water fraction, scattering power, and scattering amplitude are
derived and the properties of adipose and fibroglandular breast tissue
types, identified from MRI, are quantified. Fibroglandular tissue is ob-
served to have more than four times as much water content as adipose
tissue, almost twice as much blood volume, and slightly reduced oxy-
gen saturation. This approach is expected to improve recovery of ab-
normalities within the breast, as the inclusion of structural information
increases the accuracy of recovery of embedded heterogeneities, at
least in phantom studies. © 2005 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

Recently, near infrared �NIR� imaging and spectroscopy have
demonstrated an ability to quantify intrinsic tissue chro-
mophore concentrations and scattering properties, thereby
providing valuable functional information.1–8 Imaging sys-
tems that measure light transmission in the NIR wavelength
range and utilize model-based computational methods can
generate spatially resolved absolute images of oxyhemoglo-
bin, deoxyhemoglobin, and water as well as scattering param-
eters affected by cellular and subcellular structural elements.
This technology is well suited to the study of breast tissue,
and spatial and temporal contrasts in these properties may be
uniquely useful for diagnosing disease. The application of
NIR tomography will likely be important, yet customized im-
aging systems which couple to ultrasound, magnetic reso-
nance imaging �MRI�, or x-ray methods must be developed to
evaluate and exploit this potential. The clinical standards for
breast cancer detection—ultrasound, contrast-enhanced MRI,
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and x-ray mammography—provide high spatial resolution but
comparatively little information about molecular-level
changes in breast tissue.9,10 X-ray mammography, the most
common form of breast cancer screening, has high sensitivity
in women with fatty breast composition,11 but low sensitivity
in radiographically dense breasts, and low positive predictive
value. It also uses ionizing radiation, and requires uncomfort-
able breast compression. Biopsy is generally required to de-
termine malignancy in most women with an abnormal mam-
mogram. Adjunctive noninvasive imaging modalities are
often required to characterize suspicious abnormalities, espe-
cially in women with radiographically dense tissue. There is
considerable potential for functional NIR imaging to distin-
guish breast cancer noninvasively, yet this modality has con-
sistently suffered from low spatial resolution.12–14 This paper
reports on the combination of NIR tomography with MRI for
the investigation of breast tissue properties to provide funda-
mentally new information by exploiting the strengths of each
modality. Such hybrid approaches could generate image data
that achieves the intrinsically high optical contrast known to
1083-3668/2005/10�5�/051504/10/$22.00 © 2005 SPIE
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exist in tumors on the spatial scale of structural MRI. The
potential benefits of this type of hybrid method can only be
evaluated once prototype systems are developed and opti-
mized in a clinical setting.

In both research and clinical applications, multimodality
imaging is increasingly being used to interrogate tissue mor-
phology and function simultaneously because of the inher-
ently optimized coregistration. Structure and function of tis-
sue afford different physical bases for contrast and
combinations have proven beneficial in the diagnosis and
management of disease.15 With the advent of molecular medi-
cine, a transition in diagnostic interpretation becomes possible
based on biochemical perturbations that occur in disease, fre-
quently in the absence of changes in anatomic structure. A
prominent example is hybrid position emission tomography/
computed tomography �PET/CT� systems, where coupling
structure to functional images has been more informative
when interpreting the metabolic data.16 Hybrid imaging sys-
tems also avoid complications associated with tissue move-
ment between separate exams, which reduce coregistration
accuracy and thus degrade the diagnostic value of the image
fusion.17

This paper explores the combination of structural and
functional imaging into a single platform for the study of
breast tissue. Functionally, NIR contrast mechanisms in tissue
are dominated by elastic Mie-like scattering.18 Measured sig-
nals are highly sensitive to tissue concentrations of oxyhemo-
globin, deoxyhemoglobin, and water. Structurally, contrast in
MRI derives from intrinsic tissue factors related to micromag-
netic structural inhomogeneities. Relaxation times vary sub-
stantially for different tissues and are strongly dependent on
their physical characteristics.

In addition to coregistration, data sets from combined NIR
and MRI imaging offer other synergistic benefits, namely ana-
tomical priors �from high-spatial-resolution MRI� enhance
NIR �i.e., high-contrast-resolution� image reconstruction. NIR
spectroscopy is biochemically rich, but spectroscopic imaging
is hindered by the highly scattered photon paths that reduce
resolution in tissue. The most widely adopted approach to this
problem incorporates parameter estimation strategies based on
models of light propagation in tissue. The estimation task is
sensitive to small perturbations in the light measurements, not
all of which are caused by the intrinsic changes in tissue op-
tical properties. Experience has shown that significant im-
provement in the stability and accuracy of the reconstruction
process can be obtained by including prior anatomical/optical
information.19–25

Techniques for incorporating this information are relatively
new, and are the subject of active research in a variety of
disciplines, including medical imaging,26–28 industrial process
imaging,29 and geophysical surveying,30 yet there is no clear
consensus on the optimal approach. Spatial resolution and
quantitative image accuracy can be improved when the appro-
priate constraints, derived from a priori information, are ap-
plied. However, these priors and constraints can take a wide
variety of forms, and currently there are few broadly adopted
conventions even though it is commonly accepted that such
constraints offer significant potential value. It is less well ap-
preciated that misguided constraints can lead to gross solution
errors that are detrimental to the image outcome. To date, NIR

techniques have been combined with several high-spatial-
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resolution, structure-bearing imaging modalities including
x-ray tomosynthesis,21 ultrasound,31 and MRI �Refs. 27, 32,
and 33� to study human tissues and small animals. Past expe-
riences have contributed to a variety of imaging systems, im-
aging geometries, and numerical reconstruction techniques,
but have not led to a consensus on the optimal way of apply-
ing a priori derived constraints.

This paper describes the clinical application of our breast
imaging system—a highly sensitive multispectral frequency
domain NIR tomography system that is compatible with the
magnetic field environment inside a standard full-body MRI
scanner. The combined data set offers measurements of light
transmission through the full volume of the breast in a planar
anatomically coronal geometry and a high-resolution MRI of
that same volume. Algorithmic procedures for exploiting both
NIR and MRI data to reconstruct first optical property �ab-
sorption and reduced scattering coefficient� distributions, and
then tissue chromophores and scatter parameters are described
and validated with phantom studies. The impact of including
the MRI component of this imaging platform is shown for a
human volunteer. The segmentation of adipose from fibro-
glandular tissue is examined and analyzed. The combined im-
aging system could become a valuable tool for characterizing
the optical signatures of normal breast tissue, benign breast
conditions, and breast cancer. Currently, NIR exams occur
predominantly in laboratories that are developing the technol-
ogy under National Institutes of Health �NIH� research fund-
ing. Considering that many women commonly undergo MRI
breast exams, and that the system described here can be seam-
lessly integrated into these procedures, it provides an excel-
lent opportunity to determine the optimal way to integrate
prior spatial information into NIR tomography. This type of
combined system may prove to be an important bridge that
carries NIR imaging methods from the lab into accepted clini-
cal application.

2 Methods
2.1 Hardware

The imaging system used records measurements of NIR light
transmission through a pendant breast in a planar, tomogra-
phic geometry. The patient lies inside a 1.5-T whole-body
MRI �GE Medical Systems� and the two data types �i.e., NIR
and MRI� are acquired simultaneously. The system is shown
in Fig. 1, and was described in detail by Brooksby et al.34

Figure 1�a� shows the portable cart, which contains the light
generation and detection hardware subsystems. Six laser di-
odes �660 to 850 nm� are amplitude modulated at 100 MHz.
The bank of laser tubes is mounted on a linear translation
stage, which sequentially couples the activated source into 16
bifurcated optical fiber bundles. The central seven fibers de-
liver the source light while the remaining fibers collect trans-
mitted light and are coupled to photomultiplier tube �PMT�
detectors located in the base of the cart. The fibers are posi-
tioned in a plane spanning the circumference of a pendant
breast, and for each activated source, measurements of the
amplitude and phase shift of the 100-MHz signal are acquired
from 15 locations around the breast. Figure 1�b� shows a pho-
tograph of the MR-compatible fiber positioning system an-

chored inside an open architecture breast array coil �MRI De-
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vices�. The vertical position of the imaging plane is manually
adjusted, and contact with the breast is maintained automati-
cally using bronze compression springs.

2.2 Image Formation
It is well established that in the interaction of NIR light with
tissue, scattering dominates over absorption. Under these con-
ditions, light transport can be effectively modeled using the
diffusion equation over moderately large distances.35,36 Analo-
gous to the hardware approach, a frequency-domain diffusion
model is used to simulate measured signals for any specified
distribution of absorption and reduced scattering coefficients,
�a and �s�, within an imaged volume. This is given by

− � · D�r� � ��r,�� + ��a�r� +
i�

c
���r,�� = S�r,�� ,

�1�

where S�r ,�� is an isotropic light source at position r,
��r ,�� is the photon density at r, c is the speed of light in
tissue, � is the frequency of light modulation, and D
=1/ �3��a+�s��� is the diffusion coefficient. The reduced
scattering coefficient is given by �s�=�s�1−g�, where g is the
mean cosine of the single scatter function �the anisotropy fac-
tor�, and �s is the scattering coefficient. A type III boundary
condition is applied as

� +
D

�
n̂ · �� = 0, �2�

where � is a term that incorporates reflection as a result of
refractive index mismatch at the boundary, and n̂ is the
outward-pointing normal to the boundary.

Equation �1� can be viewed as a nonlinear function of the
optical properties. Its solution is represented as a complex-
valued vector, y*=F��a ,D�, having real and imaginary com-
ponents that are transformed to logarithm of the amplitude

Fig. 1 �a� Photograph of the portable cart housing the NIR light gen-
eration and detection hardware. The cart remains outside of the rf-
shielded MR chamber, and optical fibers extend 13 m to the MRI
patient bed. On the retracted shelf, a linear translation stage sequen-
tially couples one activated laser diode to each of the 16 optical fibers
that contact the breast. �b� MR-compatible fiber-patient interface,
made of polyvinyl chloride �PVC�, is mounted inside a high-resolution
MR breast coil. Compression springs ensure light contact between
each fiber and the patient’s skin. �c� A patient volunteer lying prone on
the combined MRI-NIR bed prior to her exam.
and phase in the measurements. The phase shift of the signal
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provides data that is dominated by the optical path length
through tissue, while the amplitude of the transmitted light
provides information about the overall attenuation of the sig-
nal. These measurements constitute the dataset necessary for
successful estimation of both absorption and reduced scatter-
ing coefficients.

Data acquired by the detection system is processed with a
finite element method �FEM�-based reconstruction algorithm
to generate tomographic images of �a and �s�. In the image
reconstruction, a Newton-minimization approach developed
by Paulsen and Jiang37 is used to seek a solution to

��̂a,D̂� = min�a,D��y* − F��a,D�� + ����̂a,D̂� − ��a0,D0��	 ,

�3�

where �·� represents the square root of the sum of squared
elements. This is the so-called Tikhonov approach,38 and � is
a weighting factor of the difference between the current val-
ues of the optical properties and their initial estimates. The
magnitude of this objective function is sometimes referred to
as the projection error and provides a value for determining
the convergence of the iterative solution. Its minimum is
evaluated by setting first derivatives with respect to �a and D
equal to zero. This leads to a set of equations that is solved
iteratively, using the following matrix equation,39 derived
from Eq. �3�:

�� = �JTJ + �I�−1JT�y* − F��a,D�� + ��� − �0� . �4�

At each iteration, the new set of �a and D values is updated
by �a

i+1=�a
i +��a

i , and Di+1=Di+�Di, where i is the index
for the iteration number, J is the Jacobian matrix for the dif-
fusion equation solution, and JTJ is ill-conditioned and there-
fore regularized through the addition of �I, where I is an
identity matrix. Regularization is implemented in a
Levenberg-Marquardt algorithm where � starts at a high value
�typically 10 times the maximum value of the diagonal of
JTJ� and is systematically reduced at each iteration. In Eq.
�4�, �0 is the initial estimate of optical properties input into
the iterative estimation process, and is a form of prior
information.40 Here, the initial estimate is determined through
a data calibration procedure which assumes a homogeneous
property distribution.41 In our experience, the last term in Eq.
�4�, ���−�0�, has little effect on the solution due to the small
size of both � and ��−�0�, especially at late iterations, and
can be ignored. If this term were included, and � were not
reduced with each iteration, the current optical property esti-
mate would not stray very far from the homogeneous initial
estimate. This is not desirable when reconstructing heteroge-
neities. Efforts are currently being made toward the genera-
tion heterogeneous initial guesses, which could make the in-
clusion of this extra term beneficial.

2.3 Inclusion of Priors
Image reconstruction techniques which incorporate prior
knowledge of tissue structure have been largely developed for
nuclear imaging over the last decade.26,42–45 Anatomical infor-
mation is generally used to adjust image smoothness and re-
duce noise levels during reconstruction. Most of the ap-

proaches to this problem are based on Bayesian estimation
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techniques. Prior information consists of anatomical bound-
aries that are likely to correspond to discontinuities in an oth-
erwise spatially smooth radionuclide distribution. In the re-
constructed image, neighboring pixels within homogeneous
regions should have similar intensity levels. In regions which
exhibit distinctly different tissue characteristics, smoothing
across their shared boundary should be limited. Improving
NIR reconstructions by incorporating prior knowledge of tis-
sue structure available from MRI data has been explored in
previous work at Dartmouth13,19,32,40,46 and by other
authors.20–22,27,31,33,47,48 Our early work involved using high-
resolution MRI to construct an accurate rendering of the full
volume of breast tissue probed by NIR light. Following the
lead of Ntziachristos et al.27 and Zhu et al.31 it was further
assumed that optical contrast correlated to MRI contrast, and
the number of property estimates was dramatically reduced.40

While generally effective in simulation studies, and for recon-
structing simple phantom geometries containing a single dis-
crete heterogeneity �i.e., inclusion�, this method was vulner-
able to overbiasing the inverse solutions toward the assumed
distributions. Sensitivity to noise in the data and error in the
region designation caused this “parameter reduction” algo-
rithm to be unreliable when imaging complex and layered
phantoms. Here, we describe an improved technique that
guides the iterative evolution of reconstruction, but does not
impose the rigid constraint of interregion homogeneity. This
algorithm is still able to detect optical coefficient patterns that
violate the prior information. Similar to the strategy outlined
by Li et al.,21 this is accomplished through regularization. The
benefits of the implementation described here is that recon-
struction is not a complex multistep process. For the first time,
NIR measurements taken in a full tomographic geometry can
be used to generate high-resolution functional images through
a flexible procedure, regardless of arbitrary tissue structures.

A priori information can be incorporated directly through
the objective function by formulating the minimization of a

25

Fig. 2 Flow chart tracking the key steps associated with the use of the
combined NIR-MRI imaging system.
two term functional:

Journal of Biomedical Optics 051504-
��̂a,D̂� = min�a,D��y* − F��a,D�� + ��L���̂a,D̂�

− ��a0,D0���	 . �5�

The constant � balances the effect of the prior with the model-
data mismatch. The filter matrix L is generated using MRI-
derived priors and effectively relaxes the smoothness con-
straints at the interface between different tissues, in directions
normal to their common boundary. The effect on image qual-
ity is similar to that achieved through total variation minimi-
zation schemes.49 This procedure, however, is more robust
and can easily encode internal boundary information from
MR images. Each node in the FEM mesh is labeled according
to the region, or tissue type, with which it is associated �in the
MR image�. For the i’th node of n in region N ,Li,l=1. When
nodes i and j are in the same region, Li,j =−1/n, otherwise
Li,j =0. The solution to Eq. �5� is again accomplished with a
Newton-minimization approach, that produces the update
equation

�� = �JTJ + �LTL�−1�JT�y* − F��a,D�� + �� , �6�

which is iteratively solved. Note LTL approximates a second-
order Laplacian smoothing operator within each region sepa-
rately. This construction of L has proved flexible and effec-
tive, as demonstrated in the phantom studies shown in Sec. 3,
but other forms can easily be implemented and evaluated.
Similarly to Eq. �4�, the last term, �=�LTL���ai ,Di�
− ��a0 ,D0��, has been ignored in the results presented here.

Simulation studies were performed to characterize the ef-
fect of L and � on the quality and quantitative accuracy of
reconstructed images, and to establish a value of � that can be
used routinely. Data was generated from numerical phantoms
with a variety of heterogeneity patterns—ranging from a
simple circular anomaly in a homogeneous background �simi-
lar to the physical phantom in Fig. 4 in Sec. 3.2� to irregular
distributions of regions with two or three different properties
�similar to the complexity of the breast in Fig. 5 in Sec. 3.3�.
Noise �1 to 2%� was added to simulated data to better repli-
cate experimental conditions. Error was also added to the a
priori region designation, to account for the small loss of
resolution when spatial information is transferred from MR
images to FEM meshes. Images were reconstructed from this
data using a range of � from 1 to 100. A high � value in-
creases the impact of the spatial prior, leading to images with
sharper internal boundaries, but could negatively bias solu-
tions if this prior is not correct. By accounting for the differ-
ent sources of error that are present when data is acquired
with the system presented here, simulation results indicate
that setting � to 10 times the maximum value of the diagonal
of JTJ optimizes image quality and accuracy regardless of the
level of geometric complexity present in the area under inves-
tigation. Unlike � in Eq. �4�, � does not decrease during the
iterative solution process.

2.4 Spectral Decomposition

The absorption coefficient at any wavelength is assumed to be
a linear combination of the absorption due to all relevant

chromophores in the sample:
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�a��� = 

i=1

N

��i,��Ci, �7�

where � is the molar absorption spectra, and C is the concen-
tration of each chromophore.18 In the presented analysis, the
concentrations of three chromophores—oxyhemoglobin
�HbO2�, deoxyhemoglobin �Hb�, and water �H2O�—are esti-
mated. Hence, given �a at the k’th pixel for multiple wave-
lengths, a linear inversion of Eq. �7� determines the array of C
values

Ck = E−1�a,k, �8�

representing the concentrations of the three chromophores. In
Eq. �8�, E is the matrix of molar extinction coefficients having
elements ��i ,��, for the i’th chromophore at different wave-
lengths.

The spectral character of the reduced scattering coefficient
also provides information about the composition of the tissue.
From an approximation to Mie scattering theory, it is possible
to derive a relation between �s� and wavelength given by

�s���� = A�−SP, �9�

where SP is the scattering power and A is the scattering
amplitude50 �which depend on scatterer size and number den-
sity�. Typically, large scatterers have lower SP and A values.

Fig. 3 �a� Photograph of a gelatin phantom and a variety of inclusions
�small gelatin spheres and a cylinder with different optical properties�;
�b� MRI showing a cross section of the cylindrical phantom, visible in
the MRI are three types of gel; and �c� finite element mesh segmented
according to the MRI intensity. The optical fiber source/detectors
marked around the circumference are specified with millimeter accu-
racy. The axes are in millimeters, showing the full diameter of the
phantom to be 82 mm. �d� Reconstructed images of the absorption
and reduced scattering coefficients for this phantom. The top pair of
images shows the true distribution, the second pair shows the recon-
structions that do not use a priori information, the third pair shows
reconstruction in which two layers were assumed from the MRI �i.e.,
the inclusion was ignored�, and the bottom pair shows reconstructions
in which the full MRI is used. When the full compliment of prior
information is used, root mean square image error decreases 43% for
absorption and 55% for scattering.
These scattering parameters appear to reflect variations in
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structural breast composition associated with age and radio-
graphic density.8,51

2.5 Phantom Studies
Single- and multilayered phantoms were fabricated from gels
with different optical properties using heated mixtures of wa-
ter �80%�, gelatin �20%� �G2625, Sigma Inc.�, India ink or
blood �for absorption�, and titanium dioxide powder �for scat-
ter� �TiO2, Sigma Inc.� that are solidified by cooling to room
temperature. Optically distinct layers were fabricated by suc-
cessively hardening gel solutions containing different
amounts of ink and TiO2. True properties were estimated by
measuring a large cylindrical sample of each material.41 Be-
cause these phantoms are water-based, they are well suited for
testing a combined NIR-MRI system. To increase MRI con-
trast between different gels in multilayered phantoms,
0.001 to 0.005 g/ml Omniscan™ �gadodiamide� was added.

Two studies with gelatin-based phantoms were performed.
The first examined spatial resolution, while the second as-
sessed quantitative accuracy as a function of inclusion con-
trast. The phantom imaging procedure is outlined in Fig. 2.
Data acquisition is followed by automated MR image process-
ing and FEM mesh generation. The MRI is segmented via
automatic thresholding and edge detection, and pixels of simi-

Fig. 4 �a� Photograph of the homogeneous gelatin phantom with a
22-mm cylindrical cavity slightly off-center and �b� reconstructed im-
ages of the absorption and reduced scattering coefficients for this
phantom when an intralipid solution with 3:1 absorption contrast fills
the opening. The top pair of images shows the true distribution, the
middle pair shows the reconstructions which result when a priori in-
formation is not used, and the bottom pair results when prior informa-
tion about the size and location of the anomaly is incorporated. When
prior information is used, root mean square image error decreases
26% for absorption and 58% for scattering. Image artifacts appear in
the form of artificial background heterogeneity when priors are not
utilized. A more accurate estimate of the true optical properties, and
shape of the inclusion, is obtained with the MR-guided iterative algo-
rithm. �c� and �d� Absorption and reduced scattering coefficients re-
spectively for both the background �bg� and the inclusion �inc�, re-
covered using the two algorithms for eight intralipid solutions with
different absorption coefficients. The images in �b� correspond to so-
lution 8, on the far right of �c� and �d�.
lar intensity are assumed to represent the same material or
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tissue. This material information is transferred to the FEM
mesh as a “region” label. NIR data are calibrated using a
reference measurement of a homogeneous phantom to correct
for variation between the 16 optical channels.41,52 Optical
property reconstruction is performed on the appropriate mesh,
containing the same number of distinctly visible regions as
the MRI. Appropriate labels are given to the mesh so that a
priori guidance is automatic. If optical property images are
obtained at multiple NIR wavelengths, spectral analysis is
performed and chromophores/scatter parameters are calcu-
lated.

2.6 Human Subject Studies
All human studies are carried out under informed consent
according to protocol approved by the Institutional Review
Board at Dartmouth. Although we present a single case study
here, several women participated in the study. Healthy volun-
teers were recruited from a pool of women having received a
routine screening mammography at Dartmouth Hitchcock
Medical Center. The subject lies prone on the scanner table
with her breast pendant into the open architecture breast array
coil, and a nurse or MRI technician operates the optical fiber
positioning system to establish uniform tissue contact at six-
teen points around the perimeter of the breast. Once inside the
bore of the 1.5-T magnet, MRI and NIR data are acquired
simultaneously. The MRI protocol typically involves two im-
aging sequences. First, scout images are acquired in three or-
thogonal planes to localize the orientation of the optical fiber
array. Second, a T1-weighted volume of the entire breast is
obtained with each slice oriented parallel to the plane of the
optical fibers. NIR data acquisition is automated via Labview

Fig. 5 MRI slices of a normal breast for a representative subject with
scattered radiographic density, imaged with the NIR-MRI system. �a�
Anatomically axial �cranial-caudal; slice 6 to slice 1� T1-weighted MR
images. Slice thickness is 5 mm and the space between slices is
10 mm. Toroidal fiducial markers surround the optical fibers approxi-
mately 1 cm from the tip, and appear as bright spots outside of the
tissue. �b� Oblique coronal T1-weighted MR images of the same
breast. Slice �1� is toward the chest wall, and slice �6� is toward the
nipple. Slice thickness is 2 mm and the space between slices is
10 mm. Coronal slice �3�* is the plane of the optical fibers. A region of
glandular tissue �dark greay� appears surrounded by a layer of adipose
�light gray�. This slice was used to set construct the FEM mesh in order
to reconstruct the optical property distributions �see Fig. 6�.
software �National Instruments� executing on a separate com-
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puter. Measurements are recorded serially at six wavelengths,
and a typical exam lasts approximately 15 min. In the case
study presented here, five wavelengths of NIR data were col-
lected. Once the patient exits the magnet, the procedure out-
lined in Fig. 2, including MRI-guided NIR image reconstruc-
tion and spectral decomposition is performed. Images of
physiological parameters, total hemoglobin concentration
��HbT��, percent blood oxygen saturation �StO2�, water frac-
tion �H2O�, scattering amplitude �A�, and scattering power
�SP� can be generated approximately 15 min after data acqui-
sition.

3 Results
3.1 Phantom Imaging: Spatial Resolution
A two-layer gelatin phantom with a cylindrical inclusion em-
bedded inside the inner layer was used to evaluate the ability
of the NIR-MRI system to resolve this type of structure. A
photograph of the phantom is shown in Fig. 3�a�. Figure 3�b�
shows an MRI slice through the phantom at the height of the
inclusion, and Fig. 3�c� shows the FEM mesh, and optical
fiber locations. Each gel layer possessed a different absorption
�outer layer, 0.0055 mm−1; inner layer, 0.01 mm−1; inclusion,
0.02 mm−1� and reduced scattering coefficient �outer layer,
0.75 mm−1; inner layer, 1.2 mm−1; inclusion, 0.75 mm−1�.
The outer and inner layers extended the full height of the
phantom �10 cm� while the inclusion �height, 2.5 cm; diam-
eter, 1.5 cm� was embedded half-way from top to bottom.

Figure 3�d� contains reconstructed images of the optical
properties at a 785-nm wavelength. The top pair of images
shows the true distribution of absorption and reduced scatter-
ing coefficients. The second pair of images indicates the re-
constructions that result from the solution of Eq. �3�, which is
the standard Newton-minimization and does not use a priori
information. Although not presented here, a parameter reduc-
tion algorithm that reconstructs a single absorption and re-
duced scattering coefficient for each region was also used.
The estimated properties do not match the true phantom prop-
erties. The maximum absorption was localized to the inner
layer rather than the inclusion, and the maximum scatter was
localized to the inclusion rather than the inner layer. The third
pair of images results from the solution of Eq. �5�, where the
layered MRI data was used to form the regularization matrix.
In this case, to illustrate the performance of the algorithm
when prior information is incomplete or incorrect, the pres-
ence of the inclusion was not specified. The bottom pair of
images results from the solution of Eq. �5�, where the full
MRI data, including the presence of the inclusion, was used to
form the regularization matrix. Clearly these images more ac-
curately represent the true property distributions. The iterative
reconstruction process is terminated automatically when the
projection error reaches its minimum. For both algorithms this
occurred at iteration 11.

3.2 Phantom Imaging: Contrast Resolution
To characterize the performance of the system and the quality
of the defined algorithm, a phantom with inclusions of differ-
ent contrast was imaged. A gelatin solution ��a

=0.005 mm−1, �s�=0.85 mm−1� was hardened inside an

82-mm cup, with a 22-cm-diam cylindrical rod included in
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the interior. After the gelatin hardened, the rod was removed
and the empty column was filled with intralipid solutions hav-
ing absorption coefficients ranging from 0.005 to
0.015 mm−1. A photograph of the phantom is shown in Fig.
4�a�. Another photograph �not shown� taken of the phantom in
the imaging array was used as a surrogate MRI. This was used
to define a priori information of the phantom’s structure, and
provided the necessary detail to carry out region of interest
analysis to assess reconstruction accuracy. Figure 4�b� pre-
sents target values of absorption and reduced scattering coef-
ficients �top� for a phantom with 3:1 absorption contrast,
along with the corresponding reconstructions based on Eq. �3�
�middle� and Eq. �5� �bottom�. Figures 4�c� and 4�d� report the
absorption and reduced scattering coefficient averages for
both the background and the inclusion when recovered with
the two algorithms. In general, the inclusion absorption coef-
ficient is more accurately estimated when the MRI informa-
tion is utilized in the reconstruction algorithm. Additionally,
the spatial variation in both properties is reduced.

3.3 Representative Breast Results
Here we present in detail the study of a healthy volunteer

Fig. 6 NIR-MRI results for a representative subject. These tomograph
concentrations and scattering parameters were derived from spectral
derived from absorption and reduced scattering coefficients that we
strained by priors obtained from MRI. The first �top� used the fifth ite
stopping criteria �iterations 9 to 11�. The third set �bottom� incorporat
and projection error minimum stopping criteria. When the algorithm
iterations, but noise also increases �especially in scatter�. Using MRI co
resolution.
whom we examined with the combined NIR-MRI imaging
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system. Anatomically axial and oblique coronal T1-weighted
gradient echo MR images are shown in Figs. 5�a� and 5�b�,
respectively. The woman had breasts with scattered radio-
graphic density �i.e., fatty tissue containing scattered fibro-
glandular densities�. The MR slices reveal an area of blood
vessels and vascularized glandular tissue near the center of
the breast �dark in the MR image�, surrounded by a subsur-
face layer of adipose tissue �light gray in the MR image�.
Fiducial markers, attached to each fiber are visible just outside
the breast surface. In Fig. 5�b�, image slice �3�* corresponds
to the optical measurement plane. An FEM mesh for image
reconstruction was generated by segmenting adipose and
glandular tissue in this image slice, based on image intensity.
The mesh accurately describes the convoluted outer breast
boundary, the size and shape of the glandular region, and the
location of the 16 NIR measurement sites. Along with the
MRI, NIR transmission data �amplitude and phase� was mea-
sured at five wavelengths �661, 785, 808, 826, and 849 nm�.
Spectral deconvolution was performed from images of �a and
�s� reconstructed at these wavelengths. The images of NIR
chromophore concentrations and scattering properties are
shown in Fig. 6. The three sets of images correspond to spec-

images correspond to MRI slice �3�* in Fig. 5�b�. NIR chromophore
sis and Mie theory. Three sets of images are shown. Two sets were
nstructed with a standard Newton-minimization algorithm, uncon-
while the second �middle� used the projection error minimum as a
onal structure visible in the MRI to guide optical property estimation
constrained by MR, intertissue contrast appears to develop at later
ts, artifacts are suppressed and images exhibit high contrast and good
ic NIR
analy

re reco
ration

ed regi
is un

nstrain
tral analysis using different �a or �s� reconstructions. The
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images presented estimate total hemoglobin concentration
�HbT�, blood oxygen saturation StO2, water H2O, scattering
amplitude A, and scattering power SP. The first set of images
�top row� results when the solution of Eq. �3� is stopped prior
to convergence at iteration 5, which is the approach we have
utilized in our previous NIR breast studies. The second set of
images �in the middle row� results when the algorithm con-
tinues to the projection error minimum �iterations 9 to 11�.
The third set of images �bottom row� is obtained from the
convergent solution of Eq. �5�. In this case the full knowledge
of tissue structure, provided by MRI, is brought to bear in the
NIR image reconstruction. When the algorithm is uncon-
strained by MR, intertissue contrast appears to develop at later
iterations, but noise also increases. The estimates that rely on
constraints from MRI data suppress artifacts and produce im-
ages that exhibit high contrast and resolution. Average values
of each of these parameters are tabulated in Fig. 7, for both
the adipose and the glandular tissue regions, and for all three
reconstruction approaches.

4 Discussion
NIR tomography is potentially an important adjunct to ana-
tomical imaging because of the possibility of adding unique
information to the characterization of diseased tissue. This
paper explored the implementation of simultaneous NIR-MRI
imaging methods that were used to study breast tissue in vivo.
There is little debate that knowledge of tissue structure can

Fig. 7 Graphs of reconstructed tissue properties from Fig. 6. Total he-
moglobin concentration ��HbT��, oxygen saturation �StO2�, water,
scattering amplitude �A�, and scattering power �SP� are reported sepa-
rately for adipose and fibroglandular tissue, again as defined from the
spatial pattern of gray-scale intensity from the simultaneously ac-
quired MRI. Error bars represent the standard deviation of property
values within a particular tissue. For each chromophore, MR-guided
NIR reconstruction decreases intratissue variation and increases inter-
tissue contrast. For scattering parameters, MR-guidance primarily re-
duces the size of the error bars.
constrain/guide NIR image reconstruction to improve spatial
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resolution and quantitative accuracy of recovered physiologi-
cal parameters. However, there is considerably less certainty
about how best to incorporate the information. In this paper,
we developed a full regularization matrix where locations are
linked within the same tissue type. The validation of the ap-
proach was demonstrated through phantom experiments de-
signed to mimic the layered geometry apparent in many
breasts.

The first phantom study, described in Sec. 3.1, evaluated
spatial resolution of the combined NIR-MRI imaging system.
The results shown in Fig. 3�d� indicate that the MR-guided
iterative algorithm performed much better than the standard
reconstruction approach in terms of the ability to resolve layer
location and interior heterogeneities. In particular, it produced
absorption and reduced scattering coefficient images which
accurately represented the layered optical contrast ��a, 4:2:1;
�s�, 1:1.6:1�. When the MRI data was neglected, and ampli-
tude and phase data were reconstructed with a standard New-
ton type reconstruction, the calculated images only slightly
resembled the true spatial structure. Additionally, quantitative
accuracy suffered. The scattering of the inclusion appeared to
increase relative to the inner layer while in actuality it de-
creased. The root mean square �rms� error of the recovered
distributions of the absorption and reduced scattering coeffi-
cients were estimated to be 0.0023 and 0.230, respectively.
When a subset of the prior knowledge of the phantoms struc-
ture provided by the MRI was used in image reconstruction,
the images that result indicate the presence of three material
types, but quantitative accuracy is not optimal. When the full
data set was utilized, and MR-derived priors guided the re-
construction, distinct boundaries separating each of the phan-
tom layers were recovered. In this case, the rms error of the
absorption and reduced scattering coefficient images de-
creased 43% to 0.0014, and 55% to 0.104, respectively. The
ability to quantify deeply embedded regions was also greatly
improved. The mean value of the absorption coefficient esti-
mated in the region of the inclusion was accurate within 10%
�0.018 mm−1 compared to the expected 0.02 mm−1�. Estima-
tion of the reduced scattering coefficient improved to within
20% �0.9 mm−1 compared to the expected 0.75 mm−1�. This
experiment indicated that resolution and accuracy were both
improved with the added information about the layer, when
implemented through a full regularization matrix. The algo-
rithm responded to MRI-derived information about the struc-
ture of the imaged volume, and the spatial image patterns that
it produced resembled that of the MRI. Note, however, that
when a prior is specified, but no absorption or scattering con-
trast exists, the algorithm does not introduce artificial contrast
within the image space matching the prior.

The second phantom study was completed to assess
contrast-resolution. For the images shown in Fig. 4�b�, when
prior information is used in image reconstruction the rms er-
ror of the absorption and reduced scattering coefficient images
decreased from 0.0019 to 0.0014 �26%� and from 0.1444 to
0.0613 �58%�, respectively. The data plotted in Figs. 4�c� and
4�d� indicated that linearity exists between the estimated and
the true contrast for the two reconstruction methods discussed
here. A collection of intralipid solutions �primarily with dif-
ferent absorption coefficients� was imaged inside a homoge-

neous background of gelatin. MRI-guided reconstructions re-
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covered more accurate property values over the entire range
of contrast. Figure 4�b� showed that with MRI-guidance, im-
age artifacts were suppressed �especially in �s� images�. The
error bars in Figs. 4�c� and 4�d� representing the NIR image
pixel standard deviation indicated that the variation in the
background and inclusion were reduced by using MRI priors.

An initial study of the breasts of normal volunteers has
been conducted to assess the feasibility and comfort of the
NIR array in the MR breast coil. Subject feedback indicated
that the examination table is comfortable. As developed, the
data acquisition system has proved feasible as well. We pre-
sented a single case study from the cohort of women imaged
with our NIR-MRI system. MR images can distinguish adi-
pose from glandular tissue with excellent contrast. This tissue
discrimination was used as a prior and the two tissue types
were treated separately in NIR image reconstruction. Figure 6
showed the detailed results from a typical volunteer exam.
The same amplitude and phase data was processed three dif-
ferent ways, and Fig. 7 presented a quantitative summary of
the results. Tissue parameters derived from spectral analysis
��HbT�, StO2, water, A, and SP� were reported separately for
adipose and glandular tissue. Error bars represented the stan-
dard deviation of property values within a particular tissue.
For each chromophore, MR-guided NIR reconstruction de-
creased intratissue variation and increased intertissue contrast.
For scattering parameters, MR guidance primarily reduced the
size of the error bars. Adipose tissue in this subject appeared
to be composed of 18-�M hemoglobin �approximately 0.75%
blood volume, assuming an average 15.6 dL/L hematocrit�,
80% oxygen saturation of the blood, and 15% water fraction.
In the glandular tissue it appeared to be composed of
30-�M hemoglobin �approx. 1.25% blood volume�, with
66% blood oxygen saturation, and 55% water fraction.

5 Conclusions

Phantom studies indicated that MRI can be used to improve
the spatial resolution and quantitative accuracy of NIR param-
eter image reconstruction. In particular, by using an MR-
guided iterative algorithm, layered structures can be recog-
nized in diffuse media, and the properties of embedded
objects can be studied with higher quantitative accuracy.
Studies with a stand-alone NIR imaging system have shown
that reconstructed tissue properties ��HbT�, A, and SP� corre-
late with tissue radiographic density.8,18 Based on phantom
studies presented here, which show that MRI-guided NIR
characterization is more accurate, it is reasonable to conclude
that the tissue characterization offered by the NIR-MRI sys-
tem is preferred over stand-alone systems when available. The
true values of these parameters in adipose and glandular tissue
of individual subjects are not known, however, the trends ob-
served in Fig. 6 and 7 are reasonable physiologically, when
the MR information is encoded within the NIR reconstruction
approach. Without the MRI, the potential to estimate NIR
parameters for different tissues within the breast is not as
accurate. The combined imaging approach may be particu-
larly useful for breast lesion diagnosis or management, which

will be the subject of future studies.
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