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ABSTRACT This paper presents a novel approach, called MALDIVE, to support tax administrations in the
tax risk assessment for discovering tax evasion and tax avoidance. MALDIVE relies on a network model
describing several kinds of relationships among taxpayers. Our approach suitably combines various data
mining and visual analytics methods to support public officers in identifying risky taxpayers. MALDIVE
consists of a 4-step pipeline: (i) A social network is built from the taxpayers data and several features of
this network are extracted by computing both classical social network indexes and domain-specific indexes;
(ii) an initial set of risky taxpayers is identified by applying machine learning algorithms; (iii) the set of
risky taxpayers is possibly enlarged by means of an information diffusion strategy and the output is shown
to the analyst through a network visualization system; (iv) a visual inspection of the network is performed
by the analyst in order to validate and refine the set of risky taxpayers. We discuss the effectiveness of
the MALDIVE approach through both quantitative analyses and case studies performed on real data in
collaboration with the Italian Revenue Agency.

INDEX TERMS Tax risk assessment, tax evasion discovery, network visualization, data mining,
human-computer interaction.

I. INTRODUCTION

Tax noncompliance is a serious economic problem for many
countries. It consists of a range of activities, such as tax
evasion and tax avoidance, that undermine the government’s
tax system. As a consequence, a fundamental goal is to reduce
the so-called tax gap, that is, the difference between the tax
amount that should be collected and the actually collected
amount. For example, in the United States, the estimated tax
gap for the period 2008-2010 was about 458 billion USD per
year [1], while in Europe, the estimated VAT (Value Added
Tax) gap for the year 2016 amounted to 147 billion Euros [2].
Among the European countries, Italy has a severe tax gap,
which is estimated at over 97 billion Euros per year in the
period 2013-2015 [3].
In order to deal with this phenomenon, many tax admin-

istrations are experimenting novel solutions that exploit
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advanced data analytics techniques [4]–[6]. In particular,
the Italian Revenue Agency (Agenzia delle Entrate), abbre-
viated as AdE in the following, has put in place various
strategies to reduce the tax gap. A key one is building an
effective law enforcement policy based on an accurate assess-
ment of the tax risk associated with the different taxpayers.
Namely, the main purpose of this assessment is to identify
those taxpayers who are more likely to be involved in relevant
tax evasion activities; such taxpayers are then subject to fiscal
audits.

A. OUR CONTRIBUTION

To support AdE tax officers in the tax risk assessment,
we present a novel approach, called MALDIVE (MAtch,
Learn, DIffuse, and VisualizE), that combines different data
mining and data analytics methods, such as graph pattern
matching, social network analysis, machine learning, infor-
mation diffusion, and network visualization. This approach
has been designed and implemented in collaboration with
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FIGURE 1. A high-level scheme of the proposed approach for the tax risk assessment of taxpayers. The MALDIVE approach follows a pipeline that
combines various data mining and analytics methods in order to support a human decision-maker.

the AdE.We remark thatMALDIVE is specifically conceived
to keep the public administration decision-making process
under control, by allowing public officers to better analyze
and validate the results provided by automatic classification
techniques. The approach is based on the following concep-
tual pipeline (refer to Fig. 1):
1) MAtch. We construct a social network where taxpay-

ers are interconnected by various types of relation-
ships, such as economic transactions, shareholdings,
and corporate offices. The idea of modeling the tax-
payers data by means of a suitable network is moti-
vated by the fact that many real cases of tax evasion
are implemented through the interaction of various sub-
jects. Examples include carousel VAT frauds, exchange
of false invoices, and tax avoidance implemented
through transfer pricing between corporate groups (see,
e.g., [7]–[10]). The MAtch phase is aimed to define
suspicious graph patterns that represent risky schemes
in the taxpayer social network. Such patterns are stored
in a pattern library and matched in the social network
in order to retrieve risky subjects. Based on this social
network and on the matched results, we compute both
classical social network analysis (SNA) indexes and
domain-specific indexes to highlight the most relevant
actors. We recall that the use of social network indexes
in fraud-risk assessment has been positively evaluated in
many papers (see, e.g., [11]–[14]).

2) Learn. Next, we make use of a tax risk forecasting
model in which machine learning algorithms are trained

not only on standard business features of the taxpayers
but also considering their social network indexes com-
puted in the previous phase. The forecasting model is
trained on the basis of the outcome of previous fiscal
audits and it turns out to be quite effective on identifying
the most risky taxpayers. The output of the forecasting
model is used to enrich the social network and is passed
to the next phase.

3) DIffuse. Based on the general consensus that risky
subjects can negatively influence the behavior of their
business partners [15]–[19], we apply an information
diffusion method to propagate the fiscal risk in the tax-
payer social network. The diffusion process is based
on a stochastic model that simulates the spread of an
information over an underlying network (see, e.g., [20]).
At the end of this phase, a fiscal risk score is assigned to
the taxpayers of the network.

4) VisualizE. The social network enriched with the fis-
cal risk scores is the input of a network visualization
interface. The purpose of this phase is to support the
analyst in validating the fiscal risk scores assigned by
the previous phases. This human validation activity is
fundamental for the tax administration, which must have
complete control over the taxpayer selection process.
In fact, thanks to a visual exploration of the social net-
work, the analyst can better assess the real risk profile
of taxpayers, thus carrying out a more effective selection
of tax audits [9], [10]. Namely, the analyst can find new
risky graph patterns or false negative cases, as it will be
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shown in our case studies. This information closes the
loop of the system by enriching the pattern library and
by improving the performance of the forecasting model.

The remainder of this paper is structured as follows.
In Section II we review the main literature related to our
research. Section III describes the MALDIVE approach
in details and our implementation in a real-world sys-
tem. Section IV discusses some case studies performed
on real data to give evidence of the validity of our
approach. Section V concludes the paper and proposes future
research directions.

II. RELATED WORK

In this section we survey the main literature concerning the
application of data mining and data analytics methods in
the field of financial crime and fiscal risk analysis. We dis-
tinguish between three categories, namely network-based
analysis, data mining and machine learning approaches, and
visualization approaches; for each of these categories we also
remark similarities and differences between the cited papers
and our work.

A. NETWORK-BASED ANALYSIS

Public administrations are often asked to monitor the cor-
rectness of the behavior of economic and financial oper-
ators. This type of assessment can strongly benefit from
network-based analysis, where operators are seen as actors
that relate to each other within an interdependent system.
The importance of analyzing economic transactions over a
network of subjects rather than focusing on individual enti-
ties has been recently emphasized in [21]. Numerous papers
highlight the relevance of SNA (Social Network Analysis) to
detect suspicious cases of money laundering. For example:
Didimo et al. [11] present a system equipped with several
indexes to measure the centrality of each actor in the finan-
cial network; Drezewski et al. [12] analyze criminal group
activities by means of SNA metrics that determine the roles
of financial operators; Fronzetti Colladon and Remondi [13]
show the importance of the centrality metrics to assess and
predict risk profile in money laundering analyses.

A crucial aspect of tax risk analysis is to study the
spread of fiscal behavior within the taxpayer social network.
Recent studies use agent-based models to explain how the
tax noncompliance behavior is influenced by the connec-
tions between taxpayers and then propagated within the net-
work [16]–[18]. This line of research motivates the use of
information diffusion models in our approach.

Network-based analysis are also applied in various eco-
nomic and financial fields, as well as in crime detection sys-
tems, to detect anomalous relational patterns [10], [22]–[29].
The Belgian government uses a data mining technique to
find corporate residence frauds [23]. Vlasselaer et al. [19]
apply a network-based approach to detect frauds related
to companies which intentionally go bankrupt in order to
avoid paying taxes. Network-based methods to find a spe-
cific type of tax evasion performed by affiliated-transaction

and involving medium and large companies are proposed
in [10], [25], [26].

The scope of our work is different from the aforementioned
papers. Firstly, we aim at identifying awider set of tax evasion
patterns and adopt a flexible approach to support the contin-
uous evolution of tax evasion and financial fraud schemes.
Secondly, our focus is more on small and medium-sized
enterprises, which mainly characterize the economic environ-
ment in Europe and particularly in Italy (see, e.g., [30]).

B. DATA MINING AND MACHINE

LEARNING APPROACHES

Several studies reveal that data mining and machine learn-
ing approaches can increase the audit selection performance
against traditional methods, which require strong manual
interventions by tax officers [31]–[33]. An association rule
technique to identify VAT evasion tax reports is applied
in [33]. Other rule-based approaches are proposed for detect-
ing fraudulent VAT credit claims [34] and for the identi-
fication of frequent fraud patterns in the Brasilian fiscal
environment [35]. Some tax administrations use clustering
techniques to detect groups of taxpayers characterized by
non compliance behavior [36], [37]. The Chile administration
exploits neural networks, Bayesian networks, and decision
trees to detect tax evasion performed with the use of fake
invoices [8]. The Iranian tax administration adopts a hybrid
intelligent system that combines multilayer perceptron neu-
ral networks, support vector machines, and logistic regres-
sion to detect corporate tax evasion [38]. Kim et al. [39]
develop multi-class financial misstatement detection models
for discovering fraudulent activities. Höglund [40] proposes a
genetic algorithm-based decision support tool for predicting
tax payment defaults.

In comparison with these papers, our approach allows tax
officers to better validate and understand the classification
results by visually exploring risky taxpayers and their rela-
tionships. Furthermore, to enhance the forecasting perfor-
mance in our domain, unlike the above papers, we consider
new features retrieved from a suitably defined taxpayer social
network, such as the presence of a subject in one or more
suspicious relational patterns.

C. VISUALIZATION APPROACHES

The importance of using the visual channel to identify and
analyze economic and financial frauds is well described
in the literature [41], [42]; see also the survey in [43].
Application examples of visualization approaches in the eco-
nomic and financial fields include: systems for financial
fraud and money laundering detection based on the anal-
ysis of banking data [11], [12], [44], [45]; visual analyt-
ics techniques for financial stability monitoring and fraud
detection in financial markets [46], [47]; decision support
systems for tax evasion discovery [9], [48]. In the specific
domain of financial transaction analysis, few works propose
hybrid approaches that combine visual analytics and machine
learning techniques to support human decisions. An early
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work of Kirkland et al. [49] adopts artificial intelligence,
visualization, pattern recognition, and data mining to support
regulatory analysis, fraud detection alerts, and knowledge
discovery; this approach however is not meant for user inter-
action. The more recent system EVA [50] integrates various
techniques to detect fraudulent transactions within a finan-
cial institution. It offers a scoring mechanism based on data
mining techniques and interactive visual analytics facilities
to perform fraud validation, but it is not based on a network
representation of the data.
Unlike the above works, our hybrid approach focuses on

the fiscal domain and provides an interactive network visu-
alization environment through which tax officers can assess
the results provided by machine learning and information
diffusion methods. The importance of combining data mining
and visualization methods has also been confirmed in [51]
for the analysis of crime data and in [52] for the detection of
outliers.

III. THE MALDIVE APPROACH: DESIGN

AND IMPLEMENTATION

In this section we present in detail our approach MALDIVE
and its implementation in place at the AdE. We first describe
the MAtch phase, i.e., how we construct the taxpayer social
network from the raw data and the subsequent graph pat-
tern matching step (Section III-A). Then, we illustrate the
Learn phase and its corresponding fiscal risk forecasting
model (Section III-B). Finally, we describe the DIffuse phase,
which is based on a stochastic spreading process of risk
scores (Section III-C), and the VisualizE phase, which allows
human analysts to visually explore the taxpayer social net-
work enriched with the fiscal risk scores (Section III-D).

A. THE MATCH PHASE

The data sources queried by the AdE officers are modeled
as a unified taxpayer social network G. Each node v of G
is a single taxpayer, which can be either an individual or a
legal person, like a private company or a public institution.
Many business attributes are associated with v, including
the type of economic activity, the geographic location and
territorial scope, the declared income, the amount of VAT
credits/debts and of VAT refunded/paid, and the amount of
economic exchange within the European Union. The afore-
mentioned business and fiscal features mainly concern the
data recovered from the tax register, tax returns, and financial
statements. The edges ofG are directed edges. An edge (u, v)
can model different types of relationships between u and v.
From the economic point of view, the main types of rela-
tionships considered in this work are economic transactions,
shareholdings, and corporate positions. For an economic
transaction (u, v), the source node u is the seller and the
target node v is the buyer; the two main attributes for such
an edge are the transaction amounts declared by the two
subjects in the considered time window. For a shareholding
(u, v), the source u is the shareholder and the target v is the
participated company; the main attribute for this edge is the

percentage of share. For a corporate position (u, v), the source
u is the subject holder of corporate positions and the target v is
the assigning company; the main attribute for this edge is the
type of corporate position. For example, the taxpayer social
network constructed from the data of the Tuscany region in
Italy for the tax year 2014 consists of about 700,000 nodes
and 1,800,000 edges. We remark that our model can be
easily extended with more types of relationships, for example
depending on the specific application domain and/or geo-
graphic context.

The MAtch phase allows analysts to define suspicious
graph patterns that represent risky schemes in the taxpayer
social network. Example of risky schemes are those that arise
from carousel VAT frauds, exchange of false invoices, and
tax avoidance implemented through transfer pricing between
corporate groups. For instance, Fig. 2 highlights a suspi-
cious pattern identified in a larger network, which we call
SuppliesFromAssociated, that models the exchange
of high transactions among taxpayers participated by the
same owner. More formally, a graph pattern P is defined
as a pair 〈GP,RP〉, where GP = (VP,EP) is a graph that
describes the topology of P, and RP is a set of rules on the
nodes and the edges of GP. An edge of EP corresponds to a
single edge of G or to a path whose length is within a desired
range. This correspondence is established by a specific type
of rules of RP. Other types of rules in RP are used to describe
desired properties for node/edge business attributes of GP;
these properties can then be combined with logical operators
AND, OR, NOT. Regular expressions should also be usable
to specify classes of values for the node and edge attributes
ofGP. For example, in the pattern of Fig. 2 graphGP consists
of three nodes and three directed edges. The set RP of rules
specifies that: (i) a node of GP represents a person while the
other two nodes represent companies AND (ii) the edges of
GP describe shareholdings of the person in the two companies
(see the two green edges) and economic transactions above
a desired threshold t between the two companies (see the
weighted black edge).

The patterns defined in the MAtch phase are stored in a
pattern library, which is one of the knowledge bases of our
approach. For example, Table 1 reports the pattern library
defined by tax experts of the AdE and used to extract specific
network features for the fiscal year 2014. We refer the reader
to [9] for further details about some of the risky fiscal patterns
and their business rules.

Our specific implementation for the MAtch phase is built
on top of the popular Neo4J1 graph database, which is par-
ticularly effective and efficient in executing graph pattern
matching tasks. The native query language of Neo4J, called
Cypher, can be used to specify graph patterns to be searched
in the network. In order to make the MAtch phase more
user friendly, one can exploit a visual query language that
allows analysts to manually draw a graph pattern and that
automatically translates this pattern into an equivalent Cypher

1http://neo4j.com
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TABLE 1. Patterns defined by the AdE tax experts and used to extract
specific network features for the fiscal year 2014.

FIGURE 2. In the MAtch phase, tax officers encode risky relational
schemes among taxpayers into suspicious graph patterns to be searched
in the taxpayer network. The pattern in the figure represents a
SuppliesFromAssociated scheme, consisting of an economic
transaction (black edge) and two shareholding relationships (green
edges).

query (see, e.g., [53], [54]). In our implementation we use the
visual language described in [9], [48], which is specifically
tailored to the fiscal domain.

B. THE LEARN PHASE

The goal of this phase is to predict the fiscal risk of the
taxpayers. This can be accomplished by exploiting different
supervised forecasting models and different types of fea-
tures related to both the structural properties of the network
and the node/edge attributes in the specific fiscal domain.
In the following we describe different implementations of
the Learn phase and we report the results of an experimental

comparison between them. These results provide useful
insights for the design of the Learn phase in application
domains similar to ours.

We considered different supervised forecasting models
trained on the samples of previous fiscal audits. We used
a sample of 2, 790 fiscal audits for the fiscal year 2014.
A fiscal audit is positive if there are Assessed Additional
Taxes (AAT), while it is negative if no tax evasion or tax
avoidance were detected and therefore there are no AAT.
Given that tax administration has limited resources and there
are administrative costs associated with the tax assessment
process, the efforts are primarily focused on the most serious
cases of tax evasion. Following this strategy, we used a thresh-
old value for the amount of AAT to identify the taxpayers with
greater risk. Each fiscal audit is assigned one of two possible
labels (i.e., two classes):
(LOW_RISK) Taxpayers with either negative or not rele-

vant fiscal audits (i.e., whose AAT values
are less than the chosen threshold).

(HIGH_RISK) Taxpayers with relevant fiscal audits
(i.e., whose AAT values are greater than or
equal to the chosen threshold).

In order to effectively represent the taxpayer social network
data, we make use of the following types of features:

1) BUSINESS AND FISCAL FEATURES

We used many business and fiscal attributes associated with
taxpayers, including the type of economic activity, the geo-
graphic location and territorial scope, the declared income,
the amount of VAT credits/debts and of VAT refunded/paid,
and the amount of economic exchange within the European
Union. The aforementioned business and fiscal features
mainly concern the data recovered from the tax register, tax
returns, and financial statements.

2) PATTERN FEATURES

The results retrieved in the MAtch phase are merged into a
temporary Risky Relationship Network (RRN) so to compute
the pattern centrality measures introduced by [9]. A central
actor in the RNN is a taxpayer involved in many suspicious
patterns. Thus, we used these measures to compute a set
of pattern features that represent the centrality of each tax-
payer in the RRN.

3) SNA FEATURES

This set of features should bring information about the
relevance of a taxpayer in the whole social network. For
each type of relation, we use as features several common
measures of centrality so to identify the most relevant
social actors [55]. Namely, for each taxpayer we consider
the in-degree, the out-degree, the degree, the closeness,
the betweenness, and the page rank [56] centrality measures.
In addition, since some specific cases of tax evasion are car-
ried out by operators who present occasional but high-value
economic transactions, we consider for each taxpayer the set
of weights of its incident economic edges and use as features
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the mean, the variance, the skewness, and the kurtosis of
this set.

4) MACHINE LEARNING ALGORITHMS

We built four forecasting models for detecting the fis-
cal risk associated with each taxpayer. These models are
logistic regression (LR), support vector machines (SVM),
multi layer perceptron neural networks (MLP), and random
forests (RF) [57]. We started with the data cleansing of the
features vector, which is composed of 177 business/fiscal
features and 56 structural (patterns and SNA) features.
We transformed categorical features in dummy variables,
for a total of 348 features. Considering the high number
of features, we performed a selection using these methods:
Features with a high percentage of missing values; low cor-
related features with AAT; collinear (highly correlated) fea-
tures; features with zero importance in a tree-based model.
We used a gradient boosting machine learning model [58]
to analyze feature importance (see Fig. 3) and to filter
out features with zero importance which are not used to
split any nodes of the tree. The filtered features vector
is composed of 129 business/fiscal features and 54 struc-
tural features. We normalized numeric feature values in
5 categories, using quantiles of the data distribution. The
adopted method tends to spread out the most frequent val-
ues and it also reduces the impact of outliers. This method
makes variables measured at different scales more directly
comparable.
For reasons of confidentiality we are not authorized to

show data related to the impact of taxpayers’ business and
fiscal features in the forecasting models. However, we show
some analyses conducted on structural variables. Fig. 4
shows the Pearson correlation heat map computed for the
network-based (patterns and SNA) features.
By looking at Fig. 4, we can see that the highest correla-

tion value with the AAT is with a feature (patternId01value)
related to pattern 1 (MissingTraderSuppliers) of
Table 1, which is the most important structural feature as
shown in Fig. 3. We recall that this pattern is based on
the presence of economic relationships with missing traders
subjects who have serious tax irregularities, such as omitted
VAT payments or tax declarations.
The negative correlation of AATwith the centrality indexes

related to the corporate positions and shareholdings is also
interesting. Among these indexes, one can observe that in fact
the ‘‘degree_corporateposition’’ is the second most important
structural feature as shown in Fig. 3. This data highlights
how in a company with many shareholders, directors, and
corporate controllers, there is a smaller risk of serious tax
violations.
In order to train the different models and in order to

subsequently evaluate the performances of these models,
we partitioned the whole sample of 2, 790 fiscal audits
into two parts: A training set, consisting of 70% of the
fiscal audits and a test set, containing the remaining 30%
of audits. We used a 10-fold cross validation technique to

TABLE 2. Description of the metrics used to compare the fiscal risk
forecasting models.

reduce the problem of over fitting in the training phase and
we used a grid search algorithm to find the best tuning
parameters of the models. The results on the test set are
based on the metrics defined in Table 2 and they are shown
in Table 3.
The Random forest model obtained the best result in terms

of Accuracy (74.29), AUCROC (74.29), Precision (75.42),
and F1-score (73.66), while the best score for the Recall was
achieved by theMLPmodel (75.63). The Logistic Regression
model exhibited the worst performance for all metrics, still
with values higher than 70%.
We conducted further experiments to compare the fore-

casting models subject to an additional constraint. Namely,
we require that each model decides the class of a data item
only if its membership probability to that class is higher
than 80%; see Table 4. While this constraint leads to a lower
response rate of the model, it is particularly suitable for
tax administrations who have to monitor a large number of
subjects and who must select the taxpayers with the greatest
probability of being in the high-risk class. In particular, in the
Italian economic context, the analysis of tax risk must take
into consideration a large number of small businesses and
professionals (for example, in the Tuscany region there are
over 400,000 business operators).
Finally, on our specific dataset, we evaluated the impact

of replacing our business features with others previously
used in the fiscal domain, namely the set of 21 financial
features proposed in the study of [38]. The results are reported
in Table 5. As one can see, the values for the different metrics
are significantly lower than those achieved with our business
features.
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FIGURE 3. Analysis of the structural feature importance using gradient boosting.

TABLE 3. Experiments conducted to compare various forecasting models.

TABLE 4. Performance and response rate of the models when the classification is made only if the membership probability is higher than 80%.

TABLE 5. Performance obtained by replacing our business variables with
those suggested in [38].

C. THE DIFFUSE PHASE

Starting from the core of high-risk taxpayers determined by
the Learn phase, the goal of the DIffuse phase is to identify

other taxpayers that are potential risky subjects. This is done
by applying an information diffusion method to propagate
part of the fiscal risk of the core taxpayers to other nodes of
the network. There is, in fact, a general consensus that risky
taxpayers may negatively influence the behavior of their busi-
ness partners [16]–[19]. A diffusion process is modeled as a
stochastic process that simulates the spread of an information
over an underlying network (see, e.g., [20]).

More precisely, in our implementation of the Learn phase
a subset of nodes of the taxpayer social network (possibly
all nodes) is labeled as either high-risk or low-risk. The
pseudo-code of our fiscal risk diffusion algorithm is given in
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FIGURE 4. Heat map of the Pearson correlation coefficient computed for the structural features. Positive correlations correspond to the red scale;
negative correlations correspond to the blue scale.

Algorithm 1. The diffusion process is broken down into a set
of iterations. In the first iteration, the risk can be propagated
by a set of seeds that consists of the taxpayers classified as
high-risk. The transmission of the risk between a seed and its
linked subjects takes place on the basis of a stochastic pro-
cess. The greater the weight of the relationship between two
taxpayers, the higher the probability of transmitting the risk
along that link. The subjects to whom the risk is transmitted
become the new seeds for the next iteration, and the process
halts when no more seeds are created. The transmitted risk
value is reduced during the propagation phases until reaching
the conclusion of the process.
In the pseudo-code of Algorithm 1, the normalize-weights

function maps each edge weight to a real number in an
interval [rL , rH ] ⊆ [0, 1], which can be viewed as a prob-
ability. The function is defined as follows. Let E(u) be the

set of edges incident to u. For each edge e = (u, v) in E(u),
the function normalizes its weight w(e) based on its type. For
edges representing economic transactions, the weight corre-
sponds to the amount of the transaction and it is normalized
using the MinMax normalization [59], as shown in (1).

rL = 0

rH = 0.8

wmin = min
e∈E(u)

w(e)

wmax = max
e∈E(u)

w(e)

wnorm(e) =
w(e)− wmin
wmax − wmin

· (rL − rH )+ rL (1)

For edges representing shareholdings, the weight corresponds
to the shareholding percentage and it is multiplied by the
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Algorithm 1 FiscalRiskDiffusion(G)
Require: A weighted taxpayer network G
Ensure: Fiscal risk diffusion
1: S ← taxpayers classified as high-risk
2: for all (u in S)) do
3: seed(u)← true
4: risk(u)← 1
5: end for

6: t ← 1
7: while (S is not empty) do
8: S ′← empty
9: for all (u in S) do
10: E(u)← set of edges e = (u,w) incident to u
11: normalize-weights(E(u))
12: N (u)← set of taxpayers v linked to u
13: for all (v in N (u)) do
14: wnorm(e) ← normalized weight of the edge e =

(u, v)
15: R← pseudo-random number in the range [0,1]
16: if ((R < risk(u) ·wnorm(e)) AND (seed(v) ==

false)) then
17: risk(v)← risk(u) ·wnorm(e) · 1t2
18: S ′← S ′ ∪ {v}

19: seed(v)← true
20: end if

21: end for

22: end for

23: S ← S ′

24: t ← t + 1
25: end while

value rH defined in (1). In the case of multiple edges,
the weights are added together because the risk is higher, but
the maximum value allowed is rH .

D. THE VISUALIZE PHASE

The last phase of the pipeline is the visual exploration of
the social network enriched with the fiscal risk computed by
the Learn and DIffuse phases. Through the visualization the
tax officer gains a more holistic and systemic view of the
network, which makes it easier: (i) to validate the risk scores
assigned by the previous phases, (ii) to detect false negative
risky taxpayers, and (iii) to discover new suspicious patterns.
This phase combines the following ingredients:
• Node-Link Layout: The analyst can start from an auto-
matic visualization of a relatively small portion of the
taxpayer network. To this aim, a classical node-link
layout of the network appears to be a natural and intuitive
choice, which is preferred to other types of representa-
tions that are more suitable for larger and denser graphs
(see, e.g., [60]–[63]).

• Interactive Network Exploration: Starting from the ini-
tial node-link layout, tax officers can use various inter-
action features to visually explore the taxpayer network.
For example, the analyst can add to the current layout

the neighbors of a node or she can remove some nodes
from the visualization.

• Interactive Filtering:The analyst can hide from the visu-
alization nodes or edges that are less interesting, based
on the values of some specific attributes.

In our implementation of the VisualizE phase, we exploit
and customize the module provided in [48] to our appli-
cation domain. Namely, we visually encode the risk of the
taxpayers by the background color of the corresponding
nodes, as shown in Fig. 5. Also, nodes classified as high-
risk by the Learn phase are represented with a red border,
while nodes classified in the low-risk class have a green
border color. Alternative implementations of this phase could
rely on embeddable tools with built-in Neo4j connections
(https://neo4j.com/developer/tools-graph-visualization/).

FIGURE 5. Background colors associated with the taxpayer fiscal risks.
Risks values are normalized from 0 to 1.

An example of visual exploration is shown in Fig. 6.
Starting from a high-risk taxpayer, the analyst explored a
larger network by repeatedly expanding the relationships of
some taxpayers. Also, by using the interactive filtering the
analyst hid the shareholding relationships and the economic
transactions that are below a threshold value. At the end of
the exploration, the user added a feedback to the record of
one of the analyzed taxpayers. This is done by selecting the
icon corresponding to the rating level in the bottom-right of
the interface. In this way the analyst may or may not confirm
the risk level originally assigned to a taxpayer by the previous
phases.

IV. CASE STUDIES

In this section we illustrate two case studies about the use of
the MALDIVE approach. The case studies are based on real
data and activities carried out by AdE tax officers.

We built a taxpayer network common to both case studies,
based on the AdE dataset for the fiscal year 2014. First,
we carried out the MAtch phase based on the pattern library
described in Table 1. We then extracted the features from the
taxpayer network to perform the Learn phase. We classified
the test set of the fiscal audits sample labeling its nodes
as either high-risk or low-risk. In particular, for the Learn
phase we applied the Random Forest model, that according
to our experimental analysis (see Section III-B) is the one
that achieves the best score for the AUCROC metric. Sub-
sequently, we applied the DIffuse phase starting from the
high-risk taxpayers in order to propagate the fiscal risk in
the taxpayer network. The resulting enriched network was the
input of the VisualizE phase performed by an AdE tax officer.
During the case studies, the tax officer exploited the network
visual exploration phase to assess the tax risk of two taxpayers
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FIGURE 6. Visualization of a portion of the taxpayer network. Starting from a high-risk subject (dark red background), the analyst expands the network
by exploding the relationships of some taxpayers. Black edges represent economic transactions, green edges are shareholdings, and purple edges are
corporate positions. At the end of the analysis the analyst may add a personal feedback to the record of the investigated taxpayers.

one labeled as high-risk (Case 1) and the other labeled as
low-risk (Case 2).

1) CASE 1

For the description of this case study refer to Fig. 7. The
tax officer interacts with the Visual Exploration interface to
analyze the high-risk taxpayer, which represents a company
denoted as v1. Starting from v1, the tax officer visualizes
its neighbors. After interacting with the available filters and
excluding nodes and relations that are considered not rele-
vant, the tax officer obtains the portion of network shown
in Fig. 7a. The attention is captured by the presence of a
double relationship between two taxpayers. Namely, node v1
plays a dual role: It is both a supplier of a company, node
v2 in the figure, and owner of the same company for more
than 90% of the share capital. The value of the economic
transaction between v1 and v2 is high and it recommends
further investigation. By enlarging the network, the officer
identifies node v3, that owns both company v1 and the
remaining 10% of company v2. The officer concludes that
the economic transaction between v1 and v2 is risky due
to its value and the presence of correlated interests between
the economic parties. To better analyze the tax risk of the
subjects involved in the described scheme, the officer decides

to visualize the spread of the tax risk obtained with the
procedure described in Section III-C and shown in Fig. 7b.
The officer realizes that v2 has been initially classified as
low-risk by the forecastingmodel (as represented by the green
border), while the diffusion process has increased its risk level
(represented by a dark orange background). Thus, after going
through the whole pipeline of MALDIVE, the final decision
of the officer is to consider v2 as a high-risk node.

2) CASE 2

For the description of this case study refer to Fig. 8. Differ-
ently from the previous scenario, in this case study the tax
officer starts from a company n1 classified as low-risk by the
forecasting model but whose risk has been increased by the
diffusion process; in Fig. 8, the border of n1 is indeed green
while its background is dark orange. The officer decides
to further investigate the reasons behind the risk diffusion
towards n1. By considering the economic transactions of
n1, the officer realizes that three customers of n1 have been
classified as high-risk (nodes n2, n7, and n9). The economic
transactions between n1 and these three nodes are all of
relevant amount (hundreds of thousands of Euros each). The
officer then inspects the corporate structure of company n1
and finds out that its shareholders (nodes n4 and n3) are
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FIGURE 7. Illustration for Case 1. Portion of the taxpayer network before (a) and after (b) the risk diffusion process. Black edges
represent economic transactions, green edges are shareholdings and purple edges are corporate positions. The color intensity inside each
edge encodes the weight of the relationship.

FIGURE 8. Illustration for Case 2. Portion of the taxpayer network after the risk diffusion process.

also shareholders of n2 and n7. This occurrence reveals a
common tax evasion strategy that the shareholders n4 and n3
may adopt not only for the high-risk companies n2 and n7,
but also for companyn1. Thus, the officer decides to consider
n1 as high-risk, confirming the effect of the diffusion process.

V. CONCLUSION AND FUTURE WORK

We presented MALDIVE, a novel approach for fiscal risk
analysis combining different data mining and data analytics
methods. MALDIVE has been designed and implemented
in collaboration with the Italian Revenue Agency (Agenzia
delle Entrate, AdE) and has been evaluated on real data by
expert tax officers. It combines graph patternmatching, social
network analysis, and machine learning to detect risky tax-
payers, it exploits information diffusion processes to spread
the risk in a suitably constructed taxpayer network, and it
offers network visualization features to support the analyst
in the exploration of the proposed results.

A key contribution of our approach is the application of
combined data analysis techniques in the context of pub-
lic administration, where it is crucial to always keep the
decision-making process under the control of public officers.
In fact, our combined approach supports final and critical
decisions with a user-centric visualization environment that
complements an automated classification pipeline.

In the near future, we plan to use additional data in order to
improve the classification performance of our approach. Par-
ticular attention will be given to further data available in the
fiscal audits, among them: (a) the profitability of a fiscal
audit (expressed in terms of the amount of additional taxes
paid by the taxpayer), and (b) the relevance of a fiscal audit
(expressed in terms of the size of the business activity).

Finally, we are currently collecting the feedback of the
analysts on the risk assigned by the system to the taxpayers.
Indeed, the analyst can agree or disagree with the risk level
of a taxpayer. This feedback, together with new data coming
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from subsequent fiscal audits, will be used to improve the
training of the forecasting models.
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