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Abstract

This contribution describes the creation of a landslide hazard assess-
ment model for San Salvador, a department in El Salvador. The analysis
started with an aerial photointerpretation from Ministry of Environment
and Natural Resources of El Salvador (MARN Spanish acronym), where
4792 landslides were identified and georeferenced along with 7 condition-
ing factors including: geomorphology, geology, rainfall intensity, peak
ground acceleration, slope angle, distance to road, and distance to geo-
logical fault. Artificial Neural Networks (ANN) were utilized to assess
the susceptibility to landslides, achieving results where more than 80%
of landslide were properly classified using in-sample and out of sample
criteria. Logistic regression was used as base of comparison. Logistic re-
gression obtained a lower performance. To complete the analysis we have
performed interpolation of the points using the kriging method from geo-
statistical approach. Finally, the results show that is possible to derive a
landslide hazard map, making use of a combination of ANNs and geosta-
tistical techniques, thus the present study can help landslide mitigation in
El Salvador.

Keywords: landslide; hazard assessment; El Salvador; ANN; geostatistics; arti-
ficial neural networks; kriging.

Resumen

Esta contribución describe la creación de un modelo de evaluación de
deslizamiento de tierra para el Área Metropolitana de San Salvador, de-
partamento de El Salvador. El análisis inició con la obtención de una foto
aérea del Ministerio de Medio Ambiente y Recursos Naturales (MARN) en
donde 4792 deslizamientos fueron identificados y georeferrenciados junto
con 7 factores condicionantes incluyendo: geomorfología, geología, pre-
cipitaciones máximas, aceleraciones sísmicas, pendiente del terreno, dis-
tancia a carretera y falla geológica. Redes Neuronales Artificiales (RNA)
fueron utilizadas para la evaluación de la susceptibilidad a deslizamiento
de tierra, logrando que más del 80% de deslizamientos fueran apropiada-
mente clasificados usando un criterio dentro y fuera de la muestra con
la que se estimaron los parámetros del modelo. Regresión Logística fue
usada como base de comparación, obteniendo este modelo un rendimiento
inferior. Para completar el análisis se realizó la interpolación de puntos
usando el método kriging proveniente del enfoque geoestadístico. Final-
mente, los resultados muestran que es posible obtener un mapa de riesgo a
deslizamiento de tierra, haciendo uso de una combinación de RNA y téc-
nicas geoestadísticas con lo cual la presente investigación puede ayudar a
la mitigación de deslizamientos de tierra en El Salvador.

Palabras clave: deslizamiento de tierra; evaluación de riesgo; El Salvador;
RNA; geoestadística.

Mathematics Subject Classification: 62P12.
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1 Introduction

El Salvador, one of the smallest and most crowded nations in Central America,
extends in Pacific coast about 240 km westward from the Gulf of Fonseca to
the border with Guatemala (see Fig. 1). El Salvador has an active subduction
boundary between Cocos and Caribbean plates located 30 km offshore. There-
fore, El Salvador is affected with high seismicity and volcanic activity related
to this active boundary. There are two main sources of seismic activity: the
upper interface thrust that coincides with the location of the recent volcanoes,
and the Benioff-Wadaty zones of subducted Cocos plate where deeper intraplate
earthquakes occurs [16]. Due to this tectonic and volcanic activity, El Salvador
has rugged relief. The main ranges cross the country with a rough west-east
trend, parallel to the coastline. These are separated from each other by faults
and grabens. These ranges present several highly active volcanoes. The surface
geology in El Salvador is almost entirely volcanic, dominated by upper Tertiary
to Holocene volcanic rocks. Only sparse outcrops of sedimentary and plutonic
rocks are located in the northern ranges, in the border with Honduras [42]. Some
of the most recent volcanic layers are formed by poorly consolidated ashes and
highly erodible tuffs [6].

Throughout the year, the country experiences a tropical climate with two
seasons: a dry season (November to April) and wet season (May to October).
The climate of El Salvador is generally warm. In the dry season there is very
little rainfall; but during rainy seasons, heavy showers take place. Periodically
El Salvador is affected by tropical storms and occasionally by hurricanes.

As in other parts of Central America, landslides in El Salvador constitute
an important natural hazard due to prevailing steep terrain covered with poorly
consolidated volcanic materials, and the frequent occurrence of extreme pre-
cipitation events and intense earthquakes. This problem is exacerbated by the
extreme deforestation and the consequent high level rates of erosion. Poverty,
overpopulation and uncontrolled urbanization characterize the Salvadoran hu-
man settlements, which makes El Salvador a country with high landslide risks.
An example of this high risk was the devastating effect of Las Colinas land-
slides, triggered by a major earthquake (Mw 7.6) on January 13th, 2001 in Santa
Tecla, a major city located close to San Salvador, the Salvadoran capital[19].
A huge amount of soil mass (about 200,000 m3) was thrown off the rim of El
Balsamo range, and destroyed many houses causing more than 500 deaths. To-
gether with this event, several landslides ocurred along the country, especially
in the Metropolitan Area of San Salvador (MASS) [25]. Another example is
the large number of heavy-rainfall induced landslides occurred during Hurricane
Mitch on October and November 1998 [14].
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Figure 1: Location of El Salvador in Central America, map of El Salvador with location
of the Metropolitan Area of San Salvador (MASS) and its topography.

Due to the above, it is necessary to implement mechanisms that allow us
to quantify the hazard of a given geographic area to landslides. Usually this
is done with development of susceptibility maps, which present in a graphical
way the zones more susceptible to landslides, and represent a practical tool for
urban planning. We propose an Artificial Neural Network model (ANN), which
is a family of statistical learning models inspired on biological neural networks.
The model proposed is used to estimate the susceptibility to landslide. From
the results obtained by the model, a map was derived using kriging, which is a
method of spatial interpolation from the geostatistical approach.

2 Brief state of art

Since the pioneering work shown in [9], several mathematical and statistical
models have been proposed to model landslide susceptibility: deterministic mod-
els ([8], [32], and [31]) and probabilistic models ([7], [13], and [26]).

Popular classification models have been used, such as logistic regression
([1], [23], and [21]), neural networks ([22], [29],[44], [18], and [43]), and sup-
port vector machines ([3] and [39]).
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According to [40], the magnitude of a possible slide is difficult to foresee
as it depends on the magnitude of the triggering event and the environmental
conditions (e.g., height of water table) at the moment of the event. Because of
these complex relationships between the dependent variable and causal factors,
and since neural networks are particularly useful for detecting complex non-
linear relationships in large datasets, we chose this kind of model, despite the
disadvantages such as greater computational burden and tendency to overfit.

3 Study area

MASS is formed by 14 municipalities among them is San Salvador, the capital
of the country. It has 587 km2 and according to the most recent census [30] it
has 1,566,629 inhabitans with a density of population of 2669 hab/km2. Geo-
graphically, MASS is extended over a flat erosional surface (650-760 m.a.s.l.),
gently sloping to the east towards Ilopango Caldera also known as Ilopango
Lake. MASS is bordered to the south by the Balsamo Range and San Jacinto
Hill, to the west by San Salvador volcano and Mariona Hills (refer to Fig. 1).
Human settlement is not restricted to the plain and it spreads up to surrounding
heights and volcano flanks.

All rocks exposed in MASS have volcanic origin and consist of intercaled
primary and reworked deposits from Late Tertiary to Holocene age [36]. The
younger ones are known as Tierra Blanca pyroclastic ash deposits and form a
relative continuous layer in the majority of MASS with an average thickness of
4 m [36]. These are deposits derived mainly from Ilopango Caldera eruptions
with more than 50 m of thick [36]. Tierra Blanca soils are highly susceptible
to erosion. One of the most common dangerous effects of the erosion in this
area are landslides during heavy rainfall and earthquake ground shaking [36].
Chávez et al. [11] identified high and moderate erosion hazard in the majority of
MASS area. The more recent layer Tierra Blanca, known as Tierra Blanca Joven
(TBJ) [24] presents very poor geotechnical properties, especially when there is
an increment of soil moisture (i.e. during rainy seasons). This results in high
instability and susceptibility ([10] and [34]). Several incised rivers and ravines
cross MASS area. Due to the large erosion rates of the area, natural slopes of
these watercourses are often close to vertical and can reach heights of over 10
m. Taking into account this property of volcanic soils, usually vertical slopes
are cut to urban and road construction. As Bommer & Rodriguez [6] identified
in Central America, although such slopes may remain stable for years, they may
become unstable, abruptly and totally under the action of heavy rainfall or seis-
mic shaking. Hernández [24] carried out a detailed description of this process in
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TBJ, where these instabilities are very common. In the study area fault trends are
characterized by steep angles (65°- 90°). The main fault system is characterized
by an east-west trend; this trend is responsible for the steep northern slope of the
El Balsamo Range. The other fault systems have north, northwest, and north-
east trends and are more active in the present tectonic setting [36]. However, all
the mentioned fault families appear active. Thus the several fault systems were
formed at different times, but were repeatedly reactivated [35]. Finally there are
also several ringlike faults that can be related to subsurface collapse due to vol-
canic tectonic subsidence [36]. The last eruption of San Salvador volcano was
in 1917. The majority of the magma’s total volume (97%) extruded from several
vents in the northwest flank of the volcano, outside of MASS. However, a frac-
tion of MASS is located under the proximal volcanic hazard zone according to
Sofield [38]. In the steep slopes of San Salvador volcano, especially at Picacho,
the highest peak which is located in the eastern side, there is a high lahar hazard
that threatens MASS [27]. In addition to that one of the most destructive erup-
tions in the world history was 430 A.D. The TBJ eruption was produced by the
Ilopango Caldera and according to Dull [17], yielded total devastation in whole
MASS area.

4 Landslide inventory and data sources of input

variables

The Landslide inventory was developed by the Ministry of Environment and Nat-
ural Resources (MARN Spanish acronym) and it was conducted in two stages.
The first was carried out based on fieldwork after the 2001 earthquakes in El
Salvador. The second stage consisted of a visual inventory of places where land-
slides were identified through satellite image from IRS-C sensor (Indian) in the
same year.

Once the landslide inventory was finished, 4792 landslides were identified,
0.5% of the total points georeferenced. In addition to the landslide information,
the following data sources of input variables was provided by MARN:

1. Geomorphology: Refers to landforms that result from lithospheric dy-
namics of geographic area. This variable was obtained in the project of
national land use plan in El Salvador. It is unpublished geomorphologic
cartography in digital format provided by MARN.

2. Slope: Slope gradient is an important component and a preparatory cause
of landsliding [21]. It was calculated from digital elevation model (DEM)
provided by MARN (scale 1:100,000).
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3. Geology: Description of the geology of the area according to digital geo-
logical map of El Salvador (scale 1:100,000) [42].

4. Rainfall intensity: From the precipitation database compiled by the
MARN’s weather stations for the period 1970-2001, maximum precipi-
tations were obtained, and then, a contour map was generated through
kriging interpolation method.

5. Peak ground accelaration: Maximum ground acceleration expressed in
Gal for a return period of 500 years. This data was obtained from the
evaluation of seismic Hazard in Central America carried out under the
framework of RSIS II project [4].

6. Road distance: Distance in kilometers to the nearest road. Road map
was obtained from digital national map created by Centro Nacional de
Registros de la República de El Salvador (CNR).

7. Fault distance: Distance in kilometers to the nearest fault. This informa-
tion was obtained from the digital geological map of El Salvador (scale
1:100,000) [42].

5 Artificial neural network model for discrete choice

Logistic regression represents a neural network with a neuron in the hidden layer,
whose output is dichotomous. The following adapted form of the Multilayer
Perceptron (MLP) may be used for modeling binary classification problems. In
equation (1) xk,i are the observed values in the ith input variables belonging to
the kth case. The expressions wj,k and λj showed in equations (1) and (3) are
the parameters of the model.

nj,i = wj,0 +
k∗
∑

k=1

wj,kxk,i (1)

Nj,i =
1

1 + exp−nj,i
(2)

pi =

j∗
∑

j=1

λjNj,i (3)

j∗
∑

j=1

λj = 1, λj ≥ 0. (4)
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In equation (3) pi is the output of a neural network with k∗ input charac-
teristics and j∗ neurons. In the context of the present study, pi represents the
probability of landslide ocurrence.

Before estimating the parameters of the neural network model, it is necessary
to standardize the input variables. In particular for classification problems is
more suitable to scale inputs to [−1, 1] rather than [0, 1] [41]. The following
scaling was applied to each input variable:

z =
x− x̄

σx
. (5)

In equation (5) z is the new variable transformed. x̄ and σx are the mean and
the standard deviation of the input variable to transform, respectively.

The method used for estimating the parameters of the model was a hybrid
method [28]. Firstly, a genetic algorithm was implemented in a package devel-
oped in the R statistical software [33] to obtain a good estimation of the param-
eters of the model. The R package can be accessed from the following Web
address: https://goo.gl/PHaaG2

After obtaining a good estimate by genetic algorithms, this was used as an
initial guess value for the conjugate gradient method implemented in the R sta-
tistical software (optim function), to obtain a better estimation of the parameters
of the model.

6 Spatial prediction

Estimating spatial correlation

In standard statistical problems, correlation can be estimated from a scatterplot,
when several data pairs x, y are available. The spatial correlation between two
observations of a variable z(s) at locations s1 and s2 cannot be estimated because
only a single pair is available. To estimate spatial correlation from observational
data, it is necessary to make stationarity assumptions before we can make any
progress. One commonly used form of stationarity is intrinsic stationarity, which
assumes that the process that generated the samples is a random function Z(s)
composed of a mean and residual [5] as follows:

Z(s) = µ+ δ(s) (6)

with a constant mean

E (Z(s)) = µ (7)

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 23(1): 155–172, January 2016

https://goo.gl/PHaaG2


NEURAL NETWORKS AND GEOSTATISTICS FOR LANDSLIDE ... 163

and a variogram defined as

λ(h) =
1

2
E (Z(s)− Z(s+ h))2 . (8)

Ordinary kriging in terms of the covariance function

The predictor assumption is

ˆZ(s0) =

n
∑

i=1

wiZ(si). (9)

It is a weighted average of the sample values, and
∑n

i=1
wi = 1 to ensure un-

biasedness. The wi’s are the weights that will be estimated. Kriging minimizes
the expression (10) which is the mean squared error of prediction [12].

minσ2

e = E
[

Z(s0)− ˆZ(s0)
]2

. (10)

7 Results

The data were randomly divided into three sub-samples: The first was used for
the estimation of the parameters of the neural network model (training set), the
second was used to choose the model with more generalization capability (val-
idation set), and the last was used to evaluate how well the model is able to
generalize data not used in the estimation process (test set).

To determine the number of neurons in the hidden layer, the method of trial
and error was used, starting with few neurons and progressively increasing the
number of neurons in the hidden layer. Table 1 summarizes how well the models
fit on the training, validation, and test sets.

The model with 17 neurons in the hidden layer was chosen because it had
the best performance in the validation set. After that, a logistic regression model
was fitted as a basis of comparison. Table 2 shows logistic regression results.
Clearly, the neural network model chosen has better performance than the logis-
tic regression model.

To generate the map of landslide hazards, the following steps were followed
based on geostatistics methodology: Exploratory analysis, Variogram modelling
and Spatial prediction using ordinary kriging, validation, and exporting the spa-
tial predictions to raster format.

Developed to perform the previous steps, an R script was developed. This
script can be downloaded in: https://goo.gl/3N8n99
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Table 1: Summary of classification accuracy on the training, validation, and test sets for
neural network models.

Percentage score
Number of neurons Train set Validation set Test set

2 0.7011 0.7020 0.7124
3 0.7206 0.7072 0.7401
4 0.7425 0.7197 0.7458
5 0.7601 0.7604 0.7740
6 0.7823 0.7704 0.7604
7 0.7853 0.7704 0.7763
8 0.7942 0.7865 0.7878
9 0.8009 0.7871 0.7901

10 0.8321 0.8132 0.8009
11 0.8194 0.7792 0.7542
12 0.8230 0.8006 0.8159
13 0.8408 0.8006 0.8031
14 0.8373 0.8017 0.8127
15 0.8517 0.8210 0.8247
16 0.8246 0.8017 0.8028
17 0.8543 0.8283 0.8246
18 0.8467 0.8022 0.8418
19 0.8341 0.7991 0.8274

First of all, one thousand and fifty georeferenced points with their proba-
bility of occurrence calculated using neural network were selected randomly
for the map generation process, leaving the others for validation of the krig-
ing model. The Exploratory analysis showed the presence of spatial correlation.
This was done making scatter plot of pairs Z(si) and Z(sj), grouped according
to their separation distance. Furthermore, the data did not show the presence of
anisotropic effect.

Regarding variogram estimation, the spherical, gaussian and exponential
models were proposed. Using cross-validation methodology, the best model was
the exponential, since it had an R2 = 0.42 against R2 = 0.40 and R2 = 0.39 of
the models spherical and gaussian, respectively. Using the exponential model,
spatial predictions were calculated on a grid of 1500 × 1500 and exported to
Geotiff raster format. Finally, Geographic Information System (ArcGIS® of
ESRI) was used to design the final map (Figure 2). This map (Fig. 2) repre-
sents the landslide probability of occurrences in MASS. According to Fig. 2,
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Table 2: Summary of classification accuracy on the training, validation and test sets for
logistic regression.

Percentage score
Model Train set Validation set Test set

logistic regression 0.6710 0.6748 0.663

higher probability of landslide occurrence are around 0.8. These are located
in the northern slopes of Balsamo Range (western side of MASS), in the eastern
slope of San Salvador volcano and Picacho, along the extension of Mariona Hills
and in the southeastern side, between Ilopango lake and San Jacinto Hill. Areas
with lower probability are located in southern and western side of Nejapa Hill,
in the north-east of the studied area, in the northern banks of Ilopango lake, in
northeast slope of San Salvador Volcano, in the surrounding areas of San Jacinto
Hill, and in general in southern side of MASS.

8 Discussion and conclusions

A landslide hazard assessment study was carried out in Metropolitan Area of
San Salvador (MASS). The study started with the construction of a landslide
inventory and analysis of the causal factors related to the occurrences of land-
slide. The problem of modeling landslide is very complex, and for this reason the
study proved the efficacy of the neural network model with a percentage of cor-
rect classification of around 80% against other models such as logistic regression
with a percentage of correct classification under 70%.

In the process of estimating the weights of the model, a heuristic technique
was used to obtain a better solution after a local search was used. The difficulty
of this approach is due to the intensive computation involved in the estimation of
a neural network model, which takes between 4 and 10 hours. For this reason, the
statistical significance of the input variables could not be assessed by means of
bootstrapping (a statistical resampling technique). For all of the above, parallel
computing must be used rather than serial computing to estimate weights of the
neural networks models.

The results obtained through geostatistical methodology met the assump-
tions for kriging method application. A final map of landslide probability of
occurrence (see Fig. 2 ) generated by kriging method was the result of multidis-
ciplinary work, which implied an intense geological analysis (i.e. MARN inven-
tory of 4792 landslides), together with the use of sophisticated statistical tech-
niques. This landslide hazard map is a user-friendly tool to evaluate landslide
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Figure 2: Landslide hazard map MASS where the landslide probability of occurrence
is shown.

risk in MASS and can be useful for many purposes such as territorial planning,
prevention and landslide mitigation, and so on.

High probability of landslide occurrence in Picacho slope implies very high
risk due to the proximity of urban areas and the large volume of mobilized ma-
terials. Major et al.[27] identified in San Salvador volcano lahars as voluminous
as 2 million of m3 that can affect large zones of urban areas. Southern areas of
MASS also have a high risk of landslides that is similar to Las Colinas landslide
which involved a total volume of around 200,000 m3 [19]. A similar risk ex-
ists in the northern slope of Balsamo range and San Jacinto Hill, affecting very
crowded urban areas.

The present hazard landslide map is consistent with former landslide hazard
maps carried out in the region using approaches conceptually different. Fernán-
dez-Lavado et al.[20] presented a landslide hazard GIS map of MASS generated
through a bivariate statistical method considering several conditioning factors
showing similar hazard areas. The only differences are located mainly in the
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Nejapa Hill and San Jacinto Hill where Fernández-Lavado et al. [20] identified a
slightly higher hazard, and the area between San Jacinto Hill and Ilopango Lake
where the former study presented a hazard slightly lower. Since landslides are an
erosional phenomenon, the highest probability areas of landslide occurrence co-
incide with the areas with highest hazard of erosion in the erosion hazard map of
MASS proposed by Chávez et al. [11]. There are similarities with susceptibility
hazard maps at national scale generated through logistic regression [21], artifi-
cial neural network [22], and Mora-Vahrson [37]. However the high landslide
areas are more extended in these national maps than the present study. These
differences could be explained by the working scale. Other possible explanation
can be related to the data. This present work was built using a more extended
landslide catalog and more up-to-date data (e.g. seismic hazard evaluation from
Benito et al. [4]) than former works, so that this map is more detailed because it
is at regional scale.

Rock falls were not included in the catalog; these were very common during
2001 earthquakes in El Balsamo Range [25]. On the other hand, the seismic
microzonation of MASS will improve the estimation of peak ground accelera-
tion. The local geologic conditions are responsible for the modifications (ampli-
fication, frequency content, and duration) experimented by seismic motions just
before reaching the ground surface. Additionally, the geometry of the ground
surface also may produce amplification (topographic effects) [2]. These effects
can be important in soft soils close to incised rivers and also in San Salvador
volcano, Balsamo ranges and hills. Crosta et al. [15] identified an amplifica-
tion factor of 1.3–1.4 in Las Colinas failure area (Balsamo Ranges). All these
variables can improve the predictive ability of the model and the likelihood of
landslides.
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