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ABSTRACT

The addition of visual information derived from the
speaker’s lip movements to a speech recogniser (speechread-
ing) can significantly enhance the performance of the recog-
niser when it is operating under adverse signal-to-noise ra-
tios. However, processing of video signals imposes a large
computational demand on the system and there is little point
in using speechreading techniques if similar performance
gains can be obtained using techniques which operate on
only the audio signal and which are less computationally ex-
pensive. In this paper, we show that combining visual infor-
mation with an audio noise compensation technique (spectral
subtraction) leads to a performance significantly higher than
that obtained using speechreading only or noise compensa-
tion only. The optimum method for speech recognition in the
presence of noise is to use speech models that are matched to
the input speech, and we show that the addition of visual in-
formation also gives a performance gain when matched mod-
els are used. We also describe a method of “late” integration
which uses a measure of confidence derived from informa-
tion output by the audio recogniser to achieve a performance
which is close to optimum.

1. INTRODUCTION

There is currently great interest in increasing the robustness
of automatic speech recognition (ASR) to make it more ef-
fective in adverse environments e.g. when interfering noise,
reverberation, distortion or filtering of the signal is present
etc—for a review of work in this area, see [4]. However,
these techniques are ultimately limited by the amount of in-
formation available in the degraded audio signal and there
has recently been interest in augmenting the audio signal
with a visual signal derived from an image of the speaker’s
lips (speechreading) [9]. At present, it is not clear whether
using visual information is superior to some of the audio
noise compensation techniques which have been developed
or whether they can be used successfully in combination.
Here, we present results on recognition of isolated words
which confirm that the techniques can be combined to give a
performance which is superior to using either in isolation.
Moreover, our results show that inclusion of visual infor-
mation is beneficial in the case where the models used for
recognition are matched to the input signal in terms of signal-
to-noise ratio (SNR). The use of models matched to the in-
put signal is generally agreed to be optimum in cases where
the noise is stationary, and so the performance gain obtained
from including visual information is significant.

2. INTEGRATION STRATEGIES

There are essentially two approaches to integrating visual
information with the audio information: early integration,
in which the video and audio information is combined be-
fore being processed in a recogniser, and late integration, in
which separate recognisers are used for the audio and video
channels and their outputs combined in the decision pro-
cess [6]. Our own experience suggests that late integration is
more successful and in these experiments we use an integra-
tion scheme similar to the one described in [1]. If we assume
that the output of each recogniser is a set of probabilities, one
for each of the V vocabulary words, the recognition decision
is to choose word w* where

w" =argmax_{oPr(w;|A) + (1 —o)Pr(w;|V)} (1)

3 Lgeeny

where Pr(w;]A) and Pr(w;|V') are the respective probabilities
of the i’th word from the audio and video recognisers and o
is a weighting factor.

3. DATA, AUDIO AND VISUAL FEATURES AND
MODELLING

The audio-visual database used for these experiments has
been described in detail elsewhere [8]. Briefly, it consisted
of recordings of ten subjects speaking three repetitions of the
letters of the alphabet. The video recordings used were of
the full face and were made under ordinary studio lighting
conditions with no highlighting of the lips and no attempt to
restrain the head position. Audio recording was via a high-
quality tie-clip microphone. Each utterance movie was hand-
segmented so that the mouth position began and ended with
the mouth in a neutral position. The database was divided
into a training-set which consisted of the first two utterances
from each speaker (a total of 520 utterances) and a test-set
which consisted of the third utterances from each speaker
(260 utterances).

The visual features used were derived from the applica-
tion of a one-dimensional sieve [2] to the image. For each
frame, a 20-dimensional vector was derived from an analy-
sis of an 80 x 60 pixel region centred on the mouth image.
For a full description of the datasieve and the derivation of
visual features using a datasieve, the reader is referred to [2]
and [8].

The audio features were the (unlogged) outputs of a 24
channel filterbank covering the range 100-5000 Hz made
using the HTK hidden Markov modelling software [7]. Al-
though filterbank features are known to give lower accuracy
than the more commonly used MFCC representation, they
enable the use of spectral subtraction which is described in
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section 4. It is possible to convert these features to MFCCs
after the spectral subtraction process and so improve perfor-
mance, but this was not done in these experiments. The audio
feature vectors were estimated every 20 ms and since the vi-
sual vectors were estimated at the PAL frame-rate of 40 ms,
an extra vector was interpolated between each pair of visual
vectors to give the same audio and video frame-rates.

The signal-to-noise ratio (SNR) of each “clean” audio ut-
terance file was estimated (it was always at least 40 dB) and
an appropriate amount of Gaussian noise was added to each
file to generate five additional utterance files whose SNRs
were 20 dB, 10 dB, 6 dB, 3 dB and 0 dB. Separate hidden
Markov models (HMMs) were used for the audio and video
utterances. In each case, an utterance was modelled by a 10
state, left-right, HMM with a single Gaussian distribution per
state and a diagonal covariance matrix. A set of HMMs was
made from the “clean” audio utterances and from the video
features.

3.1. Baseline results

Results on the training- and test-set using the separate audio
and video HMMs are shown in figure 1. It is clear that:
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Figure 1: Baseline results for training and test-sets

e audio performance drops rapidly to near chance level as
the SNR decreases;

o the large gap in performance between training and test-
ing data for the video features indicates that the video
models are undertrained.

The last point shows that, although the audio and video mod-
els had identical topologies and received identical amounts
of training-data, the video models were undertrained when
compared with the audio models. This may indicate that the
inherent variability of the video data is higher than that of the
audio data or that the video features do not represent the data
classes well enough.

The integration technique described by equation 1 was
then implemented to make a speechreading system. To es-
tablish the best possible performance obtainable from this
technique, an exhaustive search was carried out to find val-
ues of o that minimized recognition error on the test-set. o
was restricted to lie between 0 and 1 and the log-likelihoods
from both recognisers were normalised to probabilities be-
fore being used in the equation. We would expect the opti-
mum value of o in equation 1 to vary with the signal-to-noise

ratio, and it is possible that it would be different for each ut-
terance. Hence two conditions were investigated:

e (. optimised for each utterance;
e o optimised for each SNR.

Results are shown in figure 2. The addition of visual in-
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Figure 2: Results for speechreading using uncompensated
audio

formation is clearly capable of boosting the accuracy of the
recogniser very significantly when a fixed value of o is used
for each SNR and the accuracy never drops below that of
the visual recogniser. By choosing a different value of o for
each utterance, a further significant gain is obtained. How-
ever, these results were obtained with prior knowledge of the
correct class of the test utterances to establish an upper bound
on performance using this integration technique and may not
be representative of what can be achieved practically.

4. NOISE COMPENSATION TECHNIQUES AND
RESULTS

The use of techniques to compensate a speech recognition
system when the audio signal is corrupted by additive noise
has been extensively studied [5]. Two techniques that have
been shown to be successful and which we used here are:

e Matched models, in which the HMMs used are built
from speech data corrupted in exactly the same way as
the test data;

e Spectral subtraction, in which HMMs built from
“clean” speech are used but the input speech is pro-
cessed to remove some of the noise.

Our spectral subtraction technique was similar to that re-
ported in [3]. An estimate of the power spectrum of the
additive noise is made by analysing a section of the signal
which is known to consist of silence, and a proportion of this
estimate is subtracted from the complete signal before it is
input to the speech recognition system. If X (f) is the signal
spectrum, N(f) an estimate of the noise spectrum, then the
subtracted spectrum X'(f) is:

/ X(f) =N (f
o ={ & ™

where the optimum 7 and  are determined experimentally.
Results from these experiments are shown in figure 3. Per-

it X(f) >¥N(f)

otherwise

2
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Figure 3: Results for matched models and spectral subtrac-
tion (audio only)

formance using matched models is, as expected, superior to
that using spectral subtraction, but both techniques give sub-
stantial gains over uncompensated audio. Using matched
models is superior to the best performance obtained from
speechreading without any audio compensation, but the latter
is superior to spectral subtraction.

Visual information was then added as described in section
3.1. Because of the difficulty of optimising o for each utter-
ance in a real system (to be discussed in section 5), results
were obtained using a fixed value of o for each SNR and are
shown in figure 4. In both cases (matched models and spec-
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Figure 4: Results for speechreading using compensated au-
dio

trally subtracted speech) adding visual information improves
performance.

5. PRACTICAL INTEGRATION TECHNIQUES

The results obtained for the speechreading experiments in
sections 3.1 and 4 were the highest possible accuracies, in
that knowledge of the class of each test-set utterance was
used to select values of o0 to maximise recognition accuracy
on the test-set. In this section, we concentrate on automatic
estimation of the value of a. For the experiments described
here, we have used spectral subtraction as our method of
noise compensation. Although using matched models gives
higher accuracy, they are unlikely to be available in most ap-
plications.

Our first approach to estimating o was to estimate
confidence-measures c4 from the audio recogniser and cy
from the video recogniser (0 < ca,cy < 1.0) that the input
word was correct. The value of o was then estimated as

o = ca/(ca +cv). One advantage of this method is that it
does not require an estimate of the SNR to be made. We
investigated the following ways of estimating c4 and cy:

e Using the training-set to estimate the distributions of
the likelihoods of correct words and incorrect words.
These distributions are then used with the likelihoods
produced by an input word to estimate a confidence
measure;

e Computing the entropy associated with the likelihoods
produced by the recognisers and using this to estimate a
confidence-measure;

e Using the ratio of the highest likelihood to the remain-
ing likelihoods.

A problem with all these approaches was that the distribu-
tion of likelihoods obtained from the video recogniser when
words from the test-set were input was very different from
the distribution which resulted when words from the training-
set were input. This is predictable from the large difference
between the accuracies on the training- and test-set for the
video recogniser (figure 1). Because of this effect, it was
not attempted to estimate any confidence measures from the
output of the video recogniser. In addition, examination of
the distributions of likelihoods from the audio recogniser for
correct and incorrect words showed that there was little sep-
aration between the two distributions and hence using these
distributions to estimate a confidence measure for each input
utterance was not viable.

We therefore adopted a more robust measure of confi-
dence which was based on the a priori uncertainty of the au-
dio recogniser about the identity of the input word at a given
SNR. This requires an estimate of the SNR to be made, but an
SNR estimate is required anyway to implement the spectral
subtraction technique. Denoting the set of legal input words
as a random variable X and the set of recognised words as
a random variable Y, the probability that word i was input
when word j was recognised may be written Pr(X = i|Y = j)
and can be estimated from a confusion-matrix formed by
testing the training-set data (after spectral subtraction). At
a given SNR, the uncertainty about the identity of the input
word given that word j was recognised is given by the con-
ditional entropy H(X|Y = j):

HX|Y = j) =

26
;Pr(X =ilY = j)log,(Pr(X =i|]Y = j))

The average uncertainty after making a recognition decision
is given by the average conditional entropy H (XY ):

HX|Y) =
26 26

Y Y Pr(X =iy = j)log,(Pr(X =ilY = j))
j=li=1

The maximum uncertainty about the identity of the input
word i8 H(X|Y)max = 10g,(26) bits and occurs when all el-
ements of the confusion-matrix are equal i.e. all words are
equiprobable to have been input when a word is recognised.
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Conversely, if the confusion matrix has only a single entry in
each column, H(X|Y) = 0 and there is no uncertainty about
the input utterance. A possible estimate of ¢ is then

H(X|Y)

o=1-—/
HX|Y )max

3)
In practice, we found it useful to compress the value of o by
using o' = o” in equation 1—a suitable value of y was 0.5.
Figure 5 compares performance using this entropy-
derived confidence measure (EDCM) to estimate o at each
SNR with performance using the optimal value of o selected
with knowledge of the classification of the test-set utterances
(as in figure 4). Performance with no video added is shown

for reference. The performance obtained using the EDCM is
close to ideal.
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Figure 5: Results for speechreading using EDCM estimate
of o

The EDCM technique requires an estimation of the SNR.
We classified the test-signal as one of the 6 SNR’s used in
these experiments by using the training-set to estimate dis-
tributions of the audio recogniser likelihoods at each SNR,
and then using the likelihoods output by the recogniser to
estimate the posterior probability of each SNR when a test
utterance was input. This estimate was smoothed by using
the previous N probabilities from each SNR i.e. the the SNR
of the #’th input utterance is S* where

‘ .
§*=argmax  [] p )
i=1,2,..., j=i—N+1

and p{ is the posterior probability of the j’th utterance being
of SNR i. Using this technique, it was found that that the
SNR was classified corectly on 85% of occasions. Incorrect
SNR classifications were always to an adjacent SNR, which
usually did not alter the classification of the utterance, so
that the there was virtually no loss of accuracy in automatic
estimation of the SNR.

6. DISCUSSION

Adding visual information improves recognition perfor-
mance over and above the gains obtained using noise com-
pensation techniques. Our experiments confirmed that, when
only audio information is available, for additive, stationary
noise, the use of matched models leads to very significant

gains in performance. The more practical technique of spec-
tral subtraction gives lower but still very significant improve-
ments to accuracy. However, our experiments show a further
improvement of 10-15% when visual information is added
and we might expect this order of improvement to be ob-
served when other noise compensation techniques not inves-
tigated in this paper are used. We used a visually difficult
task which resulted in under-trained visual models and a low
visual recognition accuracy. This led us to integrate the au-
dio and visual information using an entropy-based measure
of confidence derived solely from the audio recogniser. The
use of this measure gave results which were as good as could
possibly be obtained with prior knowledge of the classifica-
tion of each utterance. However, if the visual recogniser were
more accurate, the approach could be extended by including
a confidence measure derived from its output. We are now
concentrating on expanding our database and making our vi-
sual recogniser more robust.
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