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Abstract

The local power of many popular non-cointegration tests has recently been shown to de-
pend on a certain nuisance parameter. Depending on the value of that parameter, different
tests perform best. This paper suggests combination procedures with the aim of providing
meta tests that maintain high power across the range of the nuisance parameter.1 The local
power of the new meta tests is in general almost as high as that of the more powerful of
the underlying tests. When the underlying tests have similar power, the meta tests are even
more powerful than the best underlying test. At the same time, our new meta tests avoid the
arbitrary decision which test to use if individual test results conflict. Moreover it avoids the
size distortion inherent in separately applying multiple tests for cointegration to the same data
set. We use the new tests to 286 investigate data sets from published cointegration studies.
There, in one third of all cases individual tests give conflicting results whereas our meta tests
provide an unambiguous test decision.

Keywords: Cointegration, Meta Test, Multiple Testing
JEL-Codes: C12, C22

∗Part of the research was carried out when the authors were at Technische Universität Dortmund with support

by DFG under Sonderforschungsbereich 475. We are grateful to Jörg Breitung, Carsten Burhop, Carlo Favero,
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1 Introduction

Testing for cointegration has become one of the standard tools in applied economic research.
Various tests have been suggested for this purpose, most of which are implemented in standard
econometric software packages and hence are easily available nowadays. Well-known examples
include the residual-based test of Engle and Granger (1987), or the system-based tests of Johansen
(1988). Error-Correction-based tests have been suggested by Boswijk (1994) and Banerjee et al.
(1998), while Breitung (2001) covers the nonlinear case—to name just a few. This regularly forces
the applied researcher to select from the test decisions of the various applicable procedures. This
choice is difficult because, as discussed in e.g. Elliott et al. (2005), there exists no uniformly most
powerful test, even asymptotically. Often one test rejects the null hypothesis whereas another test
does not, making interpretation of test outcomes unclear. More generally speaking, the p-values
of different tests are typically not perfectly correlated (Gregory et al., 2004).

This imperfect correlation rules out relying, for example, on the test that achieves the smallest
p-value. Such strategy will not control the probability of rejecting a true null hypothesis at some
chosen level α because it ignores the multiple testing nature of the problem. Concretely, using
the test with the smallest p-value will lead to an oversized test.

The imperfect correlation of p-values reflects that the tests are not equivalent. This also has
implications for their behavior under the alternative. Specifically, Pesavento (2004) shows that the
power ranking of cointegration tests depends crucially on the value of a single nuisance parameter,
viz. the squared long-run correlations of error terms driving the variables of the system.

This suggests that suitable combinations of non-cointegration tests might yield a more robust
power performance, and possibly even power gains, relative to applying only an individual test.
Using the above-mentioned individual tests, the present paper develops such combination tests.
In particular, we combine test statistics in the spirit of Fisher’s (1932) famous test. We derive
the asymptotic null distribution of our Fisher-type combination test for correlated cointegration
test statistics and its local power, exploiting Pesavento’s (2004) results. Besides solving the
above-mentioned multiple testing problem, the combination test indeed enjoys a robust power
performance over the range of the squared long-run error correlation. Moreover, we explore
several alternative combination procedures. For example, Harvey et al. (2009) propose a Union-
of-Rejections (UR) test to robustify unit root tests against uncertainty over the initial condition.
We generalize their idea and apply the generalized UR test to the present testing problem.

Our Fisher-type test turns out to perform very well. It follows closely the power envelope traced
out by the best of the underlying individual tests for different values of the nuisance parameter,
and even exceeds it when the individual tests have similar power. In contrast, the Union-of-
Rejections procedure is most useful when the underlying tests have strongly different power, in
that its power is always close to that of the better underlying test.

Of course, the asymptotic distributions derived here are, as usual, only approximations to the
generally analytically intractable finite-sample distributions. Those may or may not be accurate.
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We therefore additionally propose bootstrap analogs of our combination tests. Specifically, we
build on Swensen’s (2006) recent bootstrap scheme for cointegrated vector autoregressions.

We conduct extensive finite-sample experiments of the performance our asymptotic and bootstrap
combination tests. The local asymptotic results correctly predict the finite-sample performance.
Both the asymptotic and the bootstrap versions successfully control the size α of the test and are
at the same time powerful. The bootstrap versions converge somewhat more quickly to α.

We point out that the above multiple testing problem is pervasive in empirical work and not
restricted to testing for cointegration. The meta testing solution developed here is rather general
and could hence be adopted to other testing problems for which several (imperfectly correlated)
tests have been developed. Examples include testing for unit roots or heteroscedasticity.

We employ the new tests to revisit the set of published studies that Gregory et al. (2004) examined
for ‘mixed signals’ among cointegration tests, i.e. conflicting test results. We furthermore update
their dataset with publications in the JAE from 2001 to 2010. Among other things we find that
in one third of all cases individual tests give conflicting results. In these cases our meta tests are
particularly useful. They provide an unambiguous test decision and therefore are a solution to
the ‘mixed signals’ problem.

The remainder of this paper is organized as follows: Section 2 provides some empirical motivation
and the setup for the non-cointegration tests. Section 3 derives our combination tests. Section
4 presents local power results. Section 5 is devoted to the bootstrap analogs. Section 6 reports
Monte Carlo results. Section 7 revisits the published studies. Section 8 concludes. An appendix
in an extended working paper version (available from the authors’ websites) reports additional
results.

The notation is standard. Weak convergence, convergence in probability and in distribution
are denoted by ⇒, →p and →d. Limits of integration are 0 and 1,

∫
=
∫ 1
0 , unless specified

otherwise. [a] is the integer part of a. Vectors and matrices are given in boldface. Integrals such
as
∫ 1
0 W (s)W (s)′ ds will often be written as

∫
WW ′. When a defines b, we write b := a or a =: b.

2 Motivation and Setup

2.1 Motivation

Consider the following situation typical for applied macroeconometric work: a researcher wishes
to study whether several individually nonstationary time series are cointegrated, but is unsure
about which test to use to investigate the null hypothesis of no cointegration. The conclusion of
the researcher may then depend on which test is finally employed. For concreteness, we purposely
select some well-known examples from the literature taken from the meta study of Gregory et al.
(2004) and further discussed in Section 7. These examples show that all kinds of mixed signals
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are possible—some tests rejecting, some tests not rejecting and no test always being among the
rejecting ones:2

Clements and Hendry (1995) consider a bivariate system of the (inverse) velocity of circulation v
and a learning-adjusted measure of the opportunity cost of holding money R, where v = m−p−y
when m, p, and y are the natural logarithms of nominal UK M1, the total final expenditure
deflator and real total final expenditure respectively. They use quarterly and seasonally adjusted,
data running from 1964:l to 1989:2. They find cointegration using the Johansen (1988) procedure
(for some detail on the tests see Section 2.3), which we confirm with our implementation of a
λmax p-value of 0.0003. However, had one calculated either the residual-based test of Engle and
Granger (1987) or the error-correction-based test of Banerjee et al. (1998), the p-values would
have been 0.6843 and 0.0883, producing no and only very weak evidence in favor of cointegration.
The Boswijk (1994) p-value is 0.0001, such that the split of two rejections and two non-rejections
would have produced a mixed signal.

Cooley and Ogaki (1996) re-examine, among other things, the long-run equilibrium relationship
between consumption and real wages. They use quarterly seasonally adjusted U.S. data run-
ning from 1947:1 to 1990:4, as well as three alternative measures of non-durable consumption:
nondurable plus services, non-durable, and food. Wages are average hourly compensation in non-
agricultural employment. Real wages were constructed by dividing nominal wages by the implicit
deflator of each of the three consumption measures used. Using the variable addition test of Park
(1990), they find very little evidence against the null hypothesis of cointegration. For the long-
run relationship between the logs of real per capita consumption of non-durables and real wages
deflated by non-durables prices, the tests of Johansen (1988), Banerjee et al. (1998) and Boswijk
(1994) yield the opposite conclusion, not rejecting the null of no cointegration with p-values of
0.0744, 0.5630 and 0.5302, respectively. On the other hand, the Engle and Granger (1987) test
is consistent with that of Park (1990), producing a p-value of 0.0142. Again, the practitioner, if
he is unsure about the choice of test and hence calculates several test statistics, would observe
mixed signals regarding the long-run relationship between real wages and consumption.

As a final example, Martens et al. (1998) investigate the cost-of-carry model which, through ar-
bitrage once slight equilibrium deviations are exceeded, predicts cointegration between index and
index-futures prices. They employ S&P 500 data from May and November 1993, sampled every
15 seconds. Using both Engle and Granger (1987) and Johansen (1988) tests, they find strong
evidence in favor of cointegration for all series. For e.g. the May 1993 equilibrium relationship
between futures price and futures and ‘theoretical’ futures prices (index adjusted for the cost-of-
carry), we confirm their results with p-values indistinguishable from zero for both tests. However,
the error-correction based tests of Banerjee et al. (1998) and Boswijk (1994) would not have pro-

2We do not intend to suggest that the authors of the studies have been in any way strategic in their choice of
which cointegration test to report. In fact, since we impose (see Section 7 for details) a common selection procedure
regarding trend, lag length as well as sample size determination in all studies, our results could possibly differ from
what the authors would have found. Also, cointegration testing may or may not have been a key concern in any of
the applied work studied in this paper.
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duced (strong) evidence in favor of cointegration, with p-values of 0.1301 and 0.0764, once more
leaving the researcher with a mixed signal.

Overall, we confirm Gregory et al. (2004) in that mixed signals can easily be found in applied
work. Moreover, no uniformly most powerful choice emerges from applied studies. This motivates
the need for a combination procedure for single test results, a task to which we turn next. Section
7 revisits the above examples once the combination procedures have been developed.

2.2 Model

Let zt := (z1t, . . . , zKt)′ ∈ RK be a vector of stochastic variables integrated of order one, I (1).
Partition zt = (x′t, yt)

′. Suppose we observe z0, . . . ,zT . We work with Pesavento’s (2004) model:

∆xt = τ1 + v1t (1a)

yt = (µ2 − θ′µ1) + (τ2 − θ′τ1)t+ θ′xt + ut (1b)

ut = ρut−1 + v2t (1c)

Equation (1a) defines the dynamics of the regressors, while eqs. (1b) and (1c) describe the (single
potential) cointegrating relationship.3 The coefficients µ := (µ′1, µ2)′ and τ := (τ ′1, τ2)′ deter-
mine the specification of the deterministic components of the model, see Definition 1 below and
Pesavento (2004) for details. Further, define the error vector vt := (v′1t, v2t)

′ from eqs. (1a) and
(1c) and let Ω be the long-run covariance matrix of vt. We assume the following.

Assumption 1. {vt} satisfies a Functional Central Limit Theorem, i.e. T−1/2
∑[λT ]

t=1 vt ⇒ Ω1/2W (λ).

The vector zt is said to be cointegrated if there exists at least one θ̃ ∈ RK , θ̃ := (−θ′, 1)′, θ 6= 0,
such that the stochastic part of θ̃′zt is a stationary I(0) process. In terms of (1), cointegration
therefore obtains if |ρ| < 1. We test the null hypothesis

H0 : There exists no cointegrating relationship among the variables in zt.

against the alternative hypothesis

H1 : There exists a θ̃ 6= 0 such that the stochastic part of θ̃′zt is I(0).

The literature has suggested many tests of H0 against H1. We consider the residual-based test of
Engle and Granger (1987), a system-based test of Johansen (1988), and the error-correction-based
tests of Boswijk (1994) and Banerjee et al. (1998). Pesavento (2004) shows that, under (1), the
local power of these tests only depends on the local-to-unity parameter c := T (ρ − 1) and the
correlations of the elements of v1t with v2t. More precisely, partition Ω conformably with (x′t, yt)

′,

Ω =

(
Ω11 ω12

ω′12 ω22

)

Define the squared correlation as R2 := δ′δ, where δ := Ω
−1/2
11 ω12ω

−1/2
22 (Kremers et al.’s (1992)

‘common factor restriction’ is an example for R2 = 0). Moreover, we make
3Pesavento (2004) shows that (1) does not generally impose weak exogeneity.
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Assumption 2. There are no cointegrating relationships among the variables in xt.

This assumption implies the required invertibility of Ω11. Also, partition W := (W ′
1, W2)′.

Define the Ornstein-Uhlenbeck process J12c(λ) := W12(λ) + c
∫ λ
0 e(λ−s)cW12(s) ds, with W12 :=

δ̄′W1 +W2, where δ̄′δ̄ = R2

1−R2 . Furthermore, we distinguish the following cases.

Definition 1. Depending on the assumptions made about the deterministic components, we have

(i) W d(λ) := W (λ) and Jd12c(λ) = J12c(λ) if µ2 − θ′µ1 = 0, τ = 0 and no deterministic terms
are included in the regressions. We refer to this as case (i).

(ii) W d(λ) := W (λ)−
∫
W (s) ds and Jd12c(λ) = J12c(λ)−

∫
J12c(s) ds if τ = 0 and a constant

is included in the regressions. We refer to this as case (ii).

(iii) W d(λ) := W (λ)− (4− 6λ)
∫
W (s) ds− (12λ− 6)

∫
sW (s) ds and Jd12c(λ) = J12c(λ)− (4−

6λ)
∫
J12c(s) ds− (12λ− 6)

∫
sW (s) ds if there are no restrictions and a constant and trend

are included in the regressions. We refer to this as case (iii).

Also, W d
c := (W d

1
′
, Jd12c)

′ and Ad
c :=

∫
W d

cW
d
c
′.

2.3 Individual Cointegration Tests

Engle and Granger (1987)
The Engle-Granger test tests H0 against the alternative of at least one cointegrating relationship.
One first computes ût, the residual from a regression of yt on xt (and appropriate deterministics
dt), and then the t-statistic tADF

γ on γ in the regression ∆ût = γût−1 +
∑P−1

p=1 νp∆ût−p+ εt, where∑P−1
p=1 νp∆ût−p accounts for serial correlation.4

Johansen (1988)
The system-based tests of Johansen (1988) test for h cointegrating relationships. In view of H0,
we consider h = 0 throughout. One estimates the Vector Error Correction Model (VECM)

∆zt = Πzt−1 +
P−1∑
p=1

Γp∆zt−p + dt + εt (2)

We employ the λmax test (one could also use λtrace) with test statistic λmax (h) = −T ln (1− π̂1).
Here, π̂1 denotes the largest solution to |πS11 − S10S

−1
00 S01| = 0, where the Sij are moment

matrices of reduced rank regression residuals (Johansen, 1995).

Boswijk (1994) and Banerjee et al. (1998)
Banerjee et al. (1998) and Boswijk (1994) develop error correction-based tests. One estimates (by
OLS) the equation ∆yt = dt + π′0x∆xt + ϕ0yt−1 + ϕ′1xt−1 +

∑P
p=1(π′px∆xt−p + πpy∆yt−p) + εt,

with P chosen such that εt is approximately white noise. Banerjee et al.’s test statistic tECR
γ is

the t-ratio for H0 : ϕ0 = 0, whereas Boswijk’s F̂ is the Wald statistic for H0 : (ϕ0, ϕ
′
1)′ = 0.

The following Lemma recalls the local distribution of the above tests.
4One could also control for serial correlation by the semiparametric approach of Phillips and Ouliaris (1990).

5



Lemma 1 (Pesavento, 2004). With the terms as in Definition 1, we have

i.

tADF
γ ⇒ c

(ηdc
′
Ad
cη

d
c )1/2

(ηdc
′
Dηdc )1/2

+
ηdc
′ ∫
W d

c dW̃ ′ηdc

(ηdc
′
Ad
cη

d
c )1/2(ηdc

′
Dηdc )1/2

where ηdc :=
[
−
(∫

W d
1
′
Jd12c

)(∫
W d

1W
d
1
′
)−1

, 1
]′
,

W̃ (λ) := (W ′
1(λ), W12(λ))′, D :=

(
I δ̄

δ̄′ 1 + δ̄′δ̄

)

ii. With Gc :=
∫
W d

c J12c(0′, c),

λmax ⇒ max eig
{

(Ad
c)
−1

[∫
W d

c dW ′
∫

dWW d
c
′
+
∫
W d

c dW ′G′c

+ Gc

(∫
W d

c dW ′
)′

+GcG
′
c

]}
iii.

F̂ ⇒ c2
∫
Jd212c + 2c

∫
Jd12c dW2 +

∫
W d

c
′
dW2(Ad

c)
−1

∫
W d

c dW2

tECR
γ ⇒ c

[ ∫
Jd212c −

∫
W d

1
′
Jd12c

(∫
W d

1W
d
1
′
)−1 ∫

W d
1 J

d
12c

]1/2

+

∫
Jd12c dW2 −

∫
W d

1
′
Jd12c

(∫
W d

1W
d
1
′)−1 ∫

W d
1 dW2[∫

Jd212c −
∫
W d

1
′
Jd12c

(∫
W d

1W
d
1
′)−1 ∫

W d
1 J

d
12c

]1/2
For c = 0, all quantities in Lemma 1 reduce to the well-known nuisance-parameter free null
distributions. More importantly, all limiting functionals are driven by the same Brownian Motions
W , such that the lemma allows us to consider the joint distribution of the test statistics. Lemma 1
further shows that the different statistics are non-equivalent functionals of W , and differentially
affected by nuisance parameters under c < 0. Hence, as formalized by Pesavento (2004) and
further discussed in Section 4, we can expect different tests to be powerful for different values of
the nuisance parameter. This forms the basis of the combination procedures presented next.

3 Combination Tests

Under H0, many of the above statistics are only weakly correlated, even asymptotically (Gregory
et al., 2004). Further, Pesavento (2004) shows that the tests differ in their power in different parts
of the (c-R2)-parameter space. In particular, different tests are most powerful in different parts
of the parameter space. Thus, a more robust, and possibly even more powerful, combination
test can in principle be achieved. To this end, let ti be the test statistic of cointegration test
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i ∈ N := {1, . . . , N}. Take ξi := ti if test i rejects for large values and −ξi = ti if test i rejects
for small values. Also, Ξi(x) := P(ξi > x), i.e. one minus test i’s asymptotic null distribution
function, with P the probability under H0. The p-value of test i is then given by pi := Ξi(ξi).

3.1 A Fisher-type test

To reach a joint test decision from the different ξi, we need a suitable aggregator. One such
aggregator is given by Fisher’s (1932) famous χ2 test. Let I, I ⊆ N , the index set of the
individual ξi to be aggregated. We then have the following

Proposition 1. Consider the test statistic

χ̃2
I := −2

∑
i∈I

ln(pi). (3)

As T → ∞, (a) χ̃2
I →d FI under H0, with FI some random variable. Further, (b) χ̃2

I →p ∞
under H1 if at least one of the underlying tests is consistent.

Proof. This follows from the continuous mapping theorem (see also White (2000, Prop. 2.2)), for
details see Appendix A.

Part (a) states that the χ̃2
I have well-defined asymptotic null distributions, call them FFI . These

are nuisance-parameter free because of (i) the single ξi are nuisance parameter free (cf. e.g. Ap-
pendix A) and (ii) the FFI take the cross-relation between the ξi fully into account. The index-set
notation I serves to emphasize that the FFI depend on which and how many tests are combined.
Part (b) establishes the consistency of the χ̃2

I tests. Of course we cannot invoke the conventional
χ2(2|I|) (with |I| the cardinality of I) null distribution for χ̃2

I , as independence of the ξi, i ∈ I,
would be necessary.

Clearly, it would be nice to express the limiting random variable of χ̃2
I under H0 as an explicit

functional of W . We conjecture this to be overwhelmingly difficult analytically, bearing in mind
that finding closed-form representations is complicated and only possible in special cases even for
sums of standard and independent random variables (e.g. Bierens, 2005). Here, the test statistics
ξi are nonstandard and dependent in a complicated way. However, we can straightforwardly infer
and simulate the joint distribution of the underlying tests from Lemma 1. This is a standard
procedure to find critical values for any single unit root or cointegration test statistic, including the
ones combined here. The aggregator χ̃2

I is a continuous function of the ti, whose null distribution
FFI can hence be derived by simulation of the functional (3). Table 1 reports 5%-critical values
cvI,0.05 := F−1

FI (0.95) for several combinations likely to be relevant in practice (see Table B.2
for other levels).5 From Prop. 1, reject if χ̃2

I > F−1
FI (1 − α). Since the distributions of the

5These are obtained from 100,000 draws from the FFI , approximating the Wiener processes with suitably
normalized Gaussian random walks of length T = 1, 000.
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Table 1: 5%-critical values cvI,0.05 for the χ̃2
I tests

case
K − 1 (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

tADF
γ and λmax F̂ and λmax F̂ and tECR

γ F̂ and tADF
γ

1 11.071 11.229 11.269 11.071 11.090 11.068 11.606 11.803 11.862 10.890 11.298 11.507
2 10.838 10.895 10.858 10.701 10.715 10.654 11.556 11.716 11.795 10.794 11.051 11.237
3 10.640 10.637 10.711 10.453 10.459 10.461 11.554 11.683 11.731 10.688 10.880 11.087
4 10.516 10.576 10.532 10.299 10.324 10.318 11.491 11.611 11.696 10.644 10.780 11.000
5 10.406 10.419 10.448 10.237 10.187 10.188 11.478 11.621 11.639 10.635 10.701 10.896
6 10.312 10.352 10.311 10.115 10.167 10.166 11.473 11.611 11.597 10.556 10.670 10.820
7 10.218 10.295 10.222 10.023 10.055 10.033 11.492 11.577 11.621 10.594 10.715 10.813
8 10.185 10.181 10.189 10.041 9.999 10.014 11.511 11.545 11.624 10.591 10.658 10.800
9 10.162 10.154 10.164 10.000 9.978 9.996 11.488 11.590 11.633 10.561 10.738 10.733
10 10.079 10.109 10.070 9.926 9.889 9.870 11.491 11.504 11.565 10.556 10.629 10.703
11 10.057 10.059 10.134 9.928 9.928 9.946 11.450 11.528 11.542 10.548 10.641 10.667

F̂ , λmax and tADF
γ F̂ , λmax and tECR

γ F̂ , λmax, tADF
γ , tECR

γ

1 16.037 16.363 16.582 16.287 16.572 16.633 21.352 21.931 22.215
2 15.526 15.732 15.856 15.827 15.927 15.965 20.776 21.106 21.342
3 15.186 15.294 15.471 15.440 15.512 15.620 20.237 20.486 20.788
4 14.934 15.025 15.173 15.184 15.291 15.407 19.951 20.143 20.440
5 14.720 14.825 14.990 15.045 15.092 15.260 19.747 19.888 20.170
6 14.578 14.685 14.833 14.924 15.056 15.155 19.564 19.761 19.934
7 14.472 14.612 14.632 14.852 14.964 14.946 19.471 19.688 19.722
8 14.460 14.427 14.595 14.823 14.825 14.941 19.471 19.447 19.678
9 14.332 14.405 14.496 14.766 14.801 14.872 19.365 19.492 19.582
10 14.321 14.322 14.301 14.717 14.733 14.775 19.268 19.365 19.398
11 14.230 14.300 14.357 14.696 14.773 14.824 19.151 19.345 19.404

5%-critical values for combination tests based on χ̃2
I . tADF

γ is from Engle and Granger (1987), λmax from Johansen

(1988), F̂ from Boswijk (1994) and tECR
γ from Banerjee et al. (1998).

underlying cointegration tests depend on K − 1 as well as the maintained deterministic case (i)-
(iii) (cf. Def. 1), that of χ̃2

I will not only depend on I but also on K − 1 (reported up to 11) and
the maintained case.

For different combinations, the cvI,0.05 cluster around 11 for |I| = 2, and around 15 for |I| = 3.
There is little variation across cases. The cvI,0.05 fall moderately in K − 1. It is instructive to
compare the cvI,0.05 to the χ2(2|I|) critical values. The 5%-critical value is 9.487 for |I| = 2,
and 12.591 for |I| = 3. The cvI,0.05 in Table 1 are uniformly larger. This reflects that the ξi are
generally positively correlated, such that larger cvI,0.05 are necessary to construct level-α tests
based on (3). Moreover, for each version of χ̃2

I , the cvI,0.05 are smaller than −2
∑

i∈I ln(0.05)
(which e.g. equals 11.983 for |I| = 2). Hence, χ̃2

I rejects whenever all individual tests reject.
Moreover, χ̃2

I may reject even if none of the individual tests reject at level α. For example, if
K − 1 = 1, case (iii) and the p-values of all four tests equal 0.0622, we have −2 · 4 · ln(0.0622) =
22.215 and therefore a rejection using χ̃2

I .

Remark 1. The aggregator (3) is only one of many possible choices. Among others, we tried
an inverse-normal approach, defined by 1/

√
|I|
∑

i∈I Φ−1(pi), with Φ−1 the quantile function of
the standard normal distribution. Its performance was however slightly inferior to that of the χ̃2

I

8



tests, to be reported below. The superiority of χ̃2
I may not be surprising in that known optimality

results under independence (Littell and Folks, 1971) appear to carry over to the dependent case.
Detailed results are available upon request.

3.2 Union-of-Rejections tests

The latter mini∈I pi test is similar to a recent proposal of Harvey et al. (2009), who develop
‘Union-of-Rejections’ (UR) tests to combine standard Dickey-Fuller and GLS-demeaned unit root
tests. The UR test also rejects whenever one of the two tests rejects, however suitably adjusting
the critical values to ensure a level-α test. The UR test has robust power as the two individual
tests are relatively more powerful when the initial condition of the time series is large (small). This
situation is analogous to the present one, in that R2 determines the relative power of the individual
cointegration tests. We now use and extend the UR approach to the case of cointegration testing.

Denote the individual level-α critical value of test i as cvi,α, e.g., cvi,0.05 = | − 2.763| for tADF
γ ,

K = 2 and case (i). The ‘naive’ UR test statistic for |I| = 2 can be written as

URnaive(ξ1, ξ2) := I{ξ1 > cv1,α}+ I{ξ1 6 cv1,α}I{ξ2 > cv2,α}, (4)

with I{A} the indicator function of event A. One would reject H0 if URnaive(ξ1, ξ2) = 1. Of
course, the test (4) does not control size.6 Harvey et al. (2009) therefore introduce a scaling
constant ψ to modify (4) as follows.

URψ(ξ1, ξ2) := I{ξ1 > ψcv1,α}+ I{ξ1 6 ψcv1,α}I{ξ2 > ψcv2,α}, (5)

One rejects if URψ(ξ1, ξ2) = 1, where ψ is unique and to be chosen so that P(
⋃2
i=1 ξi > ψcvi,α) = α.

However, there is no need to apply the same ψ to both critical values cvi,α. In fact, there exists
a continuum of tuples of scaling constants so as to obtain a level-α UR test. Define the interval
C := R ∩ [1,∞) and let ψ̃ := (ψ̃1, ψ̃2) ∈ C × C =: C2. The UR statistic then becomes

URψI (ξ1, ξ2) := I{ξ1 > ψ̃1cv1,α}+ I{ξ1 6 ψ̃1cv1,α}I{ξ2 > ψ̃2cv2,α} (6)

One rejects if URψI (ξ1, ξ2) = 1. The admissible tuples ψ̃, denoted ψ, are implicitly defined by

P

(
2⋃
i=1

ξi > ψicvi,α

)
= α, (7)

yielding an entire family of tests. The ψ are identified as, for each ψ1 ∈ C, there is exactly one
ψ2 ∈ C such that (7) holds. Harvey et al.’s (2009) solution ψ = ψ1 = ψ2 is a special case of the
more general approach (7).

Remark 2. Searching over C2 is without loss of generality. Suppose ψ̃1 < 1. We then have
P(ξ1 > ψ̃1cv1,α) =: α̃1 > α. Also write P(ξ2 > ψ̃2cv2,α) =: α̃2. It obtains that (cf. fn. 6)

6The null rejection probability of test i is E I{ξi > cvi,α} = P(ξi > cvi,α) = α. The size of URnaive(ξ1, ξ2)
therefore equals P(

⋃2
i=1 ξi > cvi,α) = P(ξ1 > cv1,α) + P(ξ2 > cv2,α) − P(

⋂2
i=1 ξi > cvi,α) = 2α − P(

⋂2
i=1 ξi >

cvi,α) > α, since P(
⋂2
i=1 ξi > cvi,α) 6 P(ξi > cvi,α) = α.
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Table 2: Correction factors for some URψI tests

tADF
γ and λmax F̂ and λmax F̂ and tECR

γ

K − 1 case (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

tADF
γ F̂ F̂

1 1.065 1.050 1.043 1.128 1.104 1.093 1.077 1.042 1.032
2 1.058 1.052 1.044 1.131 1.110 1.095 1.075 1.052 1.038
3 1.055 1.049 1.046 1.122 1.104 1.096 1.070 1.053 1.038
4 1.051 1.045 1.042 1.107 1.099 1.090 1.057 1.053 1.043
5 1.048 1.045 1.041 1.103 1.094 1.088 1.058 1.049 1.043
6 1.046 1.044 1.040 1.096 1.091 1.085 1.060 1.051 1.044
7 1.045 1.042 1.035 1.092 1.082 1.082 1.056 1.055 1.045
8 1.042 1.041 1.039 1.089 1.080 1.081 1.050 1.044 1.044
9 1.040 1.038 1.039 1.085 1.081 1.078 1.049 1.047 1.044
10 1.039 1.035 1.037 1.079 1.008 1.075 1.046 1.041 1.043
11 1.038 1.037 1.035 1.072 1.076 1.071 1.047 1.045 1.041

λmax λmax tECR
γ

1 1.100 1.077 1.065 1.101 1.083 1.070 1.049 1.022 1.018
2 1.080 1.076 1.068 1.084 1.082 1.075 1.046 1.028 1.023
3 1.074 1.063 1.064 1.075 1.067 1.068 1.046 1.033 1.023
4 1.066 1.059 1.056 1.071 1.063 1.061 1.042 1.033 1.028
5 1.061 1.055 1.053 1.063 1.058 1.055 1.040 1.032 1.029
6 1.052 1.051 1.052 1.056 1.052 1.054 1.041 1.034 1.028
7 1.049 1.047 1.054 1.050 1.053 1.049 1.039 1.035 1.029
8 1.045 1.045 1.043 1.047 1.048 1.045 1.036 1.032 1.028
9 1.045 1.042 1.043 1.044 1.042 1.046 1.034 1.032 1.028
10 1.043 1.043 1.038 1.044 1.161 1.039 1.034 1.031 1.030
11 1.040 1.039 1.037 1.043 1.039 1.039 1.035 1.032 1.028

See notes to Table 1.

P
(⋃2

i=1 ξi > ψ̃icvi,α
)

= α̃1 + α̃2 −P
(⋂2

i=1 ξi > ψ̃icvi,α
)

> α̃1 > α, because P
(⋂2

i=1 ξi > ψ̃icvi,α
)

6

α̃2. Hence, one cannot make one test more liberal and still achieve a level-α URψI test.

The availability of a family of level-α tests raises the practical question of which ψ to select.
There is no uniformly most powerful choice. We propose to select ψ such that, subject to (7),

ψ1 = arg min
ψ̃1∈C

{
P
(
ξ1 > ψ̃1cv1,α ∩ ξ2 > ψ2cv2,α

)
min{P(ξ1 > ψ̃1cv1,α),P(ξ2 > ψ2cv2,α)}

}
(8)

It is sufficient to minimize over ψ1 only, since the corresponding ψ2 is uniquely determined by
(7).7 We refer to this member of the family of tests as the ‘asymmetric’ UR test. The tuples ψ for
the test pairs tADF

γ and λmax, F̂ and λmax as well as F̂ and tECR
γ for K−1 up to 11 are reported in

Table 2. This decision rule can be expected to yield powerful URψI tests as the availability of an
entire family of tests provides the opportunity to optimally select a tuple ψ, where Harvey et al.
(2009) impose a restriction, viz. ψ = ψ1 = ψ2. Further, and more importantly, (8) minimizes the
number of instances where both tests reject under H0, while still generating a level-α test. That
is, the tests are made as ‘uncorrelated’ as possible, without violating (7). Now, since the behavior
of the tests under local alternatives changes continuously from that under H0, making the tests

7We add an ε to the numerator of (8) to penalize borderline cases in which, due to simulation imprecision of the
Wiener integrals, the numerator would otherwise be zero and the denominator very small, but positive.
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‘uncorrelated’ leads to many rejections under H1. (Unreported experiments with other tuples
confirm this conjecture. In particular, the power of URψI then is markedly higher than that of
URψ.) As for χ̃2

I , any correlation between test statistics is automatically taken care of through the
respective ψi. E.g., the formal similarity of F̂ and tECR

γ translates into strong positive correlation.
Hence F̂ and tECR

γ will seldom disagree. Therefore, only small ψi are necessary to satisfy (7). For
instance, for case (i) and K−1 = 1 Table 2 reports that ψ1 +ψ2 = 1.077+1.049 = 2.126, whereas
ψ1 + ψ2 = 1.128 + 1.101 = 2.229 for the apparently much more weakly correlated λmax and F̂ .

Remark 3. It turns out that the selection rule (8) satisfies

P(ξ1 > ψ1cv1,α) = P(ξ2 > ψ2cv2,α) (9)

for all combinations considered in Table 2.8 Under (9), the URψI test is equivalent to a minimum
p-value test, defined by mini∈I pi. This test is a direct fix to the ‘naive’ strategy that rejects
whenever one of the individual tests rejects. The critical values of the mini∈I pi test yield the
level α′ < α at which one needs to test to avoid the oversizedness of the ‘naive’ approach. Table
B.1 provides critical values for the mini∈I pi test. (Incidentally, we find α′ � α/|I| so that
mini∈I pi is more powerful than a Bonferroni-type multiple test.)

To show that URψI and mini∈I pi are indeed equivalent, we first show that the min-test belongs to
the family of URψI tests. Let Fmin be the null distribution function of min(p1, p2). The min-test
rejects if min(p1, p2) < F−1

min(α), thus if p1 < F−1
min (α) ∨ p2 < F−1

min (α). Equivalently, the test
rejects if Ξ−1

1 (p1) > Ξ−1
1

(
F−1

min (α)
)
∨ Ξ−1

2 (p2) > Ξ−1
2

(
F−1

min (α)
)

(recall the Ξi(x) are decreasing
in x). Since pi = Ξi(ξi), this test thus rejects if and only if

ξ1 > Ξ−1
1

(
F−1

min (α)
)
∨ ξ2 > Ξ−1

2

(
F−1

min (α)
)

or equivalently if, for ψi := Ξ−1
i

(
F−1

min (α)
)
/cvi,α,

ξ1 > ψ1cv1,α ∨ ξ2 > ψ2cv2,α.

Under H0, we have P(ξ1 > Ξ−1
1 (F−1

min(α)) ∨ ξ2 > Ξ−1
2 (F−1

min(α))) = α. Thus, the min-test is a
URψI test. It remains to establish that it is the only URψI test satisfying (9). By construction,

P (ξi > ψicvi,α) = P
(
ξi > Ξ−1

i

(
F−1

min (α)
))

= F−1
min (α) i = 1, 2. (10)

Uniqueness follows from monotonicity of the Ξi.

Remark 4. One can also relax Harvey et al.’s restriction to combine |I| = 2 tests. An |I|-
dimensional UR test is, analogously to (6), defined by P

(⋃|I|
i=1 ξi > ψicvi,α

)
= α. Of course,

8To see why, write the numerator of (8) as P(ξ1 > ψ1cv1,α) + P(ξ2 > ψ2cv2,α) − P
(⋃2

i=1 ξi > ψicvi,α
)
.

W.l.o.g. take the denominator to equal P(ξ1 > ψ1cv1,α). Using that P
(⋃2

i=1 ξi > ψicvi,α
)

= α for solutions to
(7), (8) equals minψ1 [1 + {P(ξ2 > ψ2cv2,α)− α}/P(ξ1 > ψ1cv1,α)]. Taking the derivative w.r.t. P(ξ1 > ψ1cv1,α)
yields

∂P(ξ2 > ψ2cv2,α)/∂P(ξ1 > ψ1cv1,α)P(ξ1 > ψ1cv1,α)− [P(ξ2 > ψ2cv2,α)− α]

P(ξ1 > ψ1cv1,α)2
, (∗)

which has an interior minimum (i.e. P(ξ1 > ψ1cv1,α) < P(ξ2 > ψ2cv2,α) strictly) if (∗) equals zero. That is, the
‘indifference curves’ generated by the solutions ψ to (7) are sufficiently steep to produce the ‘corner solution’ (9).
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finding the solution ψ ∈ C|I| is then numerically more challenging. For the symmetrical case
ψ = ψ1 = ψ2 = ψ3 of |I| = 3, where F̂ , λmax and tADF

γ are combined, we find a similar performance
to the tests with |I| = 2 discussed above. We therefore do not report results for brevity.

4 Large Sample Results

We now report the large-sample power of the tests discussed in Sections 2 and 3. As for single
cointegration tests, the local power functions of χ̃2

I and URψI (ξ1, ξ2) are not available in closed
form. Following Pesavento (2004), these functions are therefore approximated by simulating
the distributions given in Lemma 1 and Section 3. They give the probability that ξi and χ̃2

I
exceed their level-α critical values, and the probability that URψI (ξ1, ξ2) = 1 (cf. (6)). We draw
25,000 replications of the functionals, for T = 1, 000. We consider c ∈ {0,−1,−2, . . . ,−30},
R2 ∈ {0, 0.05, 0.1, . . . , 0.95} and K − 1 ∈ {1, . . . , 5}.

Table 3 reports the local power of several combination tests as well as the corresponding individual
tests for case (ii) (cf. Appendix C for cases (i) and (iii)).9 Figure 1 plots the tests’ power against
R2, for c = −15 and K − 1 = 1; additional results are available. We replicate Pesavento’s finding
that tECR

γ is the best individual test for small R2. The power of all tests but tADF
γ increases

quickly in R2. The system-based λmax test benefits most from an increase in R2, fully exploiting
the additional information contained in the equations for the xt. The formal similarity of F̂ and
tECR
γ translates into similar local power. The combination tests (we initially focus on the case
|I| = 2 for expositional clarity) perform very well, tracking the better test very closely. Their
power curves sometimes even lie above that of the underlying tests. This is best seen in the lower
panel, where the performance of the underlying tests tADF

γ and λmax differs strongly. The upper
panel shows that, unsurprisingly, the power of the combination tests differs relatively less from
that of either underlying test if these perform similarly. Yet, URψI (F̂ , t

ECR
γ ) and χ̃2

I(F̂ , t
ECR
γ ) are

again closer to the better underlying test (typically F̂ ) whenever there are discernible differences.

Figures 2-3 plot the tests’ power against −c, for R2 = 0.25, 0.7. All tests become more powerful as
the distance c to H0 increases, although the speed differs substantially. For large R2 and c = −15,
the power of λmax, χ̃2

I(t
ADF
γ , λmax) and URψI (t

ADF
γ , λmax) is more than three times larger than

that of tADF
γ . The combination tests are again close to the better of the individual tests. Of

course, when the difference between the individual tests is large, as in the lower panel of Figure
3, the power distance to the best individual test is somewhat larger—but still a lot smaller than
that to the worse individual test. Thus, the combination tests cheaply insure against selecting an
inferior test, in that one never sacrifices much power, and potentially gains a lot. Moreover, for
R2 = 0.25, both χ̃2

I(t
ADF
γ , λmax) and URψI (t

ADF
γ , λmax) even outperform both constituent tests.

Note from Figure 1 that the power curves of the constituent tests tADF
γ and λmax intersect at

R2 ≈ 0.25. Thus, combination tests appear to outperform the constituent tests when the latter
9Critical values are obtained under R2 = 0. Thus, the slight deviations from α under R2 6= 0 and c = 0 are due

to simulation variability.
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Table 3: Local asymptotic power

−c 0 5 10 15 20

R2 = 0

χ̃2
I(F̂ , tECR

γ ) 0.050 0.106 0.240 0.455 0.706
χ̃2
I(tADF

γ , λmax) 0.050 0.090 0.189 0.365 0.605

χ̃2
I(F̂ , tECR

γ , tADF
γ , λmax) 0.050 0.107 0.239 0.450 0.699

URψI (F̂ , tECR
γ ) 0.050 0.102 0.229 0.440 0.690

URψI (tADF
γ , λmax) 0.050 0.080 0.171 0.334 0.571

F̂ 0.050 0.096 0.212 0.408 0.657
tECR
γ 0.050 0.112 0.255 0.482 0.731
λmax 0.050 0.068 0.124 0.239 0.427
tADF
γ 0.050 0.098 0.221 0.422 0.674

R2 = 0.25

χ̃2
I(F̂ , tECR

γ ) 0.051 0.116 0.320 0.623 0.858
χ̃2
I(tADF

γ , λmax) 0.051 0.083 0.198 0.434 0.712

χ̃2
I(F̂ , tECR

γ , tADF
γ , λmax) 0.053 0.108 0.285 0.580 0.836

URψI (F̂ , tECR
γ ) 0.051 0.114 0.310 0.609 0.846

URψI (tADF
γ , λmax) 0.051 0.081 0.186 0.399 0.661

F̂ 0.053 0.117 0.317 0.614 0.845
tECR
γ 0.051 0.114 0.308 0.613 0.853
λmax 0.051 0.078 0.185 0.402 0.662
tADF
γ 0.051 0.081 0.177 0.360 0.603

R2 = 0.5

χ̃2
I(F̂ , tECR

γ ) 0.052 0.145 0.506 0.832 0.966
χ̃2
I(tADF

γ , λmax) 0.051 0.080 0.268 0.618 0.897

χ̃2
I(F̂ , tECR

γ , tADF
γ , λmax) 0.052 0.120 0.434 0.792 0.965

URψI (F̂ , tECR
γ ) 0.053 0.158 0.517 0.831 0.964

URψI (tADF
γ , λmax) 0.051 0.092 0.307 0.639 0.892

F̂ 0.055 0.171 0.539 0.842 0.966
tECR
γ 0.052 0.124 0.444 0.792 0.957
λmax 0.052 0.109 0.360 0.699 0.922
tADF
γ 0.051 0.061 0.135 0.292 0.527

R2 = 0.75

χ̃2
I(F̂ , tECR

γ ) 0.052 0.300 0.834 0.983 0.999
χ̃2
I(tADF

γ , λmax) 0.054 0.128 0.613 0.954 0.999

χ̃2
I(F̂ , tECR

γ , tADF
γ , λmax) 0.056 0.238 0.795 0.985 1.000

URψI (F̂ , tECR
γ ) 0.054 0.365 0.859 0.985 0.999

URψI (tADF
γ , λmax) 0.052 0.212 0.738 0.973 1.000

F̂ 0.056 0.391 0.872 0.987 0.999
tECR
γ 0.052 0.197 0.718 0.957 0.997
λmax 0.053 0.267 0.798 0.984 1.000
tADF
γ 0.053 0.039 0.083 0.210 0.433

Case (ii). χ̃2
I(F̂ , tECR

γ ) is our Fisher test (3) based on Boswijk’s and Banerjee et al.’s

tests, and URψI (F̂ , tECR
γ ) is the corresponding Union-of-Rejections test (6). The

other combination tests are defined analogously. See also notes to Table 1.
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Figure 1: Local asymptotic power as a function of R2, c = −15
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Results are for the demeaned case (ii). χ2
BERC is our Fisher test (3) based on Boswijk’s and Banerjee

et al.’s tests. χ2
EJ is based on Engle and Granger’s and Johansen’s tests. χ2

BERCEJ combines all four tests.
URasym

BERC and URasym
EJ are the corresponding asymmetric URψI tests (6). The individual tests’ power curves

are for comparison.

Figure 2: Local asymptotic power as a function of −c, R2 = 0.25
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See notes to Figure 1.
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Figure 3: Local asymptotic power as a function of −c, R2 = 0.7
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See notes to Figure 1.

Figure 4: Cutoff probability q
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The probability q, with which a pretest using the underlying tests (tADF
γ and λmax for χ̃2

I(tADF
γ , λmax),

denoted χ2
EJ in the plot; and analogously for F̂ , tECR

γ and χ2
BERC) needs to select the weaker test for our

Fisher test to be at least as powerful as the pretest, is plotted against R2. K − 1 = 1 and c = −15.
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are equally powerful. Intuitively, this is because the ξi will then often be individually just too
small to discard H0, but the evidence from the two taken together suffices to reject. This effect
becomes more pronounced with K − 1, cf. Figure 2 with C.3.

Table 3 shows that χ̃2
I(F̂ , t

ECR
γ , tADF

γ , λmax) outperforms χ̃2
I(t

ADF
γ , λmax), but is (slightly) outper-

formed by χ̃2
I(F̂ , t

ECR
γ ). This is not surprising as F̂ and tECR

γ generally perform best under (1).
Section 6 studies other relevant DGPs under which λmax and tADF

γ outperform F̂ and tECR
γ . Con-

sequently χ̃2
I(F̂ , t

ECR
γ , tADF

γ , λmax) then outperforms χ̃2
I(F̂ , t

ECR
γ ). As such, it would be wrong to

recommend routine use of F̂ and tECR
γ or χ̃2

I(F̂ , t
ECR
γ ). Overall, this suggests that the transparent

strategy to combine all available tests can be recommended for empirical practice. On the other
hand, tADF

γ and λmax are still the most widely used tests, such that providing a detailed discussion
how to combine the two likely is relevant for practitioners.

Comparing the performance of χ̃2
I and URψI , we find that the former are somewhat more powerful

when both constituent tests have relatively high power. The URψI tests outperform the χ̃2
I tests

when there is a large difference in power between the individual tests, in particular if the weaker
one has low absolute power. This is intuitive as URψI looks for (at least) one individual test
indicating that H1 holds, effectively ignoring the less powerful test once the more powerful one
rejects. On the other hand, χ̃2

I combines evidence from both tests, such that a test with low
power can tilt χ̃2

I towards a non-rejection of H0. If both tests are at least moderately powerful,
χ̃2
I will combine that evidence to produce a rejection of H0.

Remark 5. As discussed above, some individual tests are most powerful when R2 is low, and
others when R2 is large. This might, alternatively to the approach discussed here, suggest a
pretest strategy where one first estimates R2 and then selects the most powerful test given the
estimate R̂2. However, as (unlike in Elliott et al., 2005) θ is assumed unknown and several
quantities are not consistently estimable in the present local-to-unity framework, it is not clear
whether such an estimator R̂2 is feasible at all (Pesavento, 2007). Moreover, the above results
show that the combination tests are never much less, and sometimes even more, powerful than
the best individual test. They are generally a lot more powerful than the worst test. Thus, even
if an estimator R̂2 was available, it would not, certainly not for T finite, estimate R2 without
error. Hence, a pretest would sometimes select the less powerful test. A pretest would therefore
likely have less power than the strategies advocated here. To further illustrate this point, let q
denote the probability to select the inferior test. As an example, consider from Table 3 λmax,
tADF
γ and χ̃2

I(t
ADF
γ , λmax) for R2 = 0.75 and c = −15. A pretest, if available, would need to

select the worse test (tADF
γ ) in only q = (0.954 − 0.984)/(0.210 − 0.984) × 100 ≈ 4% of the

cases for it to be inferior to χ̃2
I(t

ADF
γ , λmax). For χ̃2

I(t
ADF
γ , λmax), χ̃2

I(t
ECR
γ , F̂ ), Figure 4 plots q

against R2 (for c = −15 and K− 1 = 1). We see that q never exceeds 0.3, and even find q = 0 for
R2 ∈ [0.15, 0.3]∪(0.85, 1) (for χ̃2

I(t
ADF
γ , λmax)), reflecting that χ̃2

I is sometimes as or more powerful
than even a perfect pretest. Moreover, q is always substantially smaller than 0.5, implying that
the χ̃2

I tests uniformly outperform the strategy of randomly selecting one of the underlying tests.

Remark 6. It is also tempting to develop ‘R2-weighted’ versions of the meta tests. Consider
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e.g. χ̃2
I,R2 := −2

∑
i∈I $i(R2) ln(pi), where $i is a weight function such that

∑
i∈I $i(R2) = |I|

(in (3), each i implicitly has $i(R2) = 1). Again, an estimator R̂2 would be necessary. Moreover,
if the weights $i depend on R2, so would the null distribution of a weighted meta test like χ̃2

I,R2 .
Hence, χ̃2

I,R2 would no longer be nuisance-parameter free, making such an approach unattractive.

5 Bootstrap Analogs

The previous results rely entirely on asymptotic theory. The combination tests cannot be expected
not to share small-sample deficiencies of the underlying cointegration tests. The small-sample
behavior of cointegration tests has, among many others, been analyzed by Haug (1996), who
finds the tests to be somewhat sensitive to short-run dynamics in the errors. In particular, the
finite-sample size of the tests depends on the choice of estimation method for these nuisance
parameters. Thus, the above local power curves are effectively approximations to the tests’ finite-
sample power curves. The bootstrap has recently been successfully employed to improve the
small-sample behavior of cointegration tests (Swensen, 2006; Palm et al., 2010). We therefore
now introduce bootstrap analogs of the combination tests to provide potentially more reliable
inference in small samples. Recall the aggregator of p-values from the Fisher test,

χ̃2
I = −2

|I|∑
i=1

ln(pi).

To bootstrap χ̃2
I , we require a method to bootstrap cointegration tests. A suitable procedure has

recently been proposed by Swensen (2006). In brief, Swensen’s procedure resamples residuals from
an estimated VECM representation of the DGP to then generate integrated but non-cointegrated
time series. We propose the following Algorithm to estimate the finite-sample distribution of χ̃2

I .

Algorithm 1.
1. Estimate the unrestricted VAR zt =

∑P
p=1Φpzt−p + dt + εt to obtain estimates d̂t, Φ̂p and

residuals ε̂t. Transform Φ̂p, p = 1, . . . , P , to Γ̂p, p = 1, . . . , P − 1, as in representation (2)
(see e.g. Lütkepohl (2005, p. 247) for the procedure).10

2. Check that the system has no explosive root, i.e. ‖z‖ > 1, by solving det
{
B̂(z)

}
= 0, where

B̂(z) := IK − Γ̂1z − · · · − Γ̂P−1z
P−1.11 (11)

3. If so, draw B series of pseudo errors
{
ε∗t,b
}b=1,...,B

t=P,...,T
by resampling non-parametrically with

replacement from the residuals {ε̂t}t=P,...,T .

4. With
{
ε∗t,b
}b=1,...,B

t=P,...,T
, construct B series of pseudo observations z∗t,b from ∆z∗t,b = d̂t +∑P−1

p=1 Γ̂p∆z
∗
t−p,b + ε∗t,b. For the initial observations, set z∗t,b = zt, t = 0, . . . , P − 1.12

10One could alternatively estimate a VAR for ∆zt, imposing H0 (cf. Swensen, 2006). However, as Paparoditis
and Politis (2003) show for unit-root tests, imposing H0 may lead to a power loss.

11See Swensen (2006, Remark 1) and Johansen (1995, p. 71) for a discussion of this condition. Note that under
h = 0, α̂β̂′ = 0 in Swensen’s notation, such that we have Â(z) = (1− z)B̂(z), with the l.h.s. in Swensen’s notation
again. Thus his condition (iii) is equivalent to (11) in our context.

12Since we require pseudo observations that are integrated but non-cointegrated, Π = 0 is imposed.
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5. Compute the vector of test statistics ξ∗b := (ξ∗1,b, . . . , ξ
∗
|I|,b)

′, for each b = 1, . . . , B.

6. Estimate the distribution function of each test statistic as B−1
∑B

h=1 I
{
ξ∗i,h ≤ x

}
=: 1−Ξ∗i (x)

and calculate the corresponding p-values p∗i,b := Ξ∗i (ξ
∗
i,b). Correspondingly, calculate the p-

values of the test statistics ξi on the original data zi,t by p∗i := Ξ∗i (ξi).

7. Obtain the corresponding aggregate χ̃2
I test statistic χ̃2,∗

I,b = −2
∑|I|

i=1 ln
(
p∗i,b
)
.

8. Estimate the distribution function FF∗I of the χ̃2,∗
I,b by F̂F∗I (x) := B−1

∑B
h=1 I

{
χ̃2,∗
I,h ≤ x

}
.

This provides us with a bootstrap version of the χ̃2
I test, χ̃2,∗

I = −2
∑|I|

i=1 ln (p∗i ), where we reject
H0 at level α if χ̃2,∗

I exceeds the (1− α)-quantile of F̂F∗I .

Heuristically, the method can be expected to work as follows. Swensen (2006) analytically proves
that his bootstrap procedure (i.e. steps 1-4 in Algorithm 1) yield pseudo-observations z∗t,b which
have a representation asymptotically equivalent to the true DGP. Moreover, he proves that steps
5 and 6 consistently estimate the null distribution of the Johansen λtrace test, hence yielding
consistent estimates of p-values. Therefore, we can expect the proposition to carry over to the
cointegration tests mentioned above, as these essentially also rely on the availability of suitable
z∗t,b. The CMT with ξ := (ξ1, . . . , ξ|I|)′ as functions of the observations zi,t, for which an invariance
principle holds, ensures a well-defined joint distribution of the statistics ξ. That joint distribution
can be consistently estimated with Algorithm 1 under fairly weak regularity conditions (Horowitz,
2001). We provide extensive numerical support for this argument in Section 6.13

Remark 7. Algorithm 1 is only about as computationally demanding as Swensen’s (2006). It
also requires resampling B pseudo-observations, and no double bootstrapping. The difference to
Swensen’s algorithm is that |I| instead of one statistic (λtrace) need to be calculated for each b.

Remark 8. In view of the equivalence of the URψI and min-test established in Remark 3, a version
of Algorithm 1 also provides bootstrap URψI tests by bootstrapping the distribution of mini∈I pi.
We reject H0 if mini∈I pi < F̂ ∗,−1

min (α), the α-quantile of the bootstrap distribution F̂ ∗min.

6 Monte Carlo Experiments

6.1 Setup

We now study the finite-sample properties of the tests in a series of Monte Carlo experiments.As
shown above, different tests for cointegration differ in their power against different points in the
(c-R2)-space of the alternative hypothesis. Further, e.g. Johansen’s λmax test can be expected to
be relatively more powerful if ∆zt is indeed generated by a finite order VECM. Since our tests
combine information from tests that are powerful in different directions, a likely advantage of our
testing strategy is more robust power across different DGPs. We consider the following DGPs:

13Appendix D describes an alternative bootstrap test that we found to have slightly higher power in unreported
simulations. As that approach requires stronger theoretical assumptions, we advocate using χ̃2,∗

I .
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DGP(A): ∆xt = v1t

yt = xt + ut, and ut = ρTut−1 + v2t

The autoregressive coefficient ρT = 1+ c/T . H0 is obtained when c = 0, whereas we parameterize
H1 by c = −15.14 The errors vt are drawn from

vt =

(
v1t

v2t

)
iid∼ N (0,Ω) , where Ω =

(
1 δ

δ 1

)

For R2 = δ2, we select R2 = {0, 0.25, 0.5, 0.75}. DGP(A) closely follows model (1). We consider
two additional DGPs which are not special cases of model (1) under H1 in order to investigate the
generality of this setup. In particular, we are interested to see whether the favorable asymptotic
results for tECR

γ , F̂ and χ̃2
I(F̂ , t

ECR
γ ) from Section 4 carry over to other parameterizations. First,

we consider

DGP(B): ∆zt = ΠTzt−1 + Γ∆zt−1 + ut, where Γ = 0.2I2 and ut = (u1t, u2t)′
iid∼ N (0, I2)

For (B) H0 is obtained when ΠT = 0, whereas we parameterize H1 by ΠT = c
T (0 1)′ (1 − 1).

Elliott et al. (2005) show that variants of DGP(A) and (B) are closely related, yet they differ in
how short-run dynamics enter the DGPs. DGP(B) can be written as

[(I − ΓL)(1− L)− (ρT − 1)ΠTL]zt = ut (12)

whereas an equivalent way of writing model (1) for the corresponding case of a VAR(2) is

[(I −ΦL)(1− L)− (I −ΦL)(ρT − 1)ΠTL]zt = ut (13)

(see Pesavento’s eq. (2.1)). Because I −ΦL also affects the error-correction term in (13) it is not
possible to find a Φ such that (12) and (13) imply the same dynamics in our parametrization.
This also implies that it is no longer directly possible to infer the R2s associated with DGP(B).

Next, we consider

DGP(C): yt + ηxt = a1t, yt + xt = a2t, where η = −1/2 and

a1t = a1t−1 + u1t, a2t = ρTa2t−1 + u2t, ut
iid∼ N (0, I2)

where ρT is as in (A).15 DGP(C) can be rearranged to (cf. Elliott et al., 2005)

∆zt =
2
3

(
ρ− 1

1
2(ρ− 1)

)
(1 1)zt−1 + ṽt

Hence, DGP(C) does not impose that xt has an exact unit root under the local alternative and
thus is not covered by the assumptions underlying Pesavento’s model (1). Hence, the local power

14Power results for other c are given in Appendix E.
15Of course, Granger’s representation theorem would allow us to write DGP(C) in a VECM form. However, error

terms would be correlated, the matrix Π would have no rows of zeros under H1 and Γ would equal 0.
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curves derived in Section 4 do not necessarily hold under DGP(C). On the other hand, DGP(C),
first considered by Engle and Granger (1987), offers a plausible parametrization of cointegration.
It is therefore of interest in its own right, but also as a robustness check on the generality of
the findings from Section 4, to study the performance of the single and combination tests under
DGP(C).

Remark 9. Appendix E provides additional simulations showing that all qualitative findings re-
main intact when generating DGPs (B) and (C) with an unrestricted variance-covariance matrix
as in (A), Ω =

(
1 δ
δ 1

)
. Moreover, we demonstrate that non-diagonality of neither Π nor Γ affects

the conclusions.

All three DGPs are widely used in Monte Carlo studies of cointegration tests. See e.g. Pesavento
(2004, 2007) for (A), Swensen (2006) for (B), or Engle and Granger (1987), Haug (1996) and
Gregory et al. (2004) for (C). The DGPs are local, such that power ought to remain roughly
constant in T . For each DGP, we draw 5,000 replications under H0 and H1. We choose T ∈
{50, 75, 100, 150, 200}. These time-series lengths correspond to typical sample sizes encountered
in applied macroeconometric work, e.g. when using quarterly data. To mitigate the effect of
initial conditions under H1, we simulate each DGP for T + 30 time periods and discard the first
30 observations. For each replication, we compute the UR∗ and the χ̃2,∗

I tests based on B = 10, 000
resamples. To keep the setup simple, we initially combine |I| = 2 underlying tests (see Section
6.3 for extensions). In particular, we select Johansen’s (1988) λmax test and Engle and Granger’s
(1987) tADF

γ test. We opt for these tests as they are widely used in applied work. Moreover, Section
4 establishes that these tests have high power for different values of the nuisance parameter R2,
such that combining them seems promising. For comparison, we also combine Boswijk’s (1994)
F̂ test and Banerjee et al.’s (1998) tECR

γ test.

To investigate the performance of the new tests, we compare them to the following cointegration
tests: First, the standard tADF

γ , λmax, tECR
γ and F̂ tests, where we reject H0 if the test statistics

exceed the asymptotic level-α critical value.16 Second, we investigate bootstrap versions of the
tests (denoted tADF,∗

γ , λ∗max, tECR,∗
γ and F̂ ∗), which are by-products of Algorithm 1. Third, we

compute a test that rejects whenever at least one of a set of individual tests rejects. We call this
test ‘naive’ as it ignores the multiple-testing nature of the problem. This test reveals the size
distortion incurred by selecting the most rejective from a set of cointegration tests.

The tests’ implementation requires choosing a lag length P̂ to capture autocorrelation. In practice
this is often done via selection criteria (e.g. Lütkepohl, 2005). To reduce the computational burden
we waive this option and use the correct lag order, i.e. P = 0 in (A) and (C) and P = 1 in (B).17

All tests are based on case (iii).

16In the case of the tADF
γ test we follow the standard practice of using MacKinnon (1996)-type critical values.

We also studied Phillips and Ouliaris (1990) and λtrace tests. Since these are very strongly correlated with tADF
γ

and λmax resp. (Gregory et al., 2004), adding these to χ̃2
I or URψI barely affects the latter’s performance.

17For tADF
γ , we select P = 1 under (B) too, as this yields a sufficiently accurate approximation for Γ = 0.2I2.

For (A) and (C), we take P = 0.
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Table 4: Small-sample size based on λmax and tADF
γ

Bootstrap tests asymptotic tests

DGP T λ∗max tADF,∗
γ naive∗ χ̃2,∗

I UR∗ψI λmax tADF
γ naive χ̃2

I URψI

(A) 50 0.051 0.048 0.078 0.051 0.048 0.054 0.080 0.113 0.062 0.084
75 0.044 0.042 0.072 0.042 0.040 0.055 0.077 0.110 0.059 0.080
100 0.048 0.048 0.076 0.049 0.046 0.054 0.075 0.111 0.056 0.072
150 0.046 0.046 0.079 0.045 0.048 0.054 0.063 0.099 0.049 0.069
200 0.055 0.050 0.086 0.059 0.057 0.048 0.058 0.090 0.047 0.059

(B) 50 0.052 0.050 0.080 0.051 0.049 0.067 0.069 0.108 0.063 0.077
75 0.050 0.050 0.078 0.049 0.047 0.060 0.062 0.098 0.060 0.065
100 0.047 0.045 0.075 0.046 0.046 0.061 0.059 0.093 0.060 0.066
150 0.050 0.047 0.073 0.050 0.046 0.057 0.060 0.090 0.057 0.061
200 0.050 0.055 0.081 0.053 0.057 0.057 0.063 0.092 0.063 0.063

(C) 50 0.045 0.054 0.083 0.050 0.048 0.053 0.081 0.114 0.060 0.081
75 0.044 0.043 0.073 0.041 0.041 0.055 0.076 0.110 0.055 0.077
100 0.046 0.051 0.082 0.048 0.049 0.054 0.069 0.103 0.054 0.072
150 0.048 0.050 0.082 0.047 0.048 0.054 0.064 0.099 0.049 0.070
200 0.055 0.051 0.088 0.059 0.055 0.048 0.058 0.089 0.044 0.060

Rejection rates at nominal level of 5%. 5,000 replications and 10,000 bootstrap replications. tADF
γ and

λmax refer to Engle and Granger (1987) and Johansen (1988) tests, tADF,∗
γ and λ∗max are their bootstrap

counterparts. naive rejects when tADF,∗
γ or λ∗max or both reject. URψI is the test defined by (6) and

(8) and and UR∗ is the bootstrap counterpart. χ̃2
I is the Fisher test (3) and χ̃2,∗

I is its bootstrap
counterpart. (UR∗ and χ̃2,∗

I are described in Algorithm 1.)

6.2 Results

Table 4 reports the small sample size of the tests based on λmax and tADF
γ at α = 0.05. Results

for DGP(A) are based on R2 = 0.25.18 As expected, the ‘naive’ test is oversized. Its size exceeds
that of the individual tests by approximately 3 - 4 percentage points.19 All other tests control
size quite well. Both URψI and, to a lesser extent, χ̃2

I exhibit a slight upward size distortion for
small T , due to a distortion of tADF

γ for small T . However, this size distortion vanishes for larger
T . The bootstrap tests approach the nominal size more quickly, which reflects that the bootstrap
distributions F̂F∗I generally are somewhat more accurate approximations to the unknown-finite
sample distributions than the asymptotic ones FFI .

Table 5 reports the non-size adjusted small sample power of the λmax and tADF
γ -based tests at the

level α of 5%. For DGP(A), the local asymptotic results from Section 4 predict the finite-sample
results rather well, in that tADF

γ and λmax again have similar power for this R2. Moreover, the
combination tests χ̃2

I and URψI again outperform both individual tests. While of the individual
tests tADF

γ is most powerful for (C), λmax and λ∗max are most powerful for (B). This result may not
be entirely surprising, as both tests were designed having DGPs of type (B) and (C) respectively
in mind. For those DGPs, χ̃2

I and URψI again both perform similarly and well, in that their
power is again close or superior to that of the better of the two constituent tests. The power of

18Appendix E reports results for other values of R2. Furthermore, we ran all simulations at the 1% and 10%
level. We also experimented with a version of DGP(C) with AR(1) error terms instead of white noise ut. All results
are qualitatively similar; additional results are available upon request.

19This size distortion is very close to the one that can be inferred from Table I in Gregory et al. (2004).
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Table 5: Small-sample power based on λmax and tADF
γ

Bootstrap tests asymptotic tests

DGP T λ∗max tADF,∗
γ naive∗ χ̃2,∗

I UR∗ψI λmax tADF
γ naive χ̃2

I URψI

(A) 50 0.284 0.255 0.389 0.337 0.273 0.288 0.362 0.462 0.359 0.374
75 0.281 0.246 0.381 0.324 0.264 0.290 0.320 0.440 0.343 0.344
100 0.269 0.239 0.368 0.317 0.259 0.279 0.296 0.413 0.307 0.318
150 0.265 0.235 0.366 0.310 0.252 0.279 0.270 0.394 0.301 0.302
200 0.274 0.233 0.361 0.306 0.257 0.275 0.258 0.386 0.284 0.290

(B) 50 0.366 0.321 0.486 0.405 0.378 0.412 0.388 0.552 0.448 0.460
75 0.462 0.341 0.554 0.473 0.452 0.518 0.403 0.617 0.521 0.527
100 0.534 0.367 0.621 0.529 0.510 0.567 0.405 0.655 0.557 0.557
150 0.604 0.381 0.668 0.580 0.569 0.627 0.417 0.700 0.614 0.609
200 0.631 0.377 0.696 0.607 0.594 0.656 0.412 0.721 0.623 0.621

(C) 50 0.179 0.271 0.321 0.278 0.223 0.194 0.372 0.413 0.310 0.329
75 0.170 0.258 0.304 0.259 0.206 0.193 0.342 0.384 0.285 0.297
100 0.171 0.271 0.319 0.276 0.215 0.177 0.316 0.358 0.268 0.271
150 0.160 0.252 0.297 0.255 0.202 0.178 0.299 0.344 0.258 0.260
200 0.178 0.256 0.303 0.263 0.210 0.173 0.277 0.327 0.239 0.246

See notes to Table 4. R2 = 0.25 (for DGP(A)) and c = −15.

the bootstrap versions is very similar to that of the asymptotic tests throughout, considering the
slightly better size of the bootstrap tests (cf. Table 4). The slight upward size distortion of URψI
found in Table 4 explains why URψI has higher power than χ̃2

I even when λmax and tADF
γ are

roughly equally powerful, unlike what is predicted by the asymptotics (cf. Figure 1).

Tables 6 and 7 reports analogous results for the tests based on F̂ and tECR
γ . Once more, all tests

have a slight upward size distortion for small T , which vanishes as T increases. F̂ and tECR
γ again

perform similarly, as predicted by Section 4. It is therefore not surprising that the performance
of χ̃2

I and URψI is also very similar to that of the individual tests. Comparing Tables 5 and
7, we find that tADF

γ and λmax outperform either F̂ or tECR
γ for DGP(C) and (B), respectively,

which again reflects that the latter tests were not designed having such DGPs in mind (cf. the
discussion below DGP(C)). This also implies that the superior local power of F̂ and tECR

γ found
by Pesavento (2004) may be somewhat model-specific, in that these results do not carry over to
other parameterizations of cointegrated systems such as DGPs(B) and (C). Hence, it would be
premature to recommend routine application of either F̂ or tECR

γ in practice. Indeed, our meta
tests are attractive because they not only offer a robust insurance against wrong test choice given
the nuisance parameter R2, but effectively also robustness when there is uncertainty over other
features of the DGP, as is the case in practice.

6.3 Extension to more than two tests

For expositional clarity we so far analyzed combinations of only |I| = 2 tests, combining tADF
γ

and λmax or F̂ and tECR
γ to illustrate our approach. Of course, as discussed in Section 3, our

approach can accommodate other and more tests as well. Potentially, this yields further gains in
power if the additional tests have high power for the given nuisance parameter value. We therefore
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Table 6: Small-sample size based on F̂ and tECR
γ

Bootstrap tests asymptotic tests

DGP T F̂ ∗ tECR,∗
γ naive∗ χ̃2,∗

I UR∗ψI F̂ tECR
γ naive χ̃2

I URψI

(A) 50 0.050 0.051 0.062 0.051 0.052 0.084 0.077 0.093 0.079 0.082
75 0.047 0.045 0.055 0.045 0.046 0.076 0.072 0.086 0.075 0.076
100 0.050 0.053 0.061 0.051 0.052 0.073 0.073 0.084 0.074 0.073
150 0.045 0.045 0.053 0.045 0.044 0.065 0.062 0.073 0.065 0.066
200 0.052 0.055 0.062 0.054 0.052 0.057 0.053 0.063 0.054 0.057

(B) 50 0.050 0.056 0.064 0.054 0.053 0.069 0.068 0.079 0.070 0.069
75 0.051 0.050 0.060 0.050 0.052 0.067 0.064 0.076 0.065 0.065
100 0.044 0.044 0.052 0.044 0.044 0.063 0.060 0.072 0.061 0.063
150 0.049 0.047 0.058 0.049 0.050 0.060 0.057 0.069 0.058 0.058
200 0.054 0.057 0.066 0.056 0.055 0.064 0.063 0.071 0.062 0.063

(C) 50 0.049 0.054 0.061 0.052 0.052 0.083 0.076 0.091 0.079 0.082
75 0.042 0.044 0.052 0.044 0.044 0.071 0.069 0.081 0.070 0.070
100 0.051 0.052 0.061 0.051 0.051 0.068 0.064 0.075 0.067 0.067
150 0.047 0.048 0.055 0.047 0.047 0.068 0.065 0.076 0.068 0.067
200 0.051 0.053 0.061 0.053 0.052 0.057 0.058 0.066 0.058 0.059

See notes to Table 4. F̂ and tECR
γ are from Boswijk (1994) and Banerjee et al. (1998). Starred tests are

bootstrap counterparts.

now combine all four tests considered in the previous subsection (denoted χ̃2
I(4)) and compare

its performance to the combination tests based on λmax and tADF
γ , denoted χ̃2

I(2). In view of the
similar performance of bootstrap and asymptotic tests we focus on the latter for brevity. The
more general χ̃2

I(4) test outperforms its simple counterpart χ̃2
I(2) rather markedly. Of course,

the asymptotic results from Section 4 predict that this is a setting where tADF
γ and λmax are

less powerful than F̂ and tECR
γ , such that one might want to choose the latter only. Yet, bearing

Remark 5 in mind, such knowledge about the DGP will rarely be available in practice. Indeed, we
view it as implausible that researchers should feel the need to conduct statistical inference about
a key feature of the time series—cointegration versus non-cointegration—whilst having accurate
knowledge about some nuisance parameter. Hence, the extra robustness that can be gained from
combining |I| = 4 tests may well be attractive for practitioners.

To summarize, both URψI and χ̃2
I control size and yet provide a robust, powerful and flexible

alternative to traditional cointegration tests.

7 Mixed Signals Revisited

7.1 Setup

Naturally we are interested in the practical applicability and relevance of our approach. To shed
light on this question, we revisit the studies which Gregory et al. (2004) investigated for ‘mixed
signals’, i.e. conflicting cointegration test results. Gregory et al. (2004) analyze 34 studies which
were published in the Journal of Applied Econometrics from 1994 to March/April 2001. We addi-
tionally perform an analogous exercise for the JAE issues from May/June 2001 through to papers
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Table 7: Small-sample power based on F̂ and tECR
γ

Bootstrap tests asymptotic tests

DGP T F̂ ∗ tECR,∗
γ naive∗ χ̃2,∗

I UR∗ψI F̂ tECR
γ naive χ̃2

I URψI

(A) 50 0.433 0.415 0.467 0.431 0.426 0.553 0.517 0.578 0.542 0.542
75 0.433 0.409 0.464 0.427 0.426 0.528 0.491 0.553 0.517 0.519
100 0.423 0.400 0.452 0.418 0.417 0.496 0.463 0.526 0.487 0.488
150 0.419 0.392 0.450 0.413 0.413 0.474 0.435 0.500 0.463 0.463
200 0.422 0.387 0.448 0.409 0.411 0.457 0.413 0.478 0.440 0.445

(B) 50 0.267 0.249 0.291 0.259 0.258 0.352 0.300 0.368 0.327 0.341
75 0.330 0.298 0.353 0.323 0.323 0.403 0.345 0.416 0.375 0.386
100 0.381 0.336 0.399 0.363 0.370 0.430 0.362 0.447 0.400 0.415
150 0.415 0.361 0.430 0.387 0.396 0.464 0.394 0.480 0.432 0.445
200 0.442 0.375 0.461 0.413 0.422 0.474 0.404 0.490 0.441 0.454

(C) 50 0.217 0.247 0.255 0.237 0.227 0.297 0.321 0.336 0.315 0.306
75 0.210 0.234 0.244 0.226 0.217 0.281 0.300 0.313 0.294 0.288
100 0.216 0.245 0.255 0.237 0.226 0.254 0.278 0.290 0.272 0.261
150 0.203 0.227 0.235 0.218 0.209 0.246 0.270 0.282 0.264 0.256
200 0.212 0.233 0.243 0.226 0.219 0.232 0.259 0.269 0.248 0.240

See notes to Table 4. F̂ and tECR
γ are from Boswijk (1994) and Banerjee et al. (1998). Starred tests are

bootstrap counterparts. R2 = 0.25 (for DGP(A)) and c = −15.

scheduled for publication as of August 2010.20 From these studies we construct 286 data sets in
which we test for cointegration. Of these, 127 are from the period after April 2001, confirming
that cointegration continues to receive unabated attention from the econometrics community.21

When necessary, we perform some preliminary data transformations such as removal of obvious
seasonal patterns. We have substantially more tests than studies because, e.g., we can calculate
many time-series cointegration tests from investigations using panel data. The data sets exhibit
large differences in sample size T , which ranges from 24 to 7693. Similarly the number of variables
K differs across studies and ranges from 2 to 11.

Our goal is to document the extent to which conflicting test results arise in actual applications
and how our proposed meta tests are able to heal this problem. As Gregory et al. (2004), we do
not intend to suggest that the authors of the studies have been in any way strategic in their choice
of which cointegration test to report. Most applied researchers tend to view the different tests as
rather interchangeable, with the choice more dependent on the nature of the investigation.

We follow Gregory et al. (2004) closely in their setup. The original published studies employ
different methods to test their specifications. To make the results comparable, we impose a
unifying but standard methodology. If a test requires a dependent variable yt, we follow the
choice in the original paper if possible. If there is no obvious yt, we choose it based on the
highest coefficient of determination of first-stage regressions. We also need to allow for variation
in lag lengths P̂ across data sets. We determine P̂ using the standard Schwarz Information

20We performed a full text search of ‘cointegration’ and ‘cointegrated’ on the Wiley Interscience webpage. Of
the 34 hits, we excluded 5 papers, e.g. an editorial for a special issue, pure Monte Carlo papers or those using data
already used in the set of studies considered by Gregory et al. (2004).

21The raw 1994-2001 data are available at http://qed.econ.queensu.ca/jae/2004-v19.1/gregory-haug-lomuto/.
Our modified and additional data sets are available upon request.
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Table 8: Rejection rates when combining |I| > 2 tests

Size Power

DGP T χ̃2
I(2) χ̃2

I(4) χ̃2
I(2) χ̃2

I(4)

(A) 50 0.061 0.071 0.359 0.490
75 0.060 0.068 0.343 0.464
100 0.055 0.064 0.307 0.440
150 0.054 0.056 0.301 0.413
200 0.044 0.047 0.284 0.391

(B) 50 0.063 0.069 0.100 0.114
75 0.060 0.063 0.157 0.171
100 0.060 0.060 0.269 0.267
150 0.057 0.055 0.591 0.531
200 0.063 0.062 0.880 0.810

(C) 50 0.060 0.069 0.310 0.330
75 0.055 0.061 0.285 0.309
100 0.054 0.060 0.268 0.281
150 0.049 0.059 0.258 0.271
200 0.044 0.052 0.239 0.255

See notes to Table 4. URψI (|I|) and χ̃2
I(|I|) combine |I| tests as described

in the text. For DGP(A), results are for R2 = 0.25.

Criterion (BIC) as described e.g. in Lütkepohl (2005, Secs. 4.3.2 and 8.1). We search over the
range 1 ≤ P̂ ≤ min

(
8
(
T

100

)1/5
, T−2

2(K+2)

)
, and impose the same number of lags for all tests. Our

qualitative conclusions would not be different if alternative selection methods for P̂ discussed in
the literature were employed. All tests include a constant and a trend.

7.2 Results

We compare the results of individually applying λmax, tADF
γ , tECR

γ and F̂ with the meta test
χ̃2
I(λmax, t

ADF
γ , tECR

γ , F̂ ). Let us first reconsider the example studies discussed in Section 2.1.
First, for the Clements and Hendry (1995) data, λmax and F̂ rejected. Second, for the Cooley and
Ogaki (1996) data only tADF

γ rejected. Third, for the Martens et al. (1998) data, λmax and tADF
γ

rejected. These patterns of (non-)rejections are noteworthy. The first example shows that tECR
γ

and F̂ , which are constructed similarly and have similar power properties (see e.g. Section 4),
may not agree for the same samples. The second example shows that tADF

γ , which is often thought
to be less powerful than many other tests proposed, produces a rejection while the system- and
error-correction based tests do not. The third example shows that tECR

γ and F̂ may not reject
although λmax does. Overall, the examples show that mixed signals do not stem from a single
test always or never rejecting.

How does the meta test χ̃2
I(λmax, t

ADF
γ , tECR

γ , F̂ ) resolve these mixed signals? For the Clements
and Hendry (1995) data χ̃2

I(λmax, t
ADF
γ , tECR

γ , F̂ ) = 39.870, clearly exceeding the 5% critical value
of 22.215 (cf. Table 1 for K − 1 = 1 and case (iii)). The meta test hence agrees with λmax and F̂
here. On the other hand, χ̃2

I(λmax, t
ADF
γ , tECR

γ , F̂ ) = 16.1257 < 22.215 (and is also smaller than
the 10% critical value 17.187, cf. Table B.2) for the Cooley and Ogaki (1996) data, such that the
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meta tests joins the three non-rejecting λmax, tECR
γ and F̂ tests. Apparently, the p-value of tADF

γ

is insufficiently small to lead to a rejection for χ̃2
I(λmax, t

ADF
γ , tECR

γ , F̂ ). The very small p-values
for the Martens et al. (1998) data of course produce a very large, and therefore rejecting, meta
test statistic. Hence, we observe that the meta test aggregates the information from the single
tests such that, depending on the relative strengths of rejection and acceptance, either aggregate
test result can obtain.

More generally, we check whether all individual tests from the Gregory et al. (2004) data and the
updated set agree or not in their testing decision at the 5% level, see left panel of Table 9. If
there are conflicting test results we check what the test used in the original paper had suggested
as a result (more precisely what would have been the outcome of our version with the chosen
lag-length criterion), see the right panel of Table 9.22 We then compare the results to that of the
χ̃2
I(λmax, t

ADF
γ , tECR

γ , F̂ ) test.

Table 9 thus reports the frequencies for all possible pairs of outcomes.23 When all tests reject or
all tests do not reject H0, the meta test does so too. However, such cases of agreeing tests make
up only 65% (= (56 + 131)/286) of all data sets. For the remaining 35% individual tests conflict.
Here our test is most useful, yielding a definite conclusion. In 54% (= 53/99) of the conflicting
cases χ̃2

I does not reject H0. In the remaining conflicting cases χ̃2
I rejects H0. Moreover, we note

the following.

First, rejecting whenever at least one (but not all) of the tests rejected would have lead to a
substantial overstatement of cointegration (99 vs. 46 cases). Similarly, the conservative strategy
of only rejecting when all tests reject would have understated the pervasiveness of cointegration.

Second, the tests that have been ‘preferred’ in the studies are more rejective than our meta test
(51 vs. 37 rejections in 77 tests). This suggests that the evidence in favor of cointegration would
have been less pronounced if the studies could have relied on a suitable meta test.24

Third, whether or not the preferred test rejectedH0 is not informative on whether or not χ̃2
I rejects

conditional on observing ‘mixed signals’. This is reflected by similar conditional probabilities:
53/99 ' 26/51 ' 14/26 ≈ 1/2. Thus, we cannot infer from a published result what the χ̃2

I test
would indicate, conditional on a further individual test leading to a conflicting test result.

22For this purpose, we categorize the studies according to whether they use a residual- (i.e. those by Engle
and Granger, 1987, or Phillips and Ouliaris, 1990) or system-based Johansen (1988) test. That is, we identify all
Johansen tests with λmax and all residual-based tests with tADF

γ . Given the highly positive correlation within classes
of tests (Gregory et al., 2004), this approximation is accurate. In 22 (99− 77) cases of conflicting test results, the
original studies do not report a cointegration test, being concerned with e.g. estimating cointegration vectors.

23Appendix F reports results for χ̃2
I(λmax, t

ADF
γ ); results for other (bootstrap) combination tests are available.

24That the preferred test is more rejective than χ̃2
I here does not contradict the favorable power properties of

χ̃2
I found in Section 6, as χ̃2

I can, and should, of course only be shown to be powerful in a class of level-α tests.
Whether the way researchers identify their ‘preferred’ test leads to a level-α test or suffers from data-mining is
impossible to say without knowledge of the decision process.
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Table 9: Test results in applied studies and the χ̃2
I test

number of cases in which...

...individual test results... ...in case of conflicting

agree conflict results: ‘preferred’ test†

r ¬ r
∑

r ¬ r
∑

χ̃2
I(4) : r 56 0 46 102 χ̃2

I(4) : r 25 12 37
χ̃2
I(4) : ¬ r 0 131 53 184 χ̃2

I(4) : ¬ r 26 14 40∑
56 131 99 286

∑
51 26 77

χ̃2
I(4) abbreviates χ̃2

I(λmax, t
ADF
γ , tECR

γ , F̂ ). r : test rejects; ¬ r : test does not reject.
† : Test type on which conclusions in the original study were based (see fn. 22).
Absolute frequencies of cointegration-test results for data from Gregory et al. (2004). Indi-
vidual tests include Engle and Granger (1987), Boswijk (1994), Banerjee et al. (1998) and
Johansen (1988) tests. The χ̃2

I(4) combines these tests as described in Section 3.

8 Conclusion

This paper proposes meta tests that combine information from individual cointegration tests.
The tests take into account the multiple testing nature of running more than one individual test
and hence control size. The meta tests are constructed by deriving the distribution of suitable
aggregators of the underlying tests (e.g., Fisher’s), by appropriately modifying the critical values
of the underlying tests, as well as by corresponding bootstrap methods. By contrast, we show
that running more than one test and drawing inferences from the most rejective test leads to an
oversized test. Asymptotic and Monte Carlo results demonstrate the effectiveness of the proposed
meta tests, establishing attractive power properties. An application to a large and up-to-date set
of cointegration studies confirms our tests’ practical value, yielding an unambiguous test decision
in cases of conflicting individual test results.

The setup we put forward is fairly general and hence can be adopted to other testing problems
for which several (imperfectly correlated) tests have been developed. Examples include testing
for unit roots or heteroscedasticity. Essentially, what is needed is either the distribution of some
suitable aggregator or a bootstrap method suitable for the phenomenon of interest. For the above
mentioned testing problems such bootstrap methods would be the sieve and the wild bootstrap.

A major practical advantage of our proposed tests is that they relieve the applied researcher from
the discretionary and often arbitrary choice between cointegration tests to reach a decision.

References

Banerjee A, Dolado JJ, Mestre R. 1998. Error-correction mechanism tests for cointegration in a single-equation

framework. Journal of Time Series Analysis 19: 267–283.

Bierens HJ. 2005. Introduction to the Mathematical and Statistical Foundations of Econometrics. Cambridge: Cam-

bridge University Press.

Boswijk HP. 1994. Testing for an unstable root in conditional and unconditional error correction models. Journal

of Econometrics 63: 37–60.

27



Breitung J. 2001. Rank tests for nonlinear cointegration. Journal of Business & Economic Statistics 19: 331–340.

Clements MP, Hendry DF. 1995. Forecasting in cointegrated systems. Journal of Applied Econometrics 10: 127–146.

Cooley TF, Ogaki M. 1996. A time series analysis of real wages, consumption, and asset returns. Journal of Applied

Econometrics 11: 119–134.

Demetrescu M, Hassler U, Tarcolea AI. 2006. Combining significance of correlated statistics with application to

panel data. Oxford Bulletin of Economics and Statistics 68: 647–663.

Elliott G, Jansson M, Pesavento E. 2005. Optimal power for testing potential cointegrating vectors with known

parameters for nonstationarity. Journal of Business & Economic Statistics 23: 34–48.

Engle RF, Granger CW. 1987. Co-integration and error correction: Representation, estimation, and testing. Econo-

metrica 55: 251–76.

Fisher R. 1932. Statistical Methods for Research Workers. London: Oliver and Boyd.

Gregory AW, Haug AA, Lomuto N. 2004. Mixed signals among tests for cointegration. Journal of Applied Econo-

metrics 19: 89–98.

Harvey DI, Leybourne SJ, Taylor AMR. 2009. Unit root testing in practice: Dealing with uncertainty over the

trend and initial condition. Econometric Theory 25: 587–636.

Haug AA. 1996. Tests for cointegration: A Monte Carlo comparison. Journal of Econometrics 71: 89–115.

Horowitz JL. 2001. The bootstrap. In Heckman JJ, Leamer EE (eds.) Handbook of Econometrics, vol. 5, chap. 52,

Amsterdam: Elsevier, pages 3159–3228.

Johansen S. 1988. Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control 12:

231–254.

Johansen S. 1995. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press.

Kremers JJ, Ericsson NR, Dolado JJ. 1992. The power of cointegration tests. Oxford Bulletin of Economics and

Statistics 54: 325–348.

Littell RC, Folks JL. 1971. Asymptotic optimality of Fisher’s method of combining independent tests. Journal of

the American Statistical Association 66: 802–806.

Lütkepohl H. 2005. New Introduction to Multiple Time Series Analysis. Berlin: Springer.

MacKinnon JG. 1996. Numerical distribution functions for unit root and cointegration tests. Journal of Applied

Econometrics 11: 601–618.

Martens M, Kofman P, Vorst TCF. 1998. A threshold error-correction model for intraday futures and index returns.

Journal of Applied Econometrics 13: 245–263.

Palm FC, Smeekes S, Urbain JP. 2010. A sieve bootstrap test for cointegration in a conditional error correction

model. Econometric Theory 26: 647–681.

Paparoditis E, Politis DN. 2003. Residual-based block bootstrap for unit root testing. Econometrica 71: 813–855.

Park JY. 1990. Testing for unit roots and cointegration by variable addition. Advances in Econornetrics 8: 107–133.

Pesavento E. 2004. Analytical evaluation of the power of tests for the absence of cointegration. Journal of Econo-

metrics 122: 349–384.

Pesavento E. 2007. Residuals-based tests for the null of no-cointegration: An analytical comparison. Journal of

Time Series Analysis 28: 111–137.

Phillips PCB, Ouliaris S. 1990. Asymptotic properties of residual based tests for cointegration. Econometrica 58:

165–193.

Swensen AR. 2006. Bootstrap algorithms for testing and determining the cointegration rank in VAR models. Econo-

metrica 74: 1699–1714.

Watson MW. 1994. Vector autoregressions and cointegration. In Engle R, McFadden D (eds.) Handbook of Econo-

metrics, vol. 4, chap. 47, Amsterdam: Elsevier, pages 2843–2915.

White H. 2000. A reality check for data snooping. Econometrica 68: 1097–1126.

28



Appendix A Proofs

Proof of Proposition 1. Under H0, i.e. c = 0, the limiting random variables of the ξi are nuisance-
parameter free functionals of W . E.g., for the tests considered in Section 2.2 we obtain

tADF
γ ⇒

ηd
′ ∫
W d dW ′ηd

(ηd′Adηd)1/2(ηd′ηd)1/2

where ηd :=
[
−
(∫

W d
1
′
W d

2

)(∫
W d

1W
d
1
′
)−1

, 1
]′
,

W d := (W d
1
′
, W d

2 )′ and Ad :=
∫
W dW d′

λmax ⇒ max eig
{

(Ad)−1

∫
W d dW ′

∫
dWW d′

}
F̂ ⇒

∫
W d′ dW2(Ad)−1

∫
W d dW2

tECR
γ ⇒

∫
W d

2 dW2 −
∫
W d

1
′
W d

2

(∫
W d

1W
d
1
′)−1 ∫

W d
1 dW2[∫

W d2
2 −

∫
W d

1
′
W d

2

(∫
W d

1W
d
1
′)−1 ∫

W d
1W

d
2

]1/2
Now, the corresponding limiting cdfs Ξi are continuous, such that the quantile transformations
pi = Ξi(ξi) are uniform on [0, 1] under H0 as T →∞. Further, ln as well as −2

∑
i∈I fi obviously

are continuous functions, such that part (a) follows from the Continuous Mapping Theorem, if
the ξi converge jointly. (Their joint convergence follows from the joint convergence of all sample
moments used in the construction of the ξi, because the ξi are continuous functions of the sample
moments themselves. Watson (1994) shows joint convergence of the sample moments.) Part (b)
follows because test consistency of test i implies that under H1, pi = op(1) and hence χ̃2

I →p ∞
even if pj = Op(1) for j 6= i.
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Appendix B Further critical values

Table B.1: Critical values for the minimum p-value test.

case
K − 1 (i) (ii) (iii) (i) (ii) (iii)

α = 0.01

tADF
γ and λmax F̂ and tECR

γ

1 0.006 0.006 0.006 0.007 0.008 0.008
2 0.006 0.006 0.006 0.007 0.008 0.008
3 0.006 0.006 0.006 0.007 0.007 0.008
4 0.005 0.005 0.005 0.007 0.007 0.007
5 0.005 0.005 0.005 0.007 0.007 0.007
6 0.005 0.005 0.005 0.007 0.007 0.007
7 0.005 0.005 0.005 0.007 0.007 0.007
8 0.005 0.005 0.005 0.007 0.007 0.007
9 0.005 0.005 0.005 0.007 0.007 0.007
10 0.005 0.005 0.005 0.007 0.007 0.007
11 0.005 0.005 0.005 0.007 0.007 0.007

α = 0.05

tADF
γ and λmax F̂ and tECR

γ

1 0.031 0.033 0.033 0.038 0.041 0.043
2 0.030 0.030 0.030 0.037 0.038 0.040
3 0.029 0.029 0.029 0.036 0.038 0.039
4 0.028 0.028 0.028 0.036 0.037 0.038
5 0.028 0.028 0.028 0.035 0.036 0.037
6 0.027 0.027 0.028 0.035 0.035 0.037
7 0.027 0.027 0.027 0.035 0.035 0.036
8 0.027 0.027 0.027 0.035 0.035 0.036
9 0.027 0.027 0.027 0.034 0.035 0.035
10 0.027 0.027 0.027 0.034 0.035 0.035
11 0.026 0.027 0.026 0.034 0.034 0.035

α = 0.1

tADF
γ and λmax F̂ and tECR

γ

1 0.064 0.067 0.067 0.077 0.083 0.086
2 0.061 0.062 0.062 0.075 0.079 0.081
3 0.059 0.059 0.060 0.074 0.076 0.079
4 0.058 0.058 0.058 0.072 0.075 0.077
5 0.057 0.057 0.057 0.072 0.074 0.075
6 0.056 0.056 0.056 0.071 0.073 0.075
7 0.056 0.056 0.055 0.071 0.072 0.074
8 0.055 0.055 0.055 0.071 0.072 0.073
9 0.055 0.055 0.055 0.070 0.072 0.073
10 0.055 0.054 0.054 0.070 0.071 0.072
11 0.054 0.054 0.054 0.070 0.071 0.072

Critical values for the minimum p-value test.

30



Table B.2: Critical values for the χ̃2
I test

case
K − 1 (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

α = 0.01

tADF
γ and λmax F̂ and λmax F̂ and tECR

γ F̂ and tADF
γ

1 16.948 17.304 17.289 17.077 17.175 17.066 17.827 18.201 18.230 16.551 17.390 17.572
2 16.651 16.679 16.720 16.443 16.355 16.227 17.888 18.051 18.176 16.361 16.686 17.078
3 16.236 16.259 16.263 15.787 15.814 15.777 17.831 17.951 18.069 16.137 16.430 16.795
4 15.871 15.845 15.973 15.384 15.497 15.430 17.763 17.912 18.017 16.074 16.396 16.493
5 15.626 15.701 15.666 15.241 15.143 15.202 17.889 17.813 17.937 16.011 16.201 16.295
6 15.412 15.348 15.467 15.015 15.038 14.995 17.773 17.710 17.937 15.858 15.997 16.326
7 15.312 15.313 15.184 14.769 14.815 14.839 17.675 17.708 17.837 15.830 15.921 16.176
8 15.183 15.000 15.016 14.670 14.700 14.613 17.696 17.705 17.817 15.830 15.947 16.069
9 14.960 15.007 15.069 14.602 14.604 14.580 17.605 17.763 17.851 15.791 15.941 16.143
10 14.893 14.853 14.788 14.586 14.493 14.483 17.530 17.685 17.692 15.795 15.984 16.080
11 14.690 14.826 14.745 14.358 14.282 14.323 17.554 17.564 17.760 15.670 15.795 16.019

F̂ , λmax and tADF
γ F̂ , λmax and tECR

γ F̂ , λmax, tADF
γ , tECR

γ

1 24.174 25.263 25.420 25.151 25.718 25.726 32.713 33.969 34.334
2 23.595 23.855 24.091 24.369 24.501 24.623 31.793 32.077 32.601
3 22.685 23.026 23.446 23.485 23.731 23.936 30.651 31.169 31.742
4 22.256 22.498 22.681 23.144 23.344 23.461 30.088 30.774 30.836
5 21.924 22.020 22.058 22.799 22.974 23.003 29.800 29.850 30.113
6 21.686 21.729 21.887 22.633 22.548 22.677 29.222 29.544 29.962
7 21.288 21.430 21.572 22.214 22.218 22.336 28.974 29.037 29.440
8 21.120 21.180 21.163 22.042 22.083 22.203 28.780 28.999 29.084
9 20.904 20.997 21.118 21.857 22.047 22.045 28.326 28.840 28.875
10 20.678 20.818 20.901 21.709 21.874 21.774 28.208 28.575 28.577
11 20.418 20.611 20.769 21.585 21.567 21.688 27.945 28.055 28.518

α = 0.1

tADF
γ and λmax F̂ and λmax F̂ and tECR

γ F̂ and tADF
γ

1 8.612 8.678 8.686 8.614 8.596 8.588 8.895 9.085 9.120 8.478 8.739 8.892
2 8.457 8.479 8.451 8.368 8.390 8.351 8.907 9.031 9.062 8.434 8.607 8.702
3 8.350 8.363 8.352 8.251 8.241 8.254 8.868 8.980 9.049 8.370 8.494 8.611
4 8.290 8.301 8.272 8.199 8.151 8.167 8.915 8.957 9.015 8.346 8.478 8.555
5 8.221 8.242 8.276 8.150 8.105 8.127 8.887 8.939 9.009 8.353 8.440 8.563
6 8.165 8.200 8.199 8.094 8.093 8.076 8.892 8.899 8.973 8.366 8.456 8.507
7 8.125 8.169 8.146 8.060 8.054 8.037 8.882 8.909 8.938 8.389 8.449 8.494
8 8.106 8.134 8.146 8.046 8.037 8.010 8.868 8.922 8.949 8.356 8.385 8.454
9 8.067 8.108 8.096 8.019 8.033 8.003 8.864 8.880 8.922 8.370 8.400 8.455
10 8.081 8.067 8.095 7.986 7.988 7.980 8.882 8.885 8.919 8.320 8.395 8.441
11 8.084 8.053 8.084 7.995 7.983 7.974 8.887 8.925 8.921 8.328 8.374 8.431

F̂ , λmax and tADF
γ F̂ , λmax and tECR

γ F̂ , λmax, tADF
γ , tECR

γ

1 12.570 12.761 12.855 12.542 12.748 12.863 16.593 16.964 17.187
2 12.218 12.378 12.374 12.265 12.379 12.358 16.171 16.444 16.507
3 12.008 12.075 12.177 12.031 12.175 12.244 15.920 16.097 16.239
4 11.873 11.962 12.008 12.007 12.059 12.108 15.776 15.938 16.086
5 11.807 11.857 11.915 11.971 11.999 12.044 15.681 15.804 15.989
6 11.711 11.773 11.826 11.880 11.970 11.995 15.644 15.746 15.872
7 11.634 11.763 11.738 11.849 11.956 11.917 15.611 15.731 15.706
8 11.637 11.643 11.701 11.884 11.885 11.892 15.561 15.591 15.705
9 11.615 11.631 11.703 11.847 11.880 11.873 15.507 15.528 15.647
10 11.529 11.567 11.638 11.819 11.833 11.837 15.422 15.476 15.565
11 11.543 11.581 11.644 11.767 11.856 11.835 15.406 15.476 15.564

1%- and 10%-critical values for combination tests based on χ̃2
I . tADF

γ is from Engle and Granger (1987), λmax from

Johansen (1988), F̂ from Boswijk (1994) and tECR
γ from Banerjee et al. (1998).
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Appendix C Local Asymptotic Power, further results

Table C.1: Local asymptotic power
−c 0 5 10 15 20

R2 = 0

χ̃2
I(F̂ , tECR

γ ) 0.050 0.153 0.404 0.716 0.917
χ̃2
I(tADF

γ , λmax) 0.050 0.120 0.311 0.595 0.841

χ̃2
I(F̂ , tECR

γ , tADF
γ , λmax) 0.050 0.153 0.403 0.709 0.913

URψI (F̂ , tECR
γ ) 0.049 0.137 0.372 0.682 0.898

URψI (tADF
γ , λmax) 0.050 0.103 0.280 0.555 0.813

F̂ 0.050 0.114 0.319 0.616 0.861
tECR
γ 0.050 0.175 0.450 0.762 0.939
λmax 0.050 0.076 0.187 0.391 0.641
tADF
γ 0.050 0.134 0.364 0.669 0.892

R2 = 0.25

χ̃2
I(F̂ , tECR

γ ) 0.049 0.196 0.561 0.862 0.974
χ̃2
I(tADF

γ , λmax) 0.049 0.126 0.377 0.714 0.933

χ̃2
I(F̂ , tECR

γ , tADF
γ , λmax) 0.050 0.179 0.523 0.847 0.975

URψI (F̂ , tECR
γ ) 0.049 0.172 0.511 0.827 0.965

URψI (tADF
γ , λmax) 0.046 0.116 0.337 0.647 0.891

F̂ 0.049 0.174 0.513 0.819 0.958
tECR
γ 0.049 0.198 0.558 0.864 0.976
λmax 0.047 0.105 0.312 0.614 0.867
tADF
γ 0.048 0.120 0.331 0.625 0.871

R2 = 0.5

χ̃2
I(F̂ , tECR

γ ) 0.050 0.293 0.757 0.954 0.995
χ̃2
I(tADF

γ , λmax) 0.053 0.157 0.541 0.893 0.991

χ̃2
I(F̂ , tECR

γ , tADF
γ , λmax) 0.053 0.254 0.723 0.958 0.997

URψI (F̂ , tECR
γ ) 0.049 0.288 0.729 0.942 0.993

URψI (tADF
γ , λmax) 0.051 0.172 0.532 0.861 0.982

F̂ 0.052 0.328 0.763 0.949 0.994
tECR
γ 0.051 0.230 0.689 0.938 0.993
λmax 0.049 0.192 0.578 0.888 0.988
tADF
γ 0.054 0.106 0.284 0.581 0.842

R2 = 0.75

χ̃2
I(F̂ , tECR

γ ) 0.052 0.573 0.954 0.997 1.000
χ̃2
I(tADF

γ , λmax) 0.051 0.344 0.898 0.997 1.000

χ̃2
I(F̂ , tECR

γ , tADF
γ , λmax) 0.051 0.516 0.955 0.999 1.000

URψI (F̂ , tECR
γ ) 0.052 0.616 0.953 0.997 1.000

URψI (tADF
γ , λmax) 0.050 0.431 0.914 0.997 1.000

F̂ 0.052 0.659 0.963 0.997 1.000
tECR
γ 0.052 0.369 0.892 0.992 1.000
λmax 0.050 0.495 0.942 0.998 1.000
tADF
γ 0.051 0.079 0.235 0.523 0.805

Case (i). See notes to Table 3.
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Table C.2: Local asymptotic power
−c 0 5 10 15 20

R2 = 0

χ̃2
I(F̂ , tECR

γ ) 0.050 0.073 0.148 0.290 0.487
χ̃2
I(tADF

γ , λmax) 0.050 0.069 0.132 0.253 0.423

χ̃2
I(F̂ , tECR

γ , tADF
γ , λmax) 0.050 0.074 0.151 0.294 0.490

URψI (F̂ , tECR
γ ) 0.049 0.070 0.142 0.279 0.471

URψI (tADF
γ , λmax) 0.051 0.064 0.116 0.230 0.392

F̂ 0.050 0.070 0.138 0.271 0.457
tECR
γ 0.050 0.076 0.155 0.305 0.508
λmax 0.050 0.054 0.092 0.165 0.283
tADF
γ 0.050 0.074 0.150 0.290 0.486

R2 = 0.25

χ̃2
I(F̂ , tECR

γ ) 0.048 0.081 0.191 0.405 0.668
χ̃2
I(tADF

γ , λmax) 0.050 0.072 0.127 0.267 0.495

χ̃2
I(F̂ , tECR

γ , tADF
γ , λmax) 0.049 0.084 0.194 0.406 0.664

URψI (F̂ , tECR
γ ) 0.051 0.069 0.121 0.247 0.456

URψI (tADF
γ , λmax) 0.050 0.079 0.171 0.364 0.626

F̂ 0.047 0.083 0.199 0.412 0.668
tECR
γ 0.049 0.083 0.183 0.388 0.652
λmax 0.050 0.067 0.123 0.261 0.471
tADF
γ 0.050 0.070 0.115 0.222 0.398

R2 = 0.5

χ̃2
I(F̂ , tECR

γ ) 0.049 0.089 0.285 0.621 0.874
χ̃2
I(tADF

γ , λmax) 0.050 0.063 0.146 0.386 0.699

χ̃2
I(F̂ , tECR

γ , tADF
γ , λmax) 0.049 0.080 0.231 0.552 0.840

URψI (F̂ , tECR
γ ) 0.049 0.102 0.318 0.648 0.882

URψI (tADF
γ , λmax) 0.049 0.069 0.179 0.439 0.734

F̂ 0.048 0.108 0.339 0.669 0.891
tECR
γ 0.048 0.079 0.228 0.537 0.823
λmax 0.048 0.078 0.221 0.511 0.794
tADF
γ 0.050 0.052 0.077 0.151 0.292

R2 = 0.75

χ̃2
I(F̂ , tECR

γ ) 0.051 0.134 0.596 0.923 0.993
χ̃2
I(tADF

γ , λmax) 0.054 0.069 0.356 0.811 0.983

χ̃2
I(F̂ , tECR

γ , tADF
γ , λmax) 0.053 0.107 0.524 0.906 0.993

URψI (F̂ , tECR
γ ) 0.050 0.196 0.689 0.946 0.995

URψI (tADF
γ , λmax) 0.053 0.117 0.531 0.907 0.993

F̂ 0.052 0.216 0.714 0.952 0.996
tECR
γ 0.051 0.077 0.385 0.801 0.970
λmax 0.051 0.153 0.607 0.937 0.996
tADF
γ 0.054 0.029 0.035 0.071 0.166

Case (iii). See notes to Table 3.
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Figure C.1: Local asymptotic power as a function of R2, c = −10
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Figure C.2: Local asymptotic power as a function of R2, c = −5
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Results are for the demeaned case (ii). χ2
BERC is our Fisher test (3) based on Boswijk’s and Banerjee

et al.’s tests. χ2
EJ is based on Engle and Granger’s and Johansen’s tests. URasym

BERC and URasym
EJ are the

corresponding asymmetric URψI test (6). The individual tests’ power curves are for comparison.
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Figure C.3: Local asymptotic power as a function of c, R2 = 0.35, K − 1 = 3
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See notes to Figure 1.

Figure C.4: Local asymptotic power as a function of −c, R2 = 0
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χ2
BERCEJ

URasym
BERC

χ2
BERC

tERC
γ

F

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

−c

F
re

qu
en

cy
 o

f R
ej

ec
tio

n

 

 

χ2
BERCEJ

URasym
EJ

χ2
EJ

tADF
γ

λ
max

See notes to Figure 1.
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Appendix D Alternative Bootstrap Tests

This Appendix describes an alternative bootstrap approach that makes somewhat stronger as-
sumptions about the joint distribution of the ξi. Its power was slightly superior to the Fisher-
test version in our simulations (detailed results are available). Define a probit representation
by Φ−1(pi) =: si. Asymptotically, the si are marginally standard normal under H0. Let
s =

(
s1, . . . , s|I|

)′. If we additionally assume joint normality for s, denoted s ∼ N (0,Σ), we
have ι′s ∼ N (0, ι′Σι) , where ι = (1, . . . , 1)′. This leads to a standardized meta test statistic,
τ = ι′s/(ι′Σι)1/2. τ is standard normal under H0 and joint normality. Fortunately, Demetrescu
et al. (2006) show that this strong assumption is not necessary. As a practical matter, we use the
following bootstrap method to provide a feasible estimator of Σ.

Algorithm 2.

7. (1.-6. are as in Algorithm 1.) Obtain the probit representation of each ξ∗i,b, s
∗
i,b := Φ−1(p∗i,b).

Let s∗b :=
(
s∗1,b, . . . , s

∗
|I|,b
)′. Correspondingly, obtain s∗i := Φ−1 (p∗i ) and s∗ :=

(
s∗1, . . . , s

∗
|I|
)′.

8. Letting s̄∗ := 1
B

∑
b s
∗
b , estimate Σ by Σ∗ = 1

B

∑
b (s∗b − s̄∗) (s∗b − s̄∗)

′.

Algorithm 2 provides a feasible version of the test statistic τ , τ∗ := ι′s∗/
√
ι′Σ∗ι. We reject H0 at

level α if τ∗ < Φ−1 (α). The following Lemma provides a useful consistency property of the test.

Lemma 2. If (i) α < 1/2 and (ii) all s∗i reject at level α, then τ∗ rejects H0 at least at level α.

Proof. Recall that Φ−1 (α) < 0 for α < 1/2. Then, it follows from (ii) that s∗i < Φ−1 (α) < 0 for
i = 1, . . . , |I|. Hence, ι′s∗ < 0. Further, since the entries of the positive semi-definite correlation
matrix Σ∗ are bounded by 1 and −1, we have

√
ι′Σ∗ι 6 |I|. Thus, τ∗ 6 ι′s∗/|I| < Φ−1 (α).

Appendix E Additional Simulation Results

Table E.1: Small-sample results for DGP(B), Π = (−1 1)′(.1 − .1)

DGP T F̂ tECR
γ χ̃2

I URψI λmax tADF
γ χ̃2

I URψI

Size 50 0.079 0.072 0.076 0.078 0.067 0.072 0.065 0.078
75 0.070 0.066 0.069 0.070 0.060 0.067 0.061 0.067
100 0.063 0.060 0.061 0.062 0.058 0.057 0.060 0.066
150 0.059 0.057 0.057 0.059 0.054 0.055 0.056 0.059
200 0.054 0.053 0.050 0.054 0.054 0.053 0.053 0.057

Power 50 0.128 0.127 0.130 0.129 0.132 0.148 0.147 0.154
75 0.180 0.185 0.185 0.184 0.251 0.261 0.279 0.262
100 0.260 0.279 0.273 0.267 0.412 0.441 0.477 0.439
150 0.433 0.471 0.459 0.449 0.793 0.815 0.852 0.804
200 0.632 0.667 0.655 0.645 0.968 0.971 0.981 0.971

See notes to Table 4. We waive to report the analogous bootstrap results.
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Table E.2: Small-sample results for DGP(B), Π = (−1 1)′(.1 − .1),
Γ = (0.1 0.1)′(1 1), Ω as in (A), δ = 1/2

DGP T F̂ tECR
γ χ̃2

I URψI λmax tADF
γ χ̃2

I URψI

Size 50 0.073 0.078 0.071 0.072 0.061 0.070 0.062 0.076
75 0.063 0.068 0.063 0.065 0.052 0.060 0.056 0.068
100 0.057 0.059 0.058 0.059 0.053 0.059 0.054 0.060
150 0.056 0.058 0.056 0.057 0.053 0.053 0.052 0.059
200 0.061 0.059 0.059 0.058 0.059 0.056 0.057 0.059

Power 50 0.490 0.498 0.498 0.495 0.572 0.321 0.505 0.515
75 0.562 0.569 0.574 0.564 0.660 0.397 0.608 0.603
100 0.584 0.577 0.586 0.585 0.712 0.424 0.660 0.657
150 0.639 0.631 0.645 0.638 0.772 0.475 0.725 0.716
200 0.648 0.634 0.647 0.646 0.798 0.484 0.734 0.741

See notes to Tables 4 and E.1.

Table E.3: Small-sample results for DGP(C), Ω as in (A), δ = 1/2

DGP T F̂ tECR
γ χ̃2

I URψI λmax tADF
γ χ̃2

I URψI

Size 50 0.082 0.074 0.077 0.081 0.052 0.077 0.058 0.076
75 0.063 0.061 0.063 0.061 0.044 0.065 0.048 0.063
100 0.065 0.061 0.062 0.065 0.052 0.067 0.048 0.068
150 0.062 0.058 0.060 0.061 0.051 0.060 0.045 0.065
200 0.057 0.058 0.058 0.059 0.052 0.061 0.046 0.064

Power 50 0.217 0.221 0.222 0.219 0.183 0.283 0.261 0.273
75 0.189 0.196 0.197 0.192 0.173 0.260 0.232 0.236
100 0.175 0.184 0.181 0.176 0.179 0.238 0.227 0.228
150 0.173 0.184 0.184 0.176 0.185 0.232 0.222 0.224
200 0.163 0.176 0.173 0.166 0.170 0.216 0.205 0.201

See notes to Tables 4 and E.1.

Table E.4: Small-sample power, DGP(A), further R2s

DGP T F̂ tECR
γ χ̃2

I URψI λmax tADF
γ χ̃2

I URψI

R2 = 0 50 0.401 0.427 0.418 0.411 0.194 0.440 0.349 0.380
75 0.370 0.407 0.395 0.387 0.192 0.406 0.323 0.341
100 0.343 0.376 0.364 0.356 0.177 0.369 0.300 0.315
150 0.319 0.353 0.341 0.329 0.178 0.335 0.284 0.294
200 0.301 0.331 0.322 0.311 0.173 0.320 0.263 0.275

R2 = 0.5 50 0.771 0.663 0.734 0.762 0.528 0.257 0.440 0.501
75 0.748 0.637 0.711 0.735 0.528 0.223 0.435 0.487
100 0.739 0.618 0.700 0.727 0.524 0.207 0.411 0.469
150 0.714 0.594 0.671 0.696 0.522 0.189 0.404 0.468
200 0.702 0.569 0.654 0.686 0.511 0.180 0.389 0.463

R2 = 0.75 50 0.968 0.882 0.953 0.965 0.918 0.149 0.801 0.885
75 0.966 0.878 0.950 0.962 0.925 0.121 0.801 0.895
100 0.959 0.865 0.941 0.953 0.925 0.108 0.803 0.895
150 0.960 0.853 0.939 0.955 0.934 0.100 0.808 0.899
200 0.958 0.846 0.935 0.953 0.938 0.095 0.813 0.910

See notes to Tables 4 and E.1.
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Table E.5: Small-sample power, further c

DGP T F̂ tECR
γ χ̃2

I URψI λmax tADF
γ χ̃2

I URψI

c = −5
(A) 50 0.126 0.110 0.116 0.121 0.069 0.097 0.072 0.098

75 0.114 0.102 0.108 0.113 0.067 0.088 0.065 0.086
100 0.108 0.099 0.102 0.105 0.070 0.087 0.070 0.096
150 0.105 0.094 0.100 0.101 0.070 0.081 0.067 0.087
200 0.104 0.092 0.098 0.102 0.072 0.080 0.070 0.089

(B) 50 0.145 0.120 0.130 0.141 0.103 0.107 0.106 0.121
75 0.129 0.114 0.121 0.127 0.100 0.104 0.102 0.109
100 0.133 0.108 0.121 0.128 0.105 0.099 0.101 0.111
150 0.127 0.108 0.115 0.120 0.110 0.094 0.104 0.109
200 0.126 0.109 0.117 0.121 0.110 0.090 0.101 0.110

(C) 50 0.097 0.095 0.095 0.096 0.059 0.102 0.075 0.097
75 0.092 0.090 0.090 0.090 0.058 0.097 0.071 0.087
100 0.089 0.090 0.091 0.090 0.060 0.092 0.069 0.089
150 0.080 0.081 0.082 0.081 0.065 0.087 0.071 0.083
200 0.084 0.085 0.085 0.083 0.065 0.090 0.073 0.089

c = −10
(A) 50 0.303 0.265 0.285 0.293 0.144 0.186 0.171 0.196

75 0.264 0.231 0.249 0.258 0.141 0.163 0.153 0.171
100 0.247 0.214 0.234 0.241 0.133 0.147 0.140 0.161
150 0.232 0.202 0.224 0.223 0.133 0.140 0.136 0.152
200 0.219 0.190 0.203 0.210 0.131 0.128 0.129 0.148

(B) 50 0.252 0.206 0.229 0.240 0.228 0.218 0.244 0.265
75 0.267 0.227 0.247 0.259 0.272 0.227 0.264 0.280
100 0.269 0.226 0.247 0.258 0.289 0.209 0.262 0.284
150 0.284 0.239 0.261 0.272 0.319 0.214 0.286 0.304
200 0.276 0.234 0.256 0.267 0.327 0.202 0.290 0.306

(C) 50 0.175 0.184 0.183 0.179 0.107 0.197 0.157 0.179
75 0.161 0.165 0.166 0.164 0.103 0.175 0.138 0.164
100 0.153 0.162 0.161 0.155 0.098 0.170 0.135 0.155
150 0.146 0.154 0.150 0.147 0.097 0.159 0.130 0.147
200 0.131 0.142 0.138 0.135 0.098 0.143 0.119 0.135

See notes to Table 4 and E.1. For DGP(A), R2 = 0.25.
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Appendix F Additional Empirical Results

Table F.1: Frequencies of test results in applied studies and the combination
tests: combining λmax and tADF

γ

number of cases in which...

...individual test results... ...in case of conflicting
agree conflict results: ‘preferred’ test†

r ¬ r
∑

r ¬ r
∑

χ̃2
I(2) : r 70 0 53 123 χ̃2

I(2) : r 23 17 40
χ̃2
I(2) : ¬ r 0 135 28 163 χ̃2

I(2) : ¬ r 14 6 20∑
70 135 81 286

∑
37 23 60

χ̃2
I(2) abbreviates χ̃2

I(λmax, t
ADF
γ ).

r : test rejects; ¬ r : test does not reject
† : Test type on which conclusions in the original study were based (see fn. 22).
Absolute frequencies of cointegration-test results for data from Gregory et al. (2004).
Individual tests include Engle and Granger (1987) and Johansen (1988) tests. The
χ̃2
I(2) combines these tests as described in Section 3.
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