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ABSTRACT

The Time Warp protocol is considered to be an effectiv
synchronization mechanism for parallel discrete eve
simulation (PDES). However, it is widely recognized that i
suffers over-optimistic behavior on the part of the simulatio
processes that may be very harmful for performanc
In current literature, two techniques have been used
counteract this problem — (i) throttling of over-optimistic
processes and (ii) scheduling or load balancing. Howev
study of these techniques has been primarily done
isolation. We demonstrate using a parameterized simulati
model of Time Warp that an appropriate combination o
throttling and global scheduling using LP migration ca
be very beneficial for performance compared to any on
of these schemes acting in isolation. This study forms th
basis of the design of more powerful control schemes th
use a combination of multiple techniques.

1 INTRODUCTION

The Time Warp protocol (Jefferson, 1985) for paralle
discrete event simulation (PDES) has the unique abili
to transparently synchronize the executions of simulatio
events without requiring any significant model-specific in
formation. Experimental studies demonstrate that Tim
Warp is also able to extract significantly more parallelism
from the application simulation model compared to mor
traditional conservative mechanisms (Fujimoto, 1990a
Though otherwise promising, Time Warp is prone to
inefficient execution in many situations because of ove
optimistic behavior (Das and Fujimoto, 1997a). This be
havior occurs when some logical processes (LPs) ope
ate at a much larger simulation time than the other
Over-optimism may cause long and/or cascaded ro
backs (Lubachevsky, Shwartz, and Weiss, 1991) and t
Time Warp system may spend a considerable amou
499
of time in rolling back incorrect computation. Over-
optimism may lead to other performance problems as
well. For example, over-optimistic LPs may consume
memory resources at an uncontrollable rate, making i
impossible to complete the simulation with a finite amount
of memory. Even if sufficient memory can be pro-
vided, memory management overheads may dominat
(Das and Fujimoto, 1997a, Das and Fujimoto, 1997b). In
the description that follows, we assume a general familiar
ity on the part of the reader about PDES (Fujimoto, 1990a
and specifically the Time Warp protocol (Jefferson, 1985).

Several mechanisms have been investigated in th
literature to alleviate the problem of over-optimism in Time
Warp. They can be broadly classified into two categories
throttling and scheduling. In throttling mechanisms, the
optimism is controlled by preventing over-optimistic LPs
from proceeding “too far ahead” in the simulation time.
The basic idea here is to improve thetemporal localityof
the Time Warp computations (Jefferson, 1985). Tempora
locality is used here in simulation time sense, i.e., the
temporal locality principle applies if most events that are
processed concurrently have close simulation timestamp
This reduces both the possibility of rollbacks and resource
usage. Throttling mechanisms are not “work-conserving,”
as LPs may be blocked while CPU cycles are wasted. To
much throttling may also be harmful for performance as
too few events are admitted for processing. This makes i
mandatory that throttling must be controlled appropriately,
by possibly an adaptive technique (Das, 1996a).

In scheduling, on the other hand, the question is
deciding when and where (i.e., on which processor) an
event with a given timestamp should be processed. A
simple and widely followed scheduling discipline is to
statically map LPs to processors and then schedule LP
mapped onto the same processor on an earliest LVT
first basis. LVT or Local Virtual Time of an LP is
the minimum timestamp of all unprocessed events on
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Scheduling

High
temporal locality
(LPs are close in 
simulation time)

High
spatial locality
(high affinity of LPs to
processors)

Strong throttle
(very conservative)

Weak throttle
(very optimistic)

Figure 1: Throttling Techniques and Scheduling/Lo
Balancing Techniques Can be Applied Together.

that LP. Similarly, LVT of a processor is the minimu
timestamp of all unprocessed events of all LPs curre
mapped onto that processor. (Note that “virtual tim
and “simulation time” are used synonymously in para
simulation literature.) Thescheduling quantumcan be
one event, i.e., rescheduling occurs after processing
event. The quantum may be higher if scheduling overh
is deemed expensive. However, many variations of
simple scheduling scheme are possible. For example
shared memory systems a global scheduling discipline
be adopted (Ahmed, R̈onngren, and Ayani, 1994), wher
all LPs go into a central pool. Each processor sched
on itself any currently unscheduled LP in the po
with the lowest LVT. Scheduling quanta here play
very important role, as scheduling overheads may
significant, dominated by the central pool bottleneck
well as the lack ofspatial locality. Poor spatial locality
comes from the lack of affinity of LPs to processors a
gives rise to overhead costs in terms of cache coher
traffic.

Several schemes in distributed memory systems
cluding workstation cluster platforms) also work wi
similar philosophy, i.e., “trading spatial locality to ga
temporal locality.” The goal here is to achieve go
temporal locality via migration of LPs with low LVT to
processors with high LVT. When an explicit LP migratio
is involved, the termload balancingis commonly used in
literature rather thanscheduling. However, we will con-
tinue to use the termschedulingfor any processor resourc
allocation decision irrespective of the specific mechan
or architectural platform. Note that all such schedul
mechanisms are “work conserving,” i.e., CPU resour
are never wasted as long as there are unprocessed e
Also, unlike throttling, scheduling may affect spatial l
cality. Depending on the underlying architecture, loss
spatial locality can significantly impact performance.
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In current literature, throttling and scheduling schem
have been primarily treated in isolation, even though th
work towards the common goal,viz., improving temporal
locality in Time Warp programs. Our thesis is tha
a combination of both schemes can offer a significa
performance advantage compared to any single sche
alone. This is based on the general observation t
throttling wastes processor cycles, when all LPs mapp
onto a processor are blocked. These cycles can
utilized if allocated to LP(s) that are slow in simulation
time. However, this can only be cost-effective when th
migration of LP(s) from another processor is not expensi
compared to savings obtained from utilization of process
cycles. Thus, depending on costs associated with
rollback and (ii) loss of spatial locality, a combination o
these otherwise orthogonal schemes may prove benefi
(see Figure 1). Based on this observation, we take a holis
view of the scheduling paradigm and with a parameteriz
simulation model of a Time Warp system investigate th
scenarios where combination of throttling and scheduli
can be beneficial.

The rest of this paper is organized as follows. I
the next section, we briefly review existing throttling
and scheduling schemes for Time Warp. In Section
we describe a simulation model of Time Warp used
evaluate the performance of throttling and scheduling. W
present the performance benchmarking results in Sect
4 and conclusions in Section 5.

2 RELATED WORK

In this section we briefly review the existing literature o
throttling and scheduling in connection with Time Warp

2.1 Throttling

Quite a few mechanisms have been developed that
some form of optimism control to improve the perfor
mance of Time Warp. Important examples include (
limiting all event computations within a simulated time
window (Sokol and Stucky, 1990, Turner and Xu, 1992
above the global virtual time (GVT), GVT being the mini
mum timestamp of all the unprocessed events in Time Wa
(Jefferson, 1985), (ii) rolling back all processes to GV
(or close to GVT) at stochastically selected intervals
real time (Madisetti, Hardaker, and Fujimoto, 1993), (ii
not sending messages unless they are guaranteed to
correct, thereby eliminating the need for anti-messag
(Dickens and Reynolds, Jr., 1990, Steinman, 1992) (t
is also known asrisk-free computation), (iv) bound-
ing the total amount of memory that can be allo
cated to the Time Warp system using memory manag
ment protocols like cancelback (Das and Fujimoto, 1997
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Das and Fujimoto, 1997a), (v) limiting the number o
events each LP may execute beyond GV
(Steinman, 1993).

All these mechanisms have been shown to perfor
better than the “purely optimistic” Time Warp for certain
simulation models. In general, it is believed that a
appropriate throttling of Time Warp execution (i.e., blockin
one or more LPs even if they have unprocessed events
their future event list) has a strong potential for improve
performance. However, the throttle must be applied wi
caution. As observed in (Srinivasan and Reynolds, 1995
both purely optimistic Time Warp and Time Warp with
an adaptive throttle can arbitrarily outperform each oth
under specific circumstances. This makes it imperative
study the appropriateness and amount of throttle requir
for the best possible performance.

Thus, several schemes study the so-calledadaptive
mechanisms that dynamically change certain control para
eters to influence the degree of throttling. Notable exampl
are described in following. An adaptive concurrency con
trol scheme proposed by (Ball and Hoyt, 1990) adjusts
blocking window according to the minimum of a function
that describes the CPU cycles lost due to blocking and due
rollback recovery. An adaptive memory management prot
col proposed by (Das and Fujimoto, 1997a) takes an ind
rect approach and controls the memory allocation to adju
the throttle. (Ferscha and Lüthi, 1995) use a probabilistic
cost model to evaluate the tradeoff between optimistica
processing and conservatively blocking the simulation e
gine. Their model computes an optimal real time dela
interval to minimize the rollback overhead. (Ferscha, 199
suggests probabilistic throttling of logical processes bas
on time-series forecasting. (Hamnes and Tripathi, 199
propose a local adaptive protocol, where real time bloc
ing windows are computed based on inter-arrival time
(both real and virtual) of messages in each input chann
(Srinivasan and Reynolds, 1995b) promote the use of ne
perfect state information (NPSI) (such as, a good es
mate of GVT) to compute theerror potential for logical
processes and to throttle the processes with higher er
potential. (Tay, Teo, and Kong, 1997) design an adapti
throttle that controls the scheduling quanta of the LPs o
a processor based on their virtual time progress.

2.2 Scheduling

Comparatively fewer papers deal with the issue of sched
ing and load balancing. In (Ahmed, Rn̈nigren, and Ayani,
1994) the global scheduling discipline is studied similar t
that described in Section 1. The central scheduling que
is implemented as a concurrent priority queue. Experime
tal results demonstrate significant performance advanta
over static mapping. However, the authors note that t
501
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loss of spatial locality and bottleneck at the central queu
can be a limiting factor for large scale implementations
beyond 8 or 16 processors.

Several papers have studied some form of dynam
load balancing for Time Warp programs. In one of the
early works, (Reiher and Jefferson, 1990) propose a me
ric called effective utilization, which is defined as the
fraction of time a processor is computing events that ar
not rolled back (Reiher and Jefferson, 1990). Based o
this metric they propose a strategy that migrates LPs fro
processors with high utilization to processors with low
utilization. They also propose splitting of LPs inphases
to reduce LP migration costs. (Glazer and Tropper, 1993
propose allocating virtual time-slices to LPs, based o
their observed rate of advancing the simulation clock
(Burdorf and Marti, 1993) propose an approach to ba
ance the LVTs of LPs by moving “slow” (in simulation
time) LPs to processors with “fast” LPs. They observe
that this approach balances the workload in presence
external computations competing for the same processo
(SchlagenHaft, Ruhwandl, Sporrer, and Bauer, 1995)
present an approach of load balancing based onvirtual
time progress, which reflects how fast a simulation process
continues in virtual time. (Carothers and Fujimoto, 1996
propose a similar dynamic load management policy fo
background execution of Time Warp programs on work
station clusters. Their work also includes a processo
allocation policy where the the set of processors allo
cated for simulation can be changed dynamically. Finally
(Avril and Tropper, 1996) consider a clustered approac
where a more conventional definition ofload is used. Load
here is defined in terms of the total number of event
processed. The load balancing algorithm takes into a
count the fine granularity of logic simulation problems, for
which the technique is targeted, as well as interprocess
communication overheads. A triggering mechanism base
on simulation throughput is also described.

The central contribution of our work is the consid-
eration of throttling and global scheduling in the same
framework and a study of the tradeoffs. Throttling is
implemented using a simple time window based mecha
nism. LP migration is used for global scheduling. Using
a simulation model of Time Warp, we demonstrate th
performance advantage of this “combined” approach fo
a range of overheads affecting rollback and LP migratio
costs.

3 A TIME WARP MODEL WITH COMBINED
THROTTLING AND LP MIGRATION

A simulation model of Time Warp is designed using the
process-oriented simulation tool CSIM (Schwetman, 1994
Though an operational Time Warp system could be used,
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simulation model is preferred as it provides the flexibility
to use various overhead costs that model a range o
architectural platforms. In the simulated Time Warp
system, each processor is modeled by a CSIM process. A
LP is modeled as an event list, ordered by timestamps an
a current state vector. The complete state is checkpointe
every event. The system starts with a random mapping
of LPs onto processors, with each processor getting equa
number of LPs. Each processor performs a local schedulin
of the LPs mapped onto itself after every event using
the earliest LVT first discipline. The Global Virtual
Time (GVT) (Jefferson, 1985) is evaluated after processing
every event and subsequently any accumulated fossils ar
collected.

A time window based scheme (Das, 1996b) is used
to implement throttling. If the width of the time window
is Tw, the LPs with LVT beyond (GVT +Tw) are not
scheduled for execution. Note that the edge of the window
always moves forward as GVT is updated. The valueTw

is fixed and is an experimental parameter.
LPs can migrate between processors based on period

remapping decisions. Currently, LPs are remapped onto
processors such that (i) theN slowest LPs in simulation
time are mapped onto different processors, whereN is the
number of processors, and (ii) each processor has the sam
number of LPs. This ensures that after each remapping
the slowest LPs get processor cycles to make progress
The remapping is done at regular intervals, the interval
being an experimental parameter. After each remapping
the actual LP migrations are performed asynchronously
after all pending operations (such as rollbacks) on the
migrating LP are completed.

The following are the only costs assumed in the Time
Warp simulation:

• The processing time of an event (Te).

• Overhead cost for sending a message or antimessag
(Ts) and cost for an event cancellation (Tc).

• Overhead cost for migrating a single LP to a remote
processor (Tm).

All other costs are ignored. To prevent an explosion of
number of experiments,Ts is assumed to be equal toTc.
For a meaningful characterization of various overheads
the experiments are described in terms of two parameters
r1 and r2, as follows:

r1 =
Ts

Te
, r2 =

Tm

Ts
.

The parametersr1 and r2 model the communication/roll-
back related cost and process migration related cos
respectively, normalized to event granularity. All time
502
e

values above reflect mean values, in case a stocha
distribution is used in the simulation to choose an actu
value.

4 PERFORMANCE ANALYSIS

Here we describe the Benchmark model used for o
experiments and an analysis of the performance result

4.1 Benchmark Model

A synthetic benchmark application is constructed for pe
formance evaluation. The benchmark is intentionally ma
highly unbalanced and dynamically changing to bring o
the worst case performance in Time Warp. This n
only presents a challenging test case, but also ma
optimism limiting schemes worthwhile. The benchmar
uses the popular PHOLD model (Fujimoto, 1990b) wit
hotspot traffic. The hotspot targets move dynamically. T
PHOLD model is similar to a closed queueing networ
model with infinite number of servers in each node. Ea
queueing node is modeled as an LP. A fixed number
jobs (calledmessage population) move around from queue
to queue. The queueing network is completely connect
The routing probabilities are non-uniform and dynamical
changing to create moving hotspots.

In the experimental results that follow, 32 processo
and 512 LPs have been used. 32 out of the 512 L
are designated to be hotspots and a fixed fraction
all messages are targeted to the hotspot LPs. In
experiments, this fraction is 40%. The message populat
is 8192. The service times in a queueing node a
exponentially distributed with mean 1.0. Each 1.0 tim
unit in simulation time, the hotspots migrate to a differe
set of LPs. The new set of hotspot LPs, however, is n
completely disjoint from the previous set; it has a 50%
overlap with the previous set. Thus hotspot movemen
are somewhat gradual.

Event processing times are exponentially distribute
with mean 1.0 time unit thus giving a sequential executio
speed of 1 event per time unit. This moving hotspot mod
brings out the worst in Time Warp execution. Without an
throttling and migration the execution on 32 processors
much slower than sequential with more than 99% even
rolling back.

4.2 Experimental Results

The experiments are done with different values of th
ratio, r1/r2. r1 is always chosen to be 1, i.e.,Ts = Te.
This is not unreasonable as simulation events are typica
very fine grain on state-of-the-art processors, making ev
computation time and message sending time compara
even in shared memory systems.r2 is varied in the
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range 1 to 1000, thus simulating a range of LP migratio
costs from very cheap (same as sending a single mess
r2 = 1) to very expensive (1000 times more expensiv
than sending a single message,r2 = 1000). This models a
range of architectural platforms, for example, from shar
memory to network of workstations, where LP migration
will incur different costs. Figures 2 to 5 present speedu
data for (i) different values ofr2, (ii) different sizes
of time window and (iii) different remapping intervals
Remapping interval is expressed in terms of GVT progre
in simulation time units between subsequent remappin
The simulation run length has been chosen to be 1
time units, which corresponds to more than a millio
“committed” events in Time Warp. Thus, in any of the
503
e,

.

performance figures the points corresponding to remappin
interval = 128, actually correspondto no remapping.

It is noted that for a given cost of LP migration
and a given size of time window, the speedup data pea
at a certain remapping interval. For higher remappin
intervals, rollbacks are observed to be progressively mo
frequent. On the other hand, lower remapping interval
result in higher cost due to migrations. Thus, the pea
of each single line in the plots represents the most cos
effective balance between temporal and spatial locality
Also, notice that throttling (i.e., time window size less
than infinity) starts producing benefits as migration cos
increases (i.e., asr2 goes up). Forr2 = 1, throttling
has no performance advantage (Figure 2). Forr2 = 10,
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Table 1: Comparison of the Optimal Speedup With Speedup Achievable With Throttling or Migration Alon

Value of r2 Optimal speedup Best speedup with Best speedup with
migration alone throttling alone

1 13.7 13.7 3.6
10 9.8 9.1 3.6
50 8.5 4.3 3.6

1000 5.3 0.8 3.6
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throttling starts showing some advantage. Note that the
peak performance occurs for time window = 0.25 in Figure
3. As r2 is increased further, throttling produces very
significant advantage (Figures 4 and 5). In particular, the
optimal width of the time window goes down a little with
increasingr2 (increasing migration cost).

Our strongest observation, however, is that throttling or
remapping alone can achieve only a fraction of the optima
performance that can be obtained when both are employe
together. In Figures 2 to 5, the solid line corresponds to
time window = infinity, i.e., no throttling. Also, in each
figure, the points on the right hand extreme (at remapping
frequency = 128) correspond to no remapping or proces
migration. Table 1 summarizes the observations on thes
points. Note that unless migration is very inexpensive,
there is always a significant benefit from the use of
combined throttling and migration techniques.

5 CONCLUSIONS

The over-optimistic behavior in Time Warp is the source
of many performance ills, including high rollback related
costs and memory management overheads. The stud
presented here is the first step in using a combination o
two disparate techniques in controlling the over-optimistic
behavior. It is demonstrated using a simple parameterize
simulation model that the right combination of global LP
scheduling and throttling provides performance benefits
not attainable with a single scheme used in isolation
The benefits, however, do depend on various overhead
In particular, if the LP migration overhead is small (for
example, in a shared memory system), the benefit is
little. The benefit progressively increases as migration
overhead becomes more significant (which will be the
case in distributed memory systems and network of
workstations) with throttling making more and more impact
on performance.

Future study will include more comprehensive perfor-
mance evaluation of the combined technique and inves
tigation of adaptive techniques for dynamically choosing
appropriate LP remapping intervals and time window
sizes. More sophisticated scheduling disciplines will also
be considered. We expect to benefit from the wealth o
504
literature dealing with adaptive techniques (Das, 1996a
They, however, all are unidimensional and are concerne
with controlling a single parameter. Another future step
will be implementation of the combined technique on an
operational Time Warp system.
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