
Combining Ordered Subsets and Momentum for Accelerated X-

ray CT Image Reconstruction

Donghwan Kim [Student Member, IEEE],
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 
MI 48105 USA

Sathish Ramani [Member, IEEE], and
GE Global Research Center, Niskayuna, NY 12309 USA

Jeffrey A. Fessler [Fellow, IEEE]

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 
MI 48105 USA

Donghwan Kim: kimdongh@umich.edu; Sathish Ramani: umrsat@gmail.com; Jeffrey A. Fessler: fessler@umich.edu

Abstract

Statistical X-ray computed tomography (CT) reconstruction can improve image quality from 
reduced dose scans, but requires very long computation time. Ordered subsets (OS) methods have 
been widely used for research in X-ray CT statistical image reconstruction (and are used in clinical 
PET and SPECT reconstruction). In particular, OS methods based on separable quadratic 
surrogates (OS-SQS) are massively parallelizable and are well suited to modern computing 
architectures, but the number of iterations required for convergence should be reduced for better 
practical use. This paper introduces OS-SQS-momentum algorithms that combine Nesterov's 
momentum techniques with OS-SQS methods, greatly improving convergence speed in early 
iterations. If the number of subsets is too large, the OS-SQS-momentum methods can be unstable, 
so we propose diminishing step sizes that stabilize the method while preserving the very fast 
convergence behavior. Experiments with simulated and real 3D CT scan data illustrate the 
performance of the proposed algorithms.

Index Terms

Statistical image reconstruction; computed tomography; parallelizable iterative algorithms; 
ordered subsets; separable quadratic surrogates; momentum; stochastic gradient; relaxation

I. Introduction

Statistical X-ray CT image reconstruction methods can provide images with improved 
resolution, reduced noise and reduced artifacts from lower dose scans, by minimizing 
regularized cost-functions [1]–[4]. However, current iterative methods require too much 
computation time to be used for every clinical scan. Many general iterative algorithms have 
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been applied to statistical CT reconstruction including coordinate descent [5], [6], 
preconditioned conjugate gradient [7], and ordered subsets [8], [9], but these algorithms all 
converge slower to the minimizer than is desired for clinical CT. This paper describes new 
image reconstruction algorithms that require less computation time.

Recent advances on iterative algorithms in X-ray CT minimize the cost function by using 
splitting techniques [10]–[12] accompanied with the method-of-multipliers framework [13]. 
The Chambolle-Pock primal-dual algorithm [14] has been applied to tomography [15], [16]. 
Momentum techniques [17]-[19] that use previous update directions have been applied to X-
ray CT [20]-[22], accelerating a gradient descent update using the Lipschitz constant of the 
gradient of the cost function.

This paper focuses on momentum techniques that have received wide attention in the 
optimization community. Nesterov [17], [18] developed two momentum techniques that use 
previous descent directions to decrease the cost function at the fast convergence rate O (1/
n2), where n counts the number of iterations. The rate O (1/n2) is known to be optimal1 for 
first-order2 optimization methods [23], while ordinary gradient descent has the rate O (1/n). 
Nesterov's momentum algorithms have been extended to handle nonsmooth convex 
functions [19], [24], and have been applied to image restoration problems [19], [25].

Momentum techniques in X-ray CT [20]–[22] have been used to accelerate gradient descent 
methods. However, these “traditional” momentum algorithms do not show significant 
improvement in convergence speed compared with other existing algorithms, due to the 
large Lipschitz constant of the gradient of the cost function [11]. Here, we propose to 
combine momentum techniques with ordered subsets (OS) methods [8], [9] that provide fast 
initial acceleration. (Preliminary results based on this idea were discussed in [26], [27].) OS 
methods, an instance of incremental gradient methods [28], approximate a gradient of a cost 
function using only a subset of the data to reduce computational cost per image-update. 
Even though the approximation in the method may prevent the algorithm from converging to 
the optimum, OS methods are widely used in tomography problems for their M-times initial 
acceleration in run time, where M is the number of subsets, leading to rate O (1/(nM)) in 
early iterations. Remarkably, our proposed OS-momentum algorithms should have the rate 
O (1/(nM)2) in early iterations providing a promising M2 acceleration compared to the 
standard Nesterov method.

Conventional momentum methods use either the (smallest) Lipschitz constant or a 
backtracking scheme to ensure monotonic descent in the gradient step [19]. Here, to reduce 
computation, we instead use diagonal preconditioning (or majorizing) based on the 
separable quadratic surrogate (SQS) [9] that is used widely for designing monotonic descent 
algorithms for X-ray CT. Another advantage of using SQS is that we can further accelerate 
the algorithm using the nonuniform approach in SQS methods that provides larger updates 
for the voxels that are far from their respective optima [29].

1Nesterov [23] showed that there exists at least one convex function that cannot be minimized faster than the rate O (1/n2) by any 
first-order optimization methods. Therefore, the rate O (1/n2) is optimal for first-order methods in convex problems.
2First-order optimization methods refer to a class of iterative algorithms that use only first-order information of a cost function such as 
its value and its gradient.
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Combining OS methods with Nesterov's momentum techniques directly is a practical 
approach for acceleration but lacks convergence theory.3 Indeed, we observed unstable 
behavior in some cases. To stabilize the algorithm, we adapt the diminishing step size rule 
developed for stochastic gradient method with Nesterov's momentum in [33]. We view the 
OS-SQS methods in a stochastic sense and study the relaxation scheme of momentum 
approach [33]. We investigate various relaxation schemes to achieve both fast initial 
acceleration and stability (or convergence) in a stochastic sense. (Note that this relaxation 
(or diminishing step size) is not necessary if OS is not used in the proposed algorithms.)

This paper is organized as follows. Section II explains the problem of X-ray CT image 
reconstruction and Section III summarizes the OS-SQS algorithms. Section IV reviews 
momentum techniques and combines them with OS-SQS. Section V suggests a step size 
relaxation scheme that stabilizes the proposed algorithms. Section VI shows experimental 
results on simulated and real CT scans. Section VII offers conclusion and discussion.

II. Problem

We consider a (simplified) linear model for X-ray CT transmission tomography:

(1)

where y ∈ ℝNd is (post-log) measurement data,  is a forward projection 

operator [34], [35] (aij ≥ 0 for all i, j),  is an unknown (nonnegative) 
image (of attenuation coefficients) to be reconstructed and ε ∈ ℝNd is noise.

A penalized weighted least squares (PWLS) [3], [4] criterion is widely used for 
reconstructing an image x with a roughness penalty and a nonnegativity constraint:4

(2)

where the diagonal matrix W ⪰ 0 provides statistical weighting that accounts for the ray-
dependent variance of the noise ε. Here, we focus on smooth5 convex regularization 
functions:

3Some previous works combine incremental gradient methods [28] and relatively small momentum with convergence analysis [30]–
[32], but our focus is to use larger momentum like Nesterov's methods with os methods in tomography problem for fast initial 
convergence rate.
4For two vectors x and z of the same size, the expression x ⪰ z (or x ≻ z) means that x − z is element-wise nonnegative (or element-
wise positive). For two symmetric matrices X and Z of the same size, the notation X ⪰ Z (or X ≻ Z) means that X − Z is positive 

semidefinite (or positive definite). A weighted Euclidean seminorm is defined as  for a vector y ≜ {yi} 
and a positive semidefinite diagonal matrix W ≜ diag{wi}.
5A smooth function refers to a function that is differentiable with a Lipschitz continuous gradient [19].
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(3)

where ψr(t) ≜ βrψ(t), the function ψ(·) is an edge-preserving potential function such as a Fair 
potential function in [36], the parameter βr provides spatial weighting [37], and C ≜ {crj} ∈ 

ℝNr × Np is a finite-differencing matrix considering 26 neighboring voxels in 3D image 
space. The regularizer (3) makes the PWLS cost function Ψ(x) in (2) to be smooth and 
strictly convex with a unique global minimizer x ̂ [38]. Throughout this manuscript, we 
assume that the objective Ψ(x) is smooth and (strictly) convex.

This nonquadratic PWLS cost function cannot be optimized analytically and requires an 
iterative algorithm. We propose algorithms combining OS and (relaxed) momentum 
approaches that minimize a smooth convex objective function Ψ(x) for CT rapidly and 
efficiently. Although we focus on PWLS for simplicity, the methods may also apply to 
penalized-likelihood formulations and to cost functions with nonsmooth regularizers, which 
we leave as future extensions.

III. OS-SQS Algorithms

A. Optimization transfer method

When a cost function Ψ(x) is difficult to minimize, we can replace it by a (simple) surrogate 
ϕ(x; x(n)) at the nth iteration, and generate a sequence {x(n)} by minimizing the surrogate as

(4)

This optimization transfer method [39] is also known as a majorization-minimization 
approach [40, Section 8.3].

To monotonically decrease Ψ(x) using an optimization transfer method, a surrogate function 
ϕ(x; x(n)) at nth iteration should satisfy the following majorization conditions:

(5)

Surrogates satisfying the conditions in (5) can be constructed using a Lipschitz constant 
[19], quadratic surrogates [41], and SQS methods [9], [29].

B. SQS algorithms

An optimization transfer method used widely in tomography problems is a SQS method [9] 
yielding the following surrogate function ϕ(x; x(n)) with a diagonal Hessian (second-order 
derivatives) matrix D ≜ diag{dj}, at nth iteration:
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(6)

for all x, x(n) ∈ χ, which satisfies (5). The standard SQS algorithm [9] uses the following 
diagonal majorizing matrix

(7)

using the maximum curvature ψ¨r(0) = maxt ψ¨r(t) [41], where , and 
the vector 1 ∈ ℝNp consists of Np ones. (This D is positive definite because its diagonal 
entries are all positive.)

Table I gives the outline of the computationally efficient (and massively parallelizable) SQS 

algorithm, where the operation χ [x] projects x onto a constraint set  by a (simple) 
element-wise clipping that replaces negative element values to zero. The sequence {x(n)} 
generated from the SQS algorithm in Table I has the following convergence rate [29]:

(8)

for any diagonal majorizing matrix D satisfying the conditions (5) and (6), including the 
choice (7), by a simple generalization of [19, Theorem 3.1]. Based on (8), the nonuniform 
approach [29] (see Section V-E) accelerates SQS methods by providing larger updates for 
the voxels that are far from their respective optima, which we use in our experiments (in 
Section VI).

SQS algorithms require many iterations to converge, both due to the O (1/n) rate in (8) and 
large values in D needed for satisfying the conditions (5) and (6) in 3D X-ray CT problem. 
Thus we usually combine SQS algorithms with OS algorithms for faster convergence in 
early iterations [9], [29].

C. OS algorithms

Iterative reconstruction requires both forward and back projection operations Ax and A⊤y on 
the fly [34], [35] due to their large-scale in 3D, and thus computation of the gradient ∇Ψ(x) 
= A ⊤ W(Ax − y) + ∇R(x) is very expensive. OS methods [8] accelerate gradient-based 
algorithms such as in Table I by grouping the projection views into M subsets evenly and 
using only the subset of measured data to approximate the exact gradient of the cost 
function.

OS methods define the subset-based cost function:
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(9)

for m = 0,1, …, M − 1, where  and the matrices ym, Am, Wm are sub-
matrices of y, A, W for the mth subset, and rely on the following “subset balance” 
approximation [8], [9]:

(10)

Using (10), OS methods provide initial acceleration of about the factor of the number of 
subsets M in run time, by replacing ∇Ψ(x) in Table I with the approximation M∇Ψm(x) that 

requires about -times less computation, as described in Table II.

We count one iteration after all M sub-iterations are performed, considering the use of 
projection operators A and A⊤ per iteration, and in practice the initial convergence rate is O 

(1/(nM)). (Using large M can slow down the algorithm in run time due to the regularizer 
computation [42].) OS algorithms approach a limit-cycle because the assumption (10) 
breaks near the optimum [43]. OS algorithms can be modified to converge to the optimum 
with some loss of acceleration in early iterations [28], [44].

IV. OS-SQS Methods with Nesterov's Momentum

To further accelerate OS-SQS methods, we propose to adapt two of Nesterov's momentum 
techniques [17], [18] that reuse previous descent directions as momentum towards the 
minimizer for acceleration. (One could also consider another Nesterov momentum approach 
[45] achieving same rate as other two [17], [18].) This section reviews both momentum 
approaches and combines them with OS methods.

The first momentum method [17] uses two previous iterates, while the second [18] 
accumulates all gradients. Without using OS methods, both Nesterov methods provide O 

(1/n2) convergence rate. We heuristically expect that combining momentum with OS 
methods will provide roughly O (1/(nM)2) rates in early iterations, by replacing n by nM. 
The main benefit of combining OS and Nesterov's momentum is that we have approximately 
M2 times acceleration in early iterations with M subsets, yet the extra computation and 
memory needed (in using Nesterov's momentum approaches) are almost negligible. We 
discuss both proposed algorithms in more detail.

A. Proposed OS-SQS methods with momentum 1 (OS-mom1)

Table III illustrates the proposed combination of an OS-SQS algorithm with the momentum 

technique that is described in [17], where the algorithm generates two sequences  and 

, and line 7 of the algorithm corresponds to a momentum step with Nesterov's 
optimal parameter sequence tk. Table III reduces to the ordinary OS-SQS algorithm in Table 
II when tk = 1 for all k ≥ 0.
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The non-OS version of Table III satisfies the following convergence rate:

Lemma 1: For n ≥ 0, the sequence {x(n)} generated by the non-OS version (M = 1) of Table 
III satisfies

(11)

where D is a diagonal majorizing matrix satisfying the conditions (5) and (6), such as (7).

The inequality (11) is a simple generalization of [19, Theorem 4.4]. In practice, we expect 
the initial rate of OS-mom1 for M > 1 to be O (1/(nM)2) with the approximation (10), which 
is the main benefit of this approach, while the computation cost remains almost the same as 
that of OS-SQS algorithm in Table II. The only slight drawback of Table III over Table II is 

the extra memory needed to store the image .

B. Proposed OS-SQS methods with momentum 2 (OS-mom2)

Table IV summarizes the second proposed OS-SQS algorithm with momentum. This second 
method, OS-mom2, is based on [18] and uses accumulation of the past (subset) gradients in 

line 7. Rather than using the original choice of coefficient  from [18], Table IV uses 

the tk from [46], [47] that gives faster convergence. Both  and  in Table IV lie in 

the set χ (e.g., are nonnegative) because of the projection operation χ[·]. Furthermore, 

is a convex combination of  and  and thus also lies in χ. This may improve the 
stability of OS-mom2 over OS-mom1 that lacks this property.

The sequence {x(n)} generated by Table IV with M = 1 can be proven to satisfy the 
inequality (11), by generalizing [18, Theorem 2]. While the one-subset (M = 1) version of 
Table IV provides O(1/n2), we heuristically expect from (10) for the OS version to have the 
rate O (1/(nM)2) in early iterations. (The convergence analysis of this algorithm in Table IV 
is discussed stochastically in the next section.) Compared with Table III, one additional χ 

[·] operation per iteration and extra arithmetic operations are required in Table IV, but those 
are negligible.

Overall, the two proposed algorithms in Tables III and IV are expected to provide fast 
convergence rate O (1/(nM)2) in early iterations, which we confirm empirically in Section 
VI. However, the type of momentum affects the overall convergence when combined with 
OS. Also, the convergence behavior of two algorithms is affected by the number and 
ordering of subsets, as discussed in Section VI.

The proposed OS-momentum algorithms in Tables III and IV become unstable in some 
cases when M is too large, as predicted by the convergence analysis in [33]. To stabilize the 
algorithms, the next section proposes to adapt a recent relaxation scheme [33] developed for 
stochastic gradient methods with momentum.

Kim et al. Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



V. Relaxation of Momentum

This section relates the OS-SQS algorithm to diagonally preconditioned stochastic gradient 
methods and adapts a relaxation scheme designed for stochastic gradient algorithms with 
momentum. Then we investigate various choices of relaxation6 to achieve overall fast 
convergence.

A. Stochastic gradient method

If one uses random subset orders, then one can view OS methods as stochastic gradient 
methods by defining M∇ΨSk(x) as a stochastic estimate of ∇Ψ(x), where a random variable 
Sk at kth iteration is uniformly chosen from {0, 1, …, M − 1}. In this stochastic setting, OS-
SQS methods satisfy:

(12)

for all x ∈ , for some finite constants {σj}, where  is the expectation operator over the 
random selection of Sk, ∇j ≜ ∂/∂xj, and  is a bounded feasible set that includes x̂. The 
feasible set  can be derived based on the measurement data y [44, Section A.2], and we 
assume that the sequences generated by the algorithms are within the set . The last 
inequality in (12) is a generalized version of [33, eqn. (2.5)] for (diagonally preconditioned) 
OS-SQS-type algorithms. The vector σ ≜ {σj} has smaller values if we use smaller M or the 
subsets are balanced as (10). However, estimating the value of σ:

(13)

where

(14)

appears to be impractical, so Section V-F provides a practical approach for approximating σ.

B. Proposed OS-SQS methods with relaxed momentum (OS-mom3)

Inspired by [33], Table V describes a generalized version of OS-SQS-momentum methods 
that reduces to OS-mom2 if one uses a deterministic subset ordering Sk = (k mod M) and a 
fixed majorizing diagonal matrix

6The relaxation scheme involves couple of parameters and we provide a table of notations in the supplementary material to improve 
readability.
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(15)

For M = 1, the algorithm with these choices satisfies (11) with n = k. However, for M > 1, 
the analysis in [33] illustrates that using the choice (15) leads to the following inequality

(16)

for k ≥ 0, where p ≜ {pj ≜ maxx,x ̅∈  |xj − x ̅j|} measures the diameter of the feasible set . 
This expression reveals that OS methods (M > 1) with momentum may suffer from error 
accumulation due to the last term in (16) that depends on the error bounds (σ) in (12). To 
improve stability for the case M > 1, we would like to find a way to decrease this last term. 

Using a larger constant denominator, i.e., Γ(k) = qD for q > 1, would slow the accumulation 
of error but would not prevent eventual accumulation of error [33].

To stabilize the algorithm for M > 1, we adapt the relaxed momentum approach in [33] as 

described in Table V with appropriately selected Γ(k) and tk satisfying the conditions in lines 
5 and 6 in Table V. Then, the algorithm in Table V satisfies the following convergence rate:

Lemma 2: For k = nM + m ≥ 0, the sequence  generated by Table V satisfies

(17)

Proof: See Appendix A.

Lemma 2 shows that increasing Γ(k) can help prevent accumulation of error σ. Next we 
discuss the selection of parameters Γ(k) and tk.

C. The choice of Γ(k) and tk

For any given , we use t0 = 1 and the following rule:

(18)

for all k ≥ 0, where  and α0 = 1. The choice (18) increases the 
fastest among all possible choices satisfying the condition in line 6 of Table V (see the proof 
in Appendix B).7

7The coefficient (18) increases faster than the choice  for a constant ck = c ≥ 1 used in [33], so we use the choice (18) 
that leads to faster convergence based on Lemma 2.
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In this paper, we focus on the choice

(19)

for a nondecreasing ck ≥ 0 and a fixed diagonal matrix Γ ≜ diag{γj} ≻ 0. The choice (19) 
generalizes [33], enabling more flexibility in the choice of ck. We leave other formulations 

of Γ(k) that may provide better convergence as future work.

For Γ(k) in (19), computing αk in (18) becomes

(20)

Overall, the computational cost of Table V with the choices (18) and (19) remains similar to 
that of Table IV. Using (18) and (19), the proposed algorithm in Table V achieves the 
following inequality:

Corollary 1: For k = nM+m ≥ 0, the sequence  generated by Table V with the 
coefficients (18) and (19) satisfies

(21)

Proof: Use Lemma 2 and the inequality conditions of the sequence {tk} in (18):

for k ≥ 0, which can be easily proven by induction.

There are two parameters ck and Γ to be tuned in (19). Based on Corollary 1, the next two 
subsections explore how these parameters affect convergence rate. (We made a preliminary 
investigation of these two parameters in [48].)

D. The choice of ck

In Corollary 1, the choice of ck controls the overall convergence rate. We first consider a 
constant ck = c.

Corollary 2: For k = nM + m ≥ 0 and a fixed constant ck = c ∈ [0, 2], the sequence 
generated by Table V with the coefficients (18) and (19) satisfies
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(22)

Proof: Use the derivation in [33, Section 6.3] using

In Corollary 2, the choice ck = 1.5 provides the rate

(23)

achieving, on average, the optimal rate  in the presence of stochastic noise8. 
Corollary 2 shows that using c ≤ 1 will suffer from error accumulation, using 1 < c < 1.5 
might provide faster initial convergence than c = 1.5 but does not achieve the optimal rate, 
and c > 1.5 will cause slower overall convergence rate than c = 1.5. So, we prefer 1 < c ≤ 
1.5, for which we expect to eventually reach smaller cost function values than the choice 
Γ(k) = D (or Γ = 0) in (15), since we prevent the accumulation of error from OS methods by 
increasing the denominator Γ(k) as (19). In other words, the algorithm with M > 1 and (19) is 
slower than the choice of (15) initially, but eventually becomes faster and reaches the 
optimum on average.

In light of these trade-offs, we further consider using an increasing sequence ck that is upper-
bounded by 1.5, hoping to provide fast overall convergence rate. We investigated the 
following choice:

(24)

for k ≥ 0 with a parameter η > 0. This choice of ck balances between fast initial acceleration 
and prevention of error accumulation. In other words, this increasing ck can provide faster 
initial convergence than a constant ck = 1.5 (or η = 0), yet guarantees the optimal 

(asymptotic) rate  as the case ck = 1.5, based on Corollary 1. We leave further 
optimization of ck as future work.

8Stochastic gradient algorithms (using only first-order information) cannot decrease the stochastic noise faster than the rate 
[49], and the proposed relaxation scheme achieves this optimal rate [33].
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E. The choice of D and Γ

To optimize the choice of Γ(k) in (19), we would like to minimize the upper bound on the 
right hand side of (22) with respect to both D and Γ, where we consider a fixed ck = c for 
simplicity. In nonuniform SQS [29], to accelerate algorithms in Tables I and II, we 
suggested to use D that minimizes the right hand side of (8) among all possible choices of D 

generated by a (general) SQS technique [9], [29] (details are omitted) and thus satisfies (5) 
and (6). Similarly in our proposed methods, we use the following diagonal majorizing 
matrix D ̂ that minimizes the right hand side of (22):

(25)

instead of (7), where the vector û is defined as

(26)

To choose Γ, we also minimize the upper bound on the right hand side of (22) with respect 

to Γ. For simplicity in designing Γ, we ignore the  term, and we ignore the 
“+1” and “+2” factors added to k. The optimal Γ for k (sub)iterations is

(27)

It is usually undesirable to have to select the (sub)iteration k before iterating. The choice c = 
1.5 cancels out the parameter k in (27) leading to the k-independent choice:

(28)

Since we prefer the choice of ck that eventually becomes 1.5 for the optimal rate, we focus 

on the choice Γ̂1.5 in (28).

F. The choice of σ and û

The optimized D ̂ (25) and Γ̂1.5 (28) rely on unavailable parameters {σj} (13) and {ûj} (26), 
so we provide a practical approach to estimate them, which we used in Section VI. In 
practice, the sequences in Table V visit only a part of the feasible set , so it would be 
preferable to compute σj̃(x) in (14) within such part of  for estimating σj, but even that is 
impractical. Instead, we use σ̃j(x(0)) as a practical approximation of σj, which is 
computationally efficient. This quantity measures the variance of the stochastic estimate of 
the gradient at the initial image x(0), and depends on the grouping and number of subsets. 
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This estimate of σj may be sensitive to the choice of x(0), and we leave further investigation 
as future work.

To save computation, we evaluate σ̃j(x(0)) simultaneously with the computation of D in (7) 
or (25) using modified projectors A and A⊤ (see [29, Section III.F]) that handle two inputs.

We further approximate ûj (26) by

(29)

for Γ̂
1.5 in (28), where ζ > 0 is an (unknown) constant, and a vector  is a 

(normalized) approximation of ûj, which is computed by applying an edge-detector to the 
filtered back-projection (FBP) image that is used for the initial x(0) as described in [29, 
Section III.E].9 In low-dose clinical CT, the root mean squared difference (RMSD10) within 
the region -of-interest (ROI) between the initial FBP image x(0) and the optimal image x̂ is 

about 30 [HU], i.e., , so we let ζ = 30 [HU] in (29) as a 

reasonable choice in practice11 where . Then, our final practical choice 
of Γ becomes

(30)

VI. Results

We investigate the convergence rate of the three proposed OS-momentum algorithms in 
Tables III, IV and V, namely OS-mom1, OS-mom2 and OS-mom3 in this section, for PWLS 
reconstruction of simulated and real 3D CT scans. We implemented12 the proposed 
algorithm in C and ran on a machine with two 2.27GHz 10-core Intel Xeon E7-8860 
processors using 40 threads.13

We use an edge-preserving potential function ψr(·) in [29, eqn. (45)] with a = 0.0558, b = 
1.6395, and δ = 10:

9We provide convergence results from using the oracle û, compared to its approximate ζū, in the supplementary material.

10 , where Np, ROI is the number of voxels within the ROI.
11This choice worked well in our experiments, but may depend on the initial image, the cost function and the measurements, so 
improving the choice of ζ is future work.
12The matlab code of the proposed OS-momentum methods will be available through the last author's toolbox [50].
13Our implementation and choice of platform are likely to be suboptimal, and further exploiting the massively parallelizable nature of 
the proposed algorithms will provide additional speedup in run time, which we leave as future work.
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For simulation data, the spatial weighting βr was chosen empirically to be

(31)

for uniform resolution properties [37], where  and κmax ≜ maxj κj. We 
emulated βr of the GE product “Veo” for the patient 3D CT scans. We use a diagonal 
majorizing matrix D̂ in (25) using the nonuniform approach [29] with (29) for SQS methods. 
We investigated 12, 24 and 48 subsets for OS algorithms.

We first use simulated data to analyze the factors that affect the stability of the proposed 
OS-momentum algorithms, and further study the relaxation scheme for the algorithms. Then 
we verify the convergence speed of the proposed algorithm using real 3D CT scans. We 
computed the RMSD between the current and converged14 image within the ROI versus 
computation time for 30 iterations (n) to measure the convergence rate.15

A. Simulation data

We simulated a 888 × 64 × 2934 sinogram (number of detector columns × detector rows × 
projection views) from a 1024 × 1024 × 154 XCAT phantom [51] scanned in a helical 
geometry with pitch 1.0 (see Fig. 1). We reconstructed 512 × 512 × 154 images with an 
initial FBP image x(0) in Fig. 1(a) using a (simple) single-slice rebinning method [52]. Fig. 2 
shows that SQS-Nesterov's momentum methods without OS algorithms do not accelerate 
SQS much. OS algorithm itself can accelerate the SQS algorithm better than Nesterov's 
momentum. Our proposed OS-momentum algorithms rapidly decrease RMSD in early 
iterations (disregarding the diverging curves that we address shortly). However, the 
convergence behavior of OS-momentum algorithm depends on several factors such as the 
number of subsets, the order of subsets, and the type of momentum techniques. Thus, we 
discuss these in more detail based on the results in Fig. 2, and suggest ways to improve the 
stability of the algorithm while preserving the fast convergence rate.

1. The number of subsets: Intuitively, using more subsets will provide faster initial 
convergence but will increase instability due to errors between the full gradient and 
subset gradient. Also, performing many sub-iterations (m) can increase error 
accumulation per outer iteration (n). Fig. 2 confirms this behavior.

2. The ordering of subsets: Interestingly, the results of the proposed algorithms 
depend greatly on the subset ordering. Fig. 2 focuses on two deterministic orders: a 
sequential (OSs) order, and a bit-reversal (OSb) order [53] that selects each order-
adjacent subsets to have their projection views to be far apart as described in Table 
VI. The ordering greatly affects the build-up of momentum in OS-momentum 
algorithms, whereas ordering is less important for ordinary OS methods as seen in 

14We ran thousands of iterations of (convergent) SQS algorithm to generate (almost) converged images x̂.
15Even though the convergence analysis in Section V is based on the cost function, we plot RMSD rather than the cost function 
because RMSD is more informative (see [29, Supplementary material]).
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Fig. 2. The bit-reversal order provided much better stability in Fig. 2(b) compared 
to the results in Fig. 2(a). Apparently, the bit-reversal order can cancel out some 
gradient errors, because successive updates are likely to have opposite directions 
due to its subset ordering rule. In contrast, the sequential ordering has high 
correlation between the updates from two adjacent subsets, increasing error 
accumulation through momentum. Therefore, we recommend using the bit-reversal 
order. (Fig. 3(d) shows that random ordering (OSr) performed worse than the bit-
reversal order.)

3. Type of momentum: Fig. 2 shows that combining OS with two of Nesterov's 
momentum techniques in Tables III and IV (OS-mom1 and OS-mom2) resulted in 
different behaviors, whereas the one-subset versions of them behaved almost the 
same. Fig. 2 shows that the OS-mom2 algorithm is more stable than the OS-mom1 
algorithm perhaps due to the different formulation of momentum or the fact that the 

momentum term  in Table III is not guaranteed to stay within the set χ 

unlike that in Table IV. Therefore, we recommend using the OS-mom2 algorithm 
in Table IV for better stability.

Fig. 1 shows the initial image and the converged image and reconstructed images 
after 15 iterations (about 680 seconds) of conventional OS and our proposed OS-
momentum algorithm with 24 subsets and the bit-reversal ordering. The OSb(24)-
mom2 reconstructed image is very similar to the converged image after 15 
iterations while that of conventional OS is still noticeably different. However, even 
the more stable OS-mom2 algorithm becomes unstable eventually for many subsets 
(M > 24) as seen in Fig. 2; the next subsection shows how relaxation improves 
stability.

4. The choice of Γ: Section V-E gives an optimized Γ in (19) that minimizes the right 
term of (22), i.e., the gradient error term, on average. However, since the right term 

in (22) is a worst-case loose upper-bound, we can afford to use smaller Γ than Γ̂1.5 

in (28) (or (30)). In addition, we may use even smaller Γ depending on the order of 
subsets. Specifically, the bit-reversal ordering (OSb) appears to accumulate less 
gradient error than other orderings, including random subset orders (OSr), so the 
choice (28) (or (30)) may be too conservative. Therefore, we investigated 
decreasing the matrix Γ̂

1.5 (28) (or (30)) by a factor λ ∈ (0, 1] as

(32)

Fig. 3 shows the effect of the parameter λ for various choices of the number and 
ordering of subsets. In all cases, λ = 1 is too conservative and yields very slow 
convergence. Smaller λ ≤ 0.1 values lead to faster convergence, but it failed to 
stabilize the case of sequential ordering for M > 24. However, λ = 0.01 worked well 
for the bit-reversal orderings in the simulation data, while the choice λ = 0.001 was 
too small to suppress the accumulation of error within 30 iterations for 48 subsets. 
Any value of λ > 0 here will eventually lead to stability as Γ(k) increases with ck = 
1.5, based on the convergence analysis (22). Particularly, OSs-mom3 algorithm 
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with λ = 0.1 in Figs. 3(b) and 3(c) illustrates this stability property, where the 
RMSD curve recovers from the initial diverging behavior as the algorithm 
proceeds.

For Fig. 3(d), we executed five realizations of the random ordering and show the average of 
them for each curve. Here, we found that λ = 0.01 was too small to suppress the error within 
30 iterations, and λ = 0.1 worked the best. Based on Fig. 3, we recommend using the bit-
reversal order with λ = 0.01 rather than random ordering.

Figs. 2 and 3 are plotted with respect to the run time of each algorithm. Using larger subsets 
slightly increased the run time due to extra regularizer computation, but those increases were 
minor compared to the acceleration given by OS methods. The additional computation 
required for momentum methods was almost negligible, confirming that introducing 
momentum approach accelerates OS algorithm significantly in run time.

Overall, the simulation study demonstrated dramatic acceleration from combining OS 
algorithm and momentum approach. Next, we study the proposed OS-momentum algorithms 
on patient data, and verify that the parameters tuned with the simulation data work well for 
real CT scans.16

B. Patient CT scan data

From a 888 × 32 × 7146 sinogram measured in a helical geometry with pitch 0.5, we 
reconstructed a 512 × 512 × 109 shoulder region image in Fig. 4. Fig. 5 shows the RMSD 
convergence curves for the bit-reversal subset ordering, where the results are similar to those 
for the simulation in Fig. 3 in terms of parameter selection. In Fig. 5(a), the parameter λ = 
0.01 for both 24 and 48 subsets worked well providing overall fast convergence. Particularly 
for M = 48, the choice λ = 0.01 greatly reduced the gradient approximation error and 
converged faster than the un-relaxed OS-momentum algorithm.

In Fig. 5(b), we further investigate the increasing ck (24) in (19) that starts from 1 and 
eventually becomes 1.5 with a tuning parameter η in (24). Larger η in (24) leads to a slowly 
increasing ck, i.e. smaller ck values in early sub-iterations (k), and thus, the results in Fig. 
5(b) show better initial acceleration from using large η. Particularly, using large η for the 
choice λ = 0.1 showed a big acceleration, while that was less effective in the case λ = 0.01 

due to small values of Γ (32) in (19).

Fig. 4 shows the initial FBP image, converged, and reconstructed images from conventional 
OS and the proposed OS-momentum with relaxation. Visually, the reconstructed image from 
the proposed algorithm is almost identical to the converged image after 15 iterations.

VII. Conclusion and Discussion

We introduced the combination of OS-SQS and Nesterov's momentum techniques in 
tomography problems. We quantified the accelerated convergence of the proposed 

16We provide results from one patient data here, and present additional results from another real CT scan in the supplementary 
material.
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algorithms using simulated and patient 3D CT scans. The initial combination could lack 
stability for large numbers of subsets, depending on the subset ordering and type of 
momentum. So, we adapted a diminishing step size approach to stabilize the proposed 
algorithm while preserving fast convergence.

We have focused on PWLS cost function in this paper, but the proposed algorithms can be 
applied to any convex cost function for tomography problems, including penalized-
likelihood methods based on Poisson models for pre-log sinogram data. The ideas also 
generalize to parallel MRI problems [54], [55]. We are further interested in studying the 
proof of convergence of the OS-momentum algorithm for a (bit-reversal) “deterministic” 
order.

The accumulating error of the proposed algorithms in Section V is hard to measure due to 
the computational complexity, and thus optimizing the relaxation parameters for an 
increasing Γ(k) in (19) remains an open issue. In our experiments, we observed that simply 
averaging all of the sub-iterations at the final iteration [29] greatly reduces RMSD, 
particularly when the proposed algorithm becomes unstable (depending on the relaxation 
parameters). One could consider this averaging technique to improve stability, or 
alternatively one could discard the current momentum and restart the build-up of the 
momentum as in [30], [56]. Such refinements could make OS-momentum a practical 
approach for low-dose CT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Proof of Lemma 2

We extend the proof of [33, Theorem 7] for diagonally preconditioned stochastic OS-SQS-
type algorithms for the proof of Lemma 2. We first use the following lemma:

Lemma 3: For k = nM + m ≥ 0, the sequence  generated by Table V satisfies

where
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that satisfies ,

and

Proof: Simply generalize the proof of [33, Lemma 2] using the proof of [18, Lemma 1].

Using Lemma 3 with the fact minυ⪰0 Φ(k)(υ) ≤ Φ(k)(x ̂) leads to the following:

Finally, the expectation on the above equation provides Lemma 2, as in [33, Theorem 7].

Appendix B: Choice of coefficients tk

Lemma 4: For any given  satisfying its constraint in line 5 of Table V, the {tk} 
generated by t0 = 1

where  and α1 = 1, tightly satisfies the following conditions:
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which are equivalent to the conditions in line 6 of Table V.

Proof: Let t0 have the largest possible value 1.

For k = 0,

(33)

For k > 0, we get

(34)

This rule for tk (34) reduces to those used in Tables III and IV when  for all k ≥ 0 
and j.
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Fig. 1. 
Simulation data: a transaxial plane of (a) an initial FBP image x(0), (b) a converged image x ̂, 
and two reconstructed images x(15) after 15 iterations (about 680 seconds) of (c) OSb(24) 
and (d) OSb(24)-mom2. (Images are cropped for better visualization.)
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Fig. 2. 
Simulation data: convergence rate of OS algorithms (1, 12, 24, and 48 subsets) for 30 
iterations with and without momentum for (a) sequential order and (b) bit-reversal order in 
Table VI. (The first iteration counts the precomputation of the denominator D in (7), and 
thus there are no changes during the first iteration.)
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Fig. 3. 
Simulation data: convergence rate for various choices of the parameter λ in relaxation 
scheme of OS-momentum algorithms (c, ζ, λ) for (a) 12, (b) 24, (c) 48 subsets with both 
sequential (OSs) and bit-reversal (OSb) subset orderings in Table VI for 30 iterations. (The 
plot (b) and (c) share the legend of (a).) The averaged plot of five realizations of random 
subset ordering (OSr) is illustrated in (d) for 24 subsets.
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Fig. 4. 
Patient CT scan data: a sagittal plane of (a) an initial FBP image x(0), (b) a converged image 
x̂, and two reconstructed images x(15) after 15 iterations (about 865 seconds) from (c) 
OSb(24) and (d) OSb(24)-mom3 where (c, ζ, λ) = (1.5, 30, 0.01).

Kim et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 5. 
Patient CT scan data: convergence rate of OSb methods (24, 48 subsets) for 30 iterations 
with and without momentum for (a) several choices of (c, ζ, λ) with a fixed ck = c = 1.5 and 
(b) the choices of (λ, η) for an increasing ck in (24) with 24 subsets and ζ = 30 [HU].
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Table I

SQS Methods

1: Initialize x(0) and compute D such that (5) and (6) hold.

2: for n = 0, 1, …

3: x(n+1) = χ [x(n) − D−1∇Ψ(x(n))]
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Table II

OS-SQS Methods

1: Initialize x(0) and compute D.

2: for n = 0, 1, …

3: for m = 0, 1, …, M − 1

4: k = nM + m

5: 
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Table III

Proposed OS-SQS methods with momentum in [17] (OS-mom1)

1: Initialize x(0) = z(0), t0 = 1 and compute D.

2: for n = 0, 1, …

3: for m = 0, 1, …, M − 1

4: k = nM + m

5: 

6: 

7: 
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Table IV

Proposed OS-SQS Methods with Momentum in [18] (OS-mom2), The Notation (l)M Denotes l mod M.

1: Initialize x(0) = υ(0) = z(0), t0 = 1 and compute D.

2: for n = 0, 1, …

3: for m = 0, 1, …, M − 1

4: k = nM + m

5: 

6: 

7: 

8: 
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Table V

Proposed Stochastic OS-SQS Algorithms with Momentum (OS-mom3). ξk is a Realization of a Random 

Variable Sk.

1: Initialize x(0) = v(0) = z(0), t0 ∈ (0, 1] and compute D.

2: for n = 0, 1, …

3: for m = 0, 1, …, M − 1

4: k = nM + m

5: Choose 

6: Choose 

7: 

8: 

9: 
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Table VI

Examples of Subset Orderings: Two Deterministic Subset Ordering (OSs, OSb) and One Instance of Random 
Ordering (OSr) for OS Methods with M = 8 Subsets in a Simple Geometry with 24 Projection Views Denoted 
as (p0, p1, …, p23), where those are Reasonably Grouped into the Following 8 Subsets: S0 = (p0, p8, p16), S1 = 

(p1, p9, p17), …, S7 = (p7, p15, p23).

Sequential (OSs): (S0, S1, S2, S3, S4, S5, S6, S7), (S0, S1, …

Bit-reversal (OSb): (S0, S4, S2, S6, S1, S5, S3, S7), (S0, S4, …

Random (OSr): S6, S7, S1, S7, S5, S0, S2, S4, S7, S3, …
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