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Abstract

There exist many different generalization error bounds in statistical learning theory. Each of these
bounds contains an improvement over the others for certain situations or algorithms. Our goal
is, first, to underline the links between these bounds, and second, to combine the different im-
provements into a single bound. In particular we combine the PAC-Bayes approach introduced by
McAllester (1998), which is interesting for randomized predictions, with the optimal union bound
provided by the generic chaining technique developed by Fernique and Talagrand (see Talagrand,
1996), in a way that also takes into account the variance of the combined functions. We also show
how this connects to Rademacher based bounds.
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1. Introduction

Since the first results of Vapnik and Chervonenkis on uniform laws of large numbers for classes of
{0;1}-valued functions, there has been a considerable amount of work aiming at obtaining general-
izations and refinements of these bounds. This work has been carried out by different communities.
On the one hand, people developing empirical processes theory like Dudley and Talagrand (among
others) obtained very interesting results concerning the behavior of the suprema of empirical pro-
cesses. On the other hand, people exploring learning theory tried to obtain refinements for specific
algorithms with an emphasis on data-dependent bounds.

The goal of a generalization error bound is to control the behavior of the function that is returned
by the algorithm. This function is data-dependent and thus unknown before seeing the data. As a
consequence, if one wants to make statements about its error, one has to be able to predict which
function is likely to be chosen by the algorithm. Since this cannot be done exactly, there is a need to
provide guarantees that hold simultaneously for several candidate functions. This is known as the
union bound. The way to perform this union bound optimally is now well mastered in the empirical
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processes community. In particular, the role of the metric structure of the space of functions in the
deviations of the empirical process has been thoroughly studied (see, for example, Talagrand, 2005).

In the learning theory setting, one is interested in bounds that are as algorithm and data de-
pendent as possible. This particular focus has made concentration inequalities (see, for example,
Boucheron et al., 2000) popular as they allow to obtain data-dependent results in an effortless way.
Another aspect that is of interest for learning is the case where the classifiers are randomized or
averaged. McAllester (1998, 1999) has proposed a new type of bound that takes the randomization
into account in a clever way.

Another direction in which the error bounds can be improved is by using the variance of the
functions in order to control the fluctuations of the empirical error. This idea originated in Huber’s
peeling device (here peeling refers to the fact that the class of function is ”peeled off” into layers
according to the variance of the functions) and is often referred to as ”localization” (see, for exam-
ple, van der Vaart and Wellner, 1996; van de Geer, 2000; Massart, 2000). It allows to get bounds
with optimal rates of convergence, for example in the case of empirical error minimization (see, for
example, Bartlett et al., 2005).

Our goal is to combine several of these improvements, bringing together the power of the ma-
jorizing measures as an optimal union bound technique and the power of the PAC-Bayesian bounds
to handle randomized predictions efficiently in a way that is sensitive to the variance (localization)
effect.

The paper is structured as follows. Next section introduces the notation and gives an overview
of the existing bounds. Section 3 then presents our main result while Section 4 discusses its appli-
cations, showing in particular how to recover previously known results.

2. A Survey of Previous Results

In this section, after having introduced some notation and the setup of generalization bounds, we
state and compare existing generalization bounds. By doing so, we hope to give a better and more
global view on the various approaches that have been developed to obtain error bounds. In particular,
we want to emphasize the differences and the complementarity of the approaches. Our goal is not
to entirely cover the topic of error bounds and we thus refer the interested reader to Boucheron et al.
(2005), Koltchinskii (2006), Bartlett et al. (2004), Bartlett and Mendelson (2006), Massart (2006),
Massart (2000) and references therein for more information.

2.1 Notation

Random Variables and Distributions. We consider an input space X , an output space Y and a
probability distribution P on the product space Z := X ×Y . Let Z := (X ,Y ) (Z ∈Z) denote a pair of
random variables distributed according to P and for a given integer n, let Z1, . . . ,Zn and Z′

1, . . . ,Z
′
n be

two independent samples of n independent copies of Z. We denote by Pn, P′
n and P2n the empirical

measures associated respectively to the first, the second and the union of both samples. E
n, E

′n and
E

2n denote the expectation with respect to the first, second and union of both training samples, while
P

n,P′n and P
2n denote the distribution of these samples (i.e., P

n is the n-fold product distribution
whose marginals are P).
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Regret Functions. To each function g : X → Y and each function L : Y ×Y → R, we associate
the function f : Z → R defined as

f (z) = L(g(x),y).

Such functions g, L and f will be respectively called prediction function, loss function and regret
function. In classification, the loss function is L =

�

g(x)6=y where
�

denotes the indicator function.
To each pair of prediction functions g1 and g2, we define the relative regret function f : Z → R

defined as
f (z) = L(g1(x),y)−L(g2(x),y).

To each measurable real-valued function f defined on Z, we denote their expectation under P by P f
and their empirical expectation by Pn f

(

i.e., Pn f = n−1 ∑n
i=1 f (Zi)

)

. For (relative) regret functions,
P f is often called the (relative) risk.

Geometry of the Regret Class. Let F denote a set of measurable real-valued functions defined
on Z. Typical examples of such a class are based on regret function or relative regret functions and
derived from a set of prediction functions. By slight extension, any set of measurable real-valued
functions defined on Z will be called a regret class. On the set F , we consider the pseudo-distance

d( f1, f2) =
√

P( f1 − f2)2,

and define similarly dn,d′
n and d2n. We define the covering number N(F ,ε,d) as the minimum

number of balls of radius ε needed to cover F in the pseudo-distance d.
An important task for obtaining error bounds is to define sieves, that is, subsets of F that

approximate F to a certain distance. The simplest way is to use minimum covers at various scales,
but it is also possible to use sequences of nested partitions as defined below.

Definition 1 A sequence (A j) j∈N is a sequence of nested partitions of F if

• A j is a partition of F either countable or equal to the set of all singletons of F

• The A j are nested: each element of A j+1 is contained in an element of A j, and A0 = {F }

For a partition A , we denote by A( f ) the unique element of A containing f .
Given a sequence of nested partitions (A j), we can build a collection (S j) j∈N of approximating

subsets of F in the following way: for each j ∈ N, for each element A of A j, choose a unique
element of F contained in A and define S j as the set of all chosen elements. We have |S0| = 1 and
denoting by p j( f ) the unique element of S j contained in A j( f ) we have

{

p j( f ) = f for any f ∈ S j,
p j−1 ◦ p j = p j−1.

Measures on the Regret Class. We denote by ρ and π two probability measures on the space F ,
so that ρP f will actually mean the expectation of P f when f is sampled according to the probability
measure ρ. We will denote by M 1

+(F ) the set of all probability measures on F . For two such
measures, K(ρ,π) will denote their Kullback-Leibler divergence defined as

K(ρ,π) = ρ log
dρ
dπ

:=
Z

F
log

(

dρ
dπ

( f )

)

ρ(d f ),

when ρ is absolutely continuous with respect to π and K(ρ,π) = +∞ otherwise.
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Other Notation. The notation x+ and x− refers to the positive and negative parts respectively, that
is, x+ := max(x,0) and x− := max(−x,0). β will denote some positive real number while C will be
some positive constant (whose value may differ from line to line).

2.2 The Setting for Error Bounds

Generalization error bounds give upper bounds on the true (i.e., under P) error of the function re-
turned by a learning algorithm. These upper bound typically involve the empirical error of this func-
tion. A learning algorithm (or learning rule), is a map from sequences of pairs (X1,Y1), . . . ,(Xn,Yn)
to functions g : X → R. We will denote by gn the function returned by the algorithm under investi-
gation.

2.2.1 ABSOLUTE AND RELATIVE RISK BOUNDS

The goal is thus to formulate a statement of the following form: for each (small enough) β > 0, with
probability at least 1−β with respect to the random draw of the sample,

E [L(gn(X),Y )|(X1,Y1), . . . ,(Xn,Yn)] ≤
1
n

n

∑
i=1

L(gn(Xi),Yi)+B(n,β) , (1)

where the expectation in the left-hand side is taken with respect to the distribution of (X ,Y ), mean-
ing: conditionally to the training sample distribution.

Another type of result that can be obtained is a relative risk bound where one compares the risk
of the algorithm to the risk of a fixed prediction function g̃. The type of inequality that could be
obtained looks like this

E [L(gn(X),Y )|(X1,Y1), . . . ,(Xn,Yn)]−E [L(g̃(X),Y )]

≤ 1
n ∑n

i=1

[

L(gn(Xi),Yi)−L(g̃(Xi),Yi)
]

+B(n,β) .
(2)

With the notation introduced above, denoting by fn the (relative) regret function associated to
the predicition gn we can rewrite both previous inequalities as follows:

P fn −Pn fn ≤ B(n,β) . (3)

This shows that there is no essential difference between the techniques used to get bounds of
the form (1) and (2).

2.2.2 AVERAGED BOUNDS

Most algorithms simply pick a candidate function gn from a fixed set G . However, Bayesian algo-
rithms usually aggregate several such functions by taking their weighted average. The correspond-
ing regret function is not the average of the regrets of the individual functions which makes the
analysis difficult. In order to avoid this caveat, it is common to first study randomized estimators
and then relate the randomized to the aggregate ones. Randomized estimators are built by replacing
the weighted average by a randomized choice (where the probability of choosing a specific function
is proportional to its weight). The advantage of such a procedure is that it is relatively simple to
analyze. Indeed, if one uses weights given by a probability distribution ρ on G , the error of the
randomized estimator is simply the average of the errors of the combined estimators ρP f .
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Hence, bounds for randomized estimators will have the form

ρnP f ≤ ρnPn f +B(n,β) , (4)

where ρn is the specific distribution chosen by the algorithm based on the data.

2.2.3 ALGORITHM AND DATA DEPENDENT BOUNDS

In the form stated in (3), the quantity B only depends on the confidence level β and the sample
size n. The only way in which B depends on the algorithm is usually by incorporating terms that
depend on the class of prediction functions used by the algorithm. For example if the algorithm
picks functions in a class G whose associated regret class is F , statement (3) can be deduced from

sup
f∈F

{

P f −Pn f
}

≤ B(n,β) .

This is a supremum bound and is the most common type found in the literature. Unfortunately, this
usually yields quantitatively loose bounds which do not tell much about the algorithm’s behavior.

Ideally, B should depend on the sample (data-dependent bound) and on the specific function fn

or distribution ρn chosen by the algorithm (algorithm-dependent bound).
Hence we can aim at obtaining bounds of the form (algorithm-dependent)

∀ f ∈ F ,P f ≤ Pn f +B(n,β, f ) ,

or even (algorithm and data-dependent)

∀ f ∈ F ,P f ≤ Pn f +B(n,β, f ,Z1, . . . ,Zn) .

2.3 Previous Error Bounds

We are now in a position to state and compare some of the previously known error bounds. From
now on, the functions in the regret class F are assumed to be bounded. Without loss of generality,
we may assume that they take their values in [0;1]. We do not always state the bounds in their
original form in order to allow an easier comparison and we thus include the proofs and the explicit
values of the constant C in Section B.3.

2.3.1 SUPREMUM BOUNDS

We start with the most common bounds involving the supremum over a class of the difference
between true and empirical error.

Single function. The starting point is to consider a class containing only one function f . By
Hoeffding’s inequality one easily gets that with probability at least 1−β,

P f −Pn f ≤C

√

log(β−1)

n
. (5)

Unfortunately, when F has more than one element, this statement can only be made separately for
each function. [Proof in Section B.3.1]
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Finite union bound. It is easy to convert the above statement into one which is valid simultane-
ously for a finite set of functions F . The simplest form of the union bound gives that with probability
at least 1−β,

sup
f∈F

{

P f −Pn f
}

≤C

√

log |F |+ log(β−1)

n
. (6)

The term log |F | represents the extra price to pay to obtain a uniform statement. It can be considered
as a measure of the complexity of the class F . [Proof in Section B.3.2]

Symmetrization. When F is infinite this cannot work directly. The trick is to introduce a second
sample Z′

1, . . . ,Z
′
n (see the notation section for definitions) and to consider the set of vectors formed

by the values of each function in F on the double sample. When the functions have values in
{0;1}, this is a finite set and the above union bound applies. This idea was first used in Vapnik and
Chervonenkis (1971) to obtain that with probability at least 1−β,

sup
f∈F

{

P f −Pn f
}

≤C

√

logE2nN(F ,1/2n,d2n)+ log(2β−1)

n
. (7)

The capacity is here better estimated than in (6) since the term N(F ,1/2n,d2n) does not count
twice functions classifying in the same way the training and virtual samples. However the quantity
E

2nN(F ,1/2n,d2n) cannot be computed in general since P is unknown, but upper bounds can be
obtained in terms of combinatorial parameters such as the VC dimension.

We now see that the complexity of F has to be measured in a way that involves the metric
induced by the distribution. What matters is thus not how many functions there are in F but how
they span the space of possible vectors ( f (Z1), . . . , f (Zn), f (Z′

1), . . . , f (Z′
n)), which can be measured

by the minimum number of balls required to get an approximation at scale 1/2n. [Proof in Section
B.3.3]

Chaining. One limitation of the above result is that it applies only to {0;1}-valued functions and
it measures the size only at the smallest scale which is known to be suboptimal in general. The union
bound can be refined by considering finite covers of the set of function at different scales. This is
called the chaining technique, pioneered by Dudley (1984) since one constructs a chain of functions
that approximate a given function more and more closely. The results involve the Koltchinskii-
Pollard entropy integral as, for example in Devroye and Lugosi (2001). One has with probability at
least 1−β,

sup
f∈F

{

P f −Pn f
}

≤C

(

1√
n

E
n

Z ∞

0

√

logN(F ,ε,dn)dε+

√

log(β−1)

n

)

. (8)

[Proof in Section B.3.8]. Chained bounds are particularly useful when one has a tight control of
the entropy numbers of the set F (see, for example, van der Vaart 1998 and van de Geer 2000).

Generic chaining. It has been noticed by Fernique and Talagrand that it is possible to capture
the complexity in a better way than using minimal covers by considering majorizing measures or
generic chaining. This is essentially optimal for Gaussian processes and optimal up to logarithmic
factors for empirical processes. Let r > 1 and (A j) j≥1 be a sequence of nested partitions of F
such that all the elements of A j have diameter at most r− j w.r.t. the distance dn. Let also (π( j)) be
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a sequence of probability distributions defined on F . We can prove that with probability at least
1−β,

sup
f∈F

{

P f −Pn f
}

≤C

(

1√
n

E
n sup

f∈F

∞

∑
j=1

r− j
√

log{1/π( j)[A j( f )]}+

√

log(β−1)

n

)

. (9)

[Proof in Section B.3.9]. The interpretation of the complexity term is a bit harder now.1 If one takes
partitions induced by minimal covers of F at radii r− j, and uniform measures concentrated at the
centers of the balls, one has 1/π( j)[A j( f )] = N(F ,r− j,dn) so that (9) leads to a sum of terms of the
form r− j

√

logN(F ,r− j,dn), which allows to recover (8). This means that the complexity term of
(9) is at least as sharp as the one of (8), but has more flexibility since the partitions can be built in a
better way than via uniform covers.

As in Section 2.1, from the nested partitions (A j), we can build a collection (S j) j∈N of approx-
imating subsets of F in the following way: for each j ∈ N, for each element A j of A j, choose a
unique element of F contained in A j and define S j as the set of all chosen elements. Then consider
p j( f ) the unique element of S j contained in A j( f ). The p j( f ) define successive approximations of
f . Without loss of generality, consider that the null function belongs to A0 and that S0 contains this
function. The sum in (9) (as the integral in (8)) comes from the core of the chaining idea which
is to decompose the function f (which is a difference between two functions in the case of relative
regret classes, or a difference between itself and the null function in the case of a regret class) into
∑ j>0 p j( f )− p j−1( f ) and to separately control the deviation of each term. These terms form a
chain of finer and finer approximations to f that give the name to the method (chaining). This is
essentially the idea that we use in the proof of our main results.

Let us try to give some insights about how to construct the partitions (A j) (for more details, see
Talagrand, 2005). First of all, one should understand that the measures π( j) play no essential role
here (as was noticed by Talagrand, 2001, , they can be taken as finitely supported uniform measures
on appropriate subsets) The only reason why we state the result in the above form is to emphasize
the connection with our main result (to be presented in Section 3).

It turns out that there are many ways to state the majorizing measure/generic chaining bound.
Each way involves a different geometric construction on the regret class F and a different notion
of size, but most can be shown to be equivalent up to constant factors. The general form of such
bounds is

sup
f∈F

∑
i≥i0

F( f , i)G( f , i)

where F( f , i) is a measure of the scale of the geometric object of order i containing f , while G( f , i)
is a measure of the size of this object. For example, if one uses balls, F( f , i) is the radius of the ball
(

e.g., F( f , i) = 2−i
)

and G( f , i) is the “mass” (or rather a function of the mass) of the ball centered

at f and of radius 2−i
(

e.g., G( f , i) =
√

log1/π(i)[B( f ,2−i)]
)

.

1. It is important to mention that there are various possible ways to measure the complexity of the space F that all
lead to an essentially optimal result. For example, one could replace the set A j( f ) by a ball centered at f and with
radius r− j . This would give the standard majorizing measure bound (where all the π( j) are the same). Also, one
can use partitions whose elements are allowed to have different diameters and replace the r− j term by the diameter
of A j( f ). Using such an approach actually allows to get rid of the measures π( j), the sum in the complexity term
becoming ∑d(A j( f ))

√

log |A j|. We did not choose this formulation as we wish to obtain a result that explicitly uses
the probability π so that it can be more directly related to the PAC-Bayesian bounds. The interested reader is referred
to Talagrand (2005) for more information about the variants of the generic chaining bounds.

869



AUDIBERT AND BOUSQUET

Coming back to nested partitions (which really are the key ingredient here), let us say a few
words about their construction. Talagrand proposed a partitioning scheme that runs as follows.
The general idea is that one starts with a size function (that measures how big a subset of F is).
This function has to satisfy certain compatibility conditions in order to ensure that the resulting
construction will be optimal (up to constants). Then one starts with A0 = {F } and, at each stage,
the partition is refined by splitting each of its element in a greedy way: one selects separated enough
points in the element to be split and builds balls arounds these points. Starting with the ”biggest”
ball (as measured by the size function), one removes the balls until nothing is left. The sub-partition
elements are thus the subsets that are removed with each ball.

Rademacher averages. As we said before, the generic chaining bound is optimal up to constant
factors. More precisely, it is a tight upper bound for the quantity

E
n

[

sup
f∈F

{

P f −Pn f
}

]

.

It is also a lower bound for this quantity but up to a logn factor. Hence the generic chaining bound
is as good (up to this log) as another well-known quantity in the learning theory community, the
Rademacher average of F :

E
n

[

Eσ sup
f∈F

1
n ∑σi f (Zi)

]

,

where the σi are independent random signs (+1,−1 with probability 1/2). Using this quantity as a
measure of complexity, it is possible to obtain the following statement. One has with probability at
least 1−β,

sup
f∈F

P f −Pn f ≤C

(

1
n

E
n
Eσ sup

f∈F

n

∑
i=1

σi f (Zi)+

√

log(β−1)

n

)

. (10)

[Proof in Section B.3.7]

2.3.2 VARIANCE (LOCALIZED) BOUNDS

It has been noticed that the supremum bounds do not give optimal rates of convergence for algo-
rithms based on the minimization of the empirical risk. The main reason is that the size of the
deviations between P f and Pn f depends on the variance Var f . A lot of work has been carried out
recently in order to take this into account in the bounds presented above, for example by restricting
the complexity term to functions with small variance.

Variance for Single Functions. Since the deviations between P f and Pn f for a given function f
actually depend on its variance, one can refine (5) into

P f −Pn f ≤C

(
√

Var f log(β−1)

n
+

log(β−1)

n

)

. (11)

[Proof in Section B.3.5]
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Variance with Symmetrization. The above inequality can be combined with the symmetrization
trick. This was done by Vapnik and Chervonenkis (1974) (for functions in {0;1}). Their result is
that with probability at least 1−β,

∀ f ∈ F , P f −Pn f ≤C
√

P f

√

logE2nN(F ,1/2n,d2n)+ log(4β−1)

n
, (12)

which also gives with probability at least 1−β,

∀ f ∈ F , P f −Pn f ≤C
(√

Pn f
√

logE2nN(F ,1/2n,d2n)+log(4β−1)
n

+ logE
2nN(F ,1/2n,d2n)+log(4β−1)

n

)

.

One can thus consider that the capacity term is weighted by the risk (or equivalently here by the
empirical risk).

Localized Rademacher Averages. It is also possible to combine (11) with (10) as was done for
example by Bartlett et al. (2005). This gives a complexity term which involves Rademacher averages
that are computed on subsets of functions with small variance.

How to Use Variance Bounds. In order to better explain how variance bounds can be used effi-
ciently, we should notice that the quantitative gain occurs only when Var f is small for the function
chosen by the algorithm.

For a loss function L taking its values [0;1], the variance of a regret function f can be bounded
successively by P f 2 and P f . Consequently, in low noise setting (i.e., when there exists a prediction
function such that its associated risk P f is small), one can expect that the deviation of the risk of an
algorithm based on the minimization of the empirical error is much smaller than in noisy situations.

For relative regret function the situation is different. We are still interested in low (relative) risk
but in general we will not have any particular relation between the variance Var f and the relative risk
P f . Consequently variance localized bounds will not yield any significant improvement. However
in some situations as in classification under Mammen and Tsybakov noise condition (Tsybakov,
2004) or in least square regression (see, for example, Audibert, 2004a), one has the inequality
Var f ≤ (P f )α for some positive α. This inequality is well exploited by variance localized bounds.

2.3.3 ALGORITHM DEPENDENT COMPLEXITY

Another direction in which the bounds can be improved is by making the bound depend more
directly of the function chosen by the algorithm. The variance bounds already have this property
but the bound only depends on Var f but not on where the function is in the space F . We now
present results where the complexity term depends directly on the selected function.

Weighted union bound and algorithm dependence. The finite union bound can be directly ex-
tended to the countable case by introducing a probability distribution π over F which weights each
function (McAllester, 1998) and gives, with probability at least 1−β,

∀ f ∈ F , P f −Pn f ≤C

√

log1/π( f )+ log(β−1)

n
. (13)

The complexity term now depends on f and of course, taking a uniform distribution on a finite set
we recover (6).

871



AUDIBERT AND BOUSQUET

Surprisingly, the capacity term could be arbitrarily small if π were chosen appropriately. How-
ever, π has to be chosen before seeing the data, so there is no way to ensure that the bound will be
always small.

It is important to understand that the choice of π is completely arbitrary and need not reflect any
prior belief in what is the true target function. The distribution π is just a “technical” prior which is
used to formulate the bound.

Inequality (13) can be read as follows: given a fixed π, if one samples data repeatedly, with high
probability, the error of any function f in the class will be upper bounded by a function of π( f ).
This function of π( f ) is basically a bound on the deviation one would expect for each individual
function, plus an extra term coming from the fact that the function f to be considered is unknown
prior to observing the sample so that we need to have a statement which holds simultaneously for
all functions in the class. The interesting point is that in making this statement uniform, there is a
freedom in the choice of how we distribute the ’extra cost’. The distribution of the uniformization
cost is thus represented by π. Any probability distribution will do, and if one is lucky, the functions
of interest (the ones returned by the classification algorithm when given typical samples from the
problem) will have large prior and the bound for them will be relatively small.

Thus, if one wants to obtain a bound which has small values, one has to “guess” how likely each
function f ∈ F is to be chosen by the algorithm.

Averaging. We now come to the case of randomized predictions which give rise (as explained
above) to averaged bounds of the form (4). Consider a probability distribution ρn defined on a
countable F , take the expectation of (13) with respect to ρn and use Jensen’s inequality. This gives
with probability at least 1−β,

ρn(P f −Pn f ) ≤C

√

K(ρn,π)+H(ρn)+ log(β−1)

n
,

where ρn is still the specific distribution chosen by the algorithm based on the data and H(ρn) is
its Shannon entropy. The l.h.s. is the difference between true and empirical error of a randomized
classifier which uses ρn as weights for choosing the decision function (independently of the data).
The following PAC-Bayes bound (McAllester, 1999) refines the above bound since it has the form
(for possibly uncountable F )

ρn(P f −Pn f ) ≤C

√

K(ρn,π)+ logn+ log(β−1)

n
. (14)

This in particular shows that the entropy term is unnecessary. To some extent, one can consider that
the PAC-Bayes bound is a refined union bound where the gain happens when ρn is not concentrated
on a single function (or more precisely ρn has entropy larger than logn).

The complexity now depends upon the arbitrary choice of π and one may notice that it is mod-
ulated by the “spread” of ρn. Indeed, if ρn is concentrated, this term can be big, but if ρn is similar
to π it becomes very small. As a special case, if the randomizing distribution is concentrated at a
single function (corresponding to classical algorithms that simply pick a function), the bound has
the form (13) which is not suited for large (e.g., uncountable) sets of functions.

2.3.4 DATA-DEPENDENT BOUNDS

We now consider ways to obtain bounds where the complexity term itself depend on the sample
(hence can be computed from the data only).
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Transductive priors. It is actually possible to combine the symmetrization and weighting ideas
(Catoni, 2003). For example, if one defines a function Π : Z2n → M 1

+(F ) that is almost exchange-
able in the sense that if we exchange the value of zi and zi+n we do not change the value of the
function, then one gets, with probability at least 1−β (over the random choice of a double sample),

∀ f ∈ F , P′
n f −Pn f ≤C

√

log1/Π(Z1, . . . ,Zn,Z′
1, . . . ,Z

′
n)( f )+ log(β−1)

n
.

Note that we no longer require F to be countable but Π(.) should have countable support for each
value of the double sample. This type of result is interesting in the transduction framework, where
the instances (or inputs) are known in advance and where the randomness is in the way the data
is split into a training set (with known labels) and a testing set (with unknown labels). Convert-
ing this into an induction statement (comparing the empirical with the expected errors) gives with
probability 1−β,

∀ f ∈ F , P f −Pn f ≤CE
′n
√

log1/Π(Z1, . . . ,Zn,Z′
1, . . . ,Z

′
n)( f )+ log(β−1)

n
.

This is useful provided one can upper bound the first logarithmic factor in the r.h.s. either with a
data-independent quantity or with an observable function of the first sample.

Concentration. Using concentration inequalities as in Boucheron et al. (2000) for example, one
can get rid of the expectation appearing in the r.h.s. of (7), (8), (10) or (9) and thus obtain a bound
that can be computed from the data.

In particular, a data-dependent and localized version of (10) is given in Bartlett et al. (2005).
However it has not been combined with the PAC-Bayes improvement for randomized predictions.

2.3.5 SUMMARY

Our goal in this work is to see how to attempt to combine the different approaches that have been
used before, in the hope to obtain a bound that has the combined properties

1. structural (metric structure effect)

2. statistical (variance effect)

3. PAC-Bayesian (averaging effect).

The connection between 1 and 2 already exists, so does the connection between 2 and 3. Our
main result aims at dealing simultaneously with 1, 2 and 3.

The main difficulty in connecting 1 and 2 with 3 is that if one has a non-countable infinite set
of functions, even using symmetrization, if the prior π is non-atomic, then π({ f}) = 0 for all f .
Hence the complexity term K(ρn,π) blows up when ρn is concentrated on a single function. The
result we present below is, to our knowledge, the first one which actually bridges this gap since the
complexity term does not blow up when ρn is concentrated at one function.

3. Main results

We now state and comment our main result. We recall that F denotes a set of functions defined on
a measurable space Z and taking their values in [0;1]. In the theorem we present, one has to
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• choose a sequence of nested partitions (A j) j∈N of the set F ,

• build an associated sequence of approximating sets (S j) j∈N (see Section 2.1),

• for each f and j ∈ N, define its approximating functions p j( f ) as the unique element of S j

contained in A j( f ), where A j( f ) is the set of the partition A j containing f

• for each j ∈ N, choose the distribution π( j) on F .

The quantities π( j), S j, and p j are allowed to depend on the sample Z1, . . . ,Zn provided that it also
depends on a double sample Z ′

1, . . . ,Z
′
n in an almost exchangeable way (i.e., exchanging Zi and Z′

i
does not affect their value). Denote δ f the Dirac measure on f . For a probability distribution ρ on
F , define its j-th projection as

[ρ] j = ∑
f∈S j

ρ[A j( f )]δ f ,

when S j is countable and [ρ] j = ρ otherwise. When S j is countable, [ρ] j is a probability distribution
on F supported by S j and can be viewed as the projection of ρ on S j. Let ρn be a randomized
estimator, that is, a data-dependent distribution on the set F . To shorten the notation, the average
(w.r.t. the probabiblity distribution ρn) distance between two successive approximations is denoted
by

ρnd2
j := ρnd2

2n[p j( f ), p j−1( f )],

where we recall that d2n is the empirical pseudo-distance d2n( f1, f2) =
√

P2n( f1 − f2)2. Finally, let

∆n, j( f ) := P′
n[ f − p j( f )]−Pn[ f − p j( f )],

χ(x) :=
√

x log log
(

4e2/x
)

,

and for β > 0 introduce
K j := K([ρn] j, [π( j)] j)+ log[ j( j +1)β−1] (15)

in which the leading term is the Kullback-Leibler divergence between the j-th projections of the
randomized distribution ρn and the ( j-th prior) distribution π( j).

The previous definitions are common to both transduction and induction setting. However the
double sample is a totally virtual one in the induction setting.

We consider first the so-called transduction setting, or rather, a version of it. In this setting, we
recall that the two independent samples Z1, . . . ,Zn and Z′

1, . . . ,Z
′
n are drawn i.i.d. according to the

unknown probability P.
The learning algorithm is allowed to use the instances of both samples (training and testing

samples) but has access to the labels of the training instances only. Its goal is to correctly predict the
instances of the testing samples. In this context, the quantity of interest is the difference between the
average misclassification error obtained on the testing sample and the one on the training sample.

Theorem 2 (Transduction) Let 0 < β ≤ 2e−1. If the following condition holds

lim
j→+∞

sup
f∈F

∆n, j( f ) = 0, P
2n-a.s. (16)
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then, with P
2n-probability at least 1−β, for any distribution ρn, we have

ρnP′
n f −P′

n f0 ≤ ρnPn f −Pn f0 +
2
√

2e
1
4

√
n

+∞

∑
j=1

√

K j ρnd2
j +

2
√

2e
1
4

√
n

+∞

∑
j=1

χ
(ρnd2

j

K j

)

.

In the induction setting, the learning algorithm is only allowed to use the first sample Z1, . . . ,Zn.
Nevertheless the proof technique uses an independent and i.i.d. virtual sample Z ′

1, . . . ,Z
′
n that is at

the origin of the following expectations E
′n.

Theorem 3 (Induction) With the above notation, if the following condition holds

limsup
j→+∞

sup
f∈F

E
′n∆n, j( f ) ≤ 0, P

n-a.s. (17)

then for any 0 < β ≤ 0.73, with P
n-probability at least 1−β, we have

ρnP f −P f0 ≤ ρnPn f −Pn f0 + 3.7√
n ∑+∞

j=1

√

E′nK j E
′nρnd2

j + 3.7√
n ∑+∞

j=1 χ
(

E
′nρnd2

j

E′nK j

)

.

Remark 1 The second sum in the bound is in general negligible w.r.t. the first one2 and has at
worse the same order.

Remark 2 Let G be a model (i.e., a set of prediction functions). Let g̃ be a reference function (not
necessarily in G and possibly depending on the data in an exchangeable way). Consider the class
of regret functions F = {z 7→ L[g(x),y] : g ∈ G ∪{g̃}} . Define f0 = L[g̃(x),y]. The induction (resp.
transduction) theorem compares the risk (resp. the risk on the second sample) of any (randomized)
estimator with the risk (resp. the risk on the second sample) of the reference function g̃.

Remark 3 Assumption (16) is not very restrictive. For instance, it is satisfied when one of the
following condition holds:

• there exists J ∈ N
∗ such that SJ = F ,

• almost surely lim j→+∞ sup f∈F ‖ f − p j( f )‖∞ = 0 (it is in particular the case when the brack-
eting entropy of the set F is finite for any radius and when the S j’s and p j’s are appropriately
built on the bracketing nets of radius going to 0 when j → +∞),

• almost surely lim j→+∞ sup f∈F d2n( f , p j( f )) = 0.3

Finally, by Lebesgue’s dominated convergence theorem and standard probabilistic arguments, one
may prove that (16) implies (17).

Remark 4 Note that E
′nρnd2

j = 1
2

{

ρnd2
n [p j( f ), p j−1( f )] + ρnd2[p j( f ), p j−1( f )]

}

. Besides, when

the quantities π( j), S j, f0 and p j do not depend on the data, we have E
′nK j = K j, so that the

conditional expectation E
′n disappears in Theorem 3.

Remark 5 A slightly different version of Theorem 3 can be obtained by using Theorem 2 and
Lemma 19.

2. Since K j is greater than or equal to 1 and the function χ is an upper bounded function which behaves as the square
root near 0.

3. Here we give a typical construction for which this assumption is satisfied when the functions in F take their values in
a common finite set (e.g., classification setting). Take the sequence S j as embedded nets w.r.t. the pseudo-distance d2n
of radius tending to 0 when j goes to infinity. Then there exists J satisfying

∣

∣

(

f (X1), . . . , f (Xn), f (X ′
1), . . . , f (X ′

n)
)

:
f ∈ SJ

∣

∣=
∣

∣

(

f (X1), . . . , f (Xn), f (X ′
1), . . . , f (X ′

n)
)

: f ∈ F
∣

∣ and S j = SJ for any j > J. Consider projections p j consis-
tent with d2n to the extent that, if d2n( f ,S j) = 0, then d2n( f , p j( f )) = 0. Then the assumption holds.
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4. Discussion

We now present in which sense the result presented above combines several previous improvements
in a single bound. The discussion will also clarify how to choose the priors π( j), and the sets S j by
giving more explicit bounds for some particular choices.

4.1 Supremum Bounds

We first show that we can derive from Theorem 3 a result similar to the generic chaining bound (9).

Corollary 4 Under Assumption (17), we have with P
n-probability at least 1−β,

∀ f ∈ F , P f −Pn f −P f0 +Pn f0

≤C

(

1√
n ∑∞

j≥ j( f ) 2− j
√

E′n log{1/π( j)[A j( f )]}+
√

log2 j( f )+log(β−1)

2 j( f )n

)

,

where j( f ) := min{ j ∈ N
∗ : p j( f ) 6= f0}.

Proof Choose for ρn a distribution concentrated at the single function fn. Then we have [ρn] j =
δp j( fn) and K j, defined in (15), reduces to log{1/π( j)[A j( fn)]}+ log[ j( j + 1)β−1]. We can take the
partitions A j to have diameter 2− j so that sup f∈F d2n[ f , p j( f )] ≤ 2− j and thus d j ≤ 2− j+1.

The “closer” the function f is from f0, the bigger the integer j( f ) is. This result improves on (9)
since it is algorithm dependent (the l.h.s. depends on fn) and takes into account the variance. Since
the series starts from j( f ), our bound is better when f is “close” to f0.

Since we essentially have a result that is as powerful as generic chaining, it should be possible
to recover Rademacher averages bounds. However, there is a difficulty coming from the fact that the
result we have is not ”symmetric” in the sense that it involves taking expectations over the second
sample. Taking care of this remains a topic for further research.

4.2 Variance Bounds

We now show how the variance of the function of interest can be obtained explicitly in the upper
bound. In particular, we have the following corollary.

Corollary 5 Under Assumption (17), if the functions in F have values in {0;1}, we have with
P

n-probability at least 1−β,

∀ f ∈ F , P f −Pn f −P f0 +Pn f0

≤ C√
n

√

E′nP2n( f − f0)2(E′nN(F ,1/2n,d2n)+ log(β−1)).

Proof As before, choose for ρn a distribution concentrated at a single function fn, then [ρn] j = δp j( fn)

and thus K j = log1/π( j)[A j( fn)]. Now since the functions are binary valued, F is a finite metric
space under the metric d2n. We can thus take A1 as a minimal cover at radius 1/2n, A2 = F and we
will get d2( f ) = 0 and d1( f ) = P2n( f − f0)

2. Taking π( j) to be uniform on the centers of the cover,
we will obtain K1 = logN(F ,1/2n,d2n)+ log(β−1) which gives the result.

We thus essentially recover (12) and a fortiori standard VC bounds.
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4.3 Averaging

Theorem 2 also includes the PAC-Bayesian improvement for averaging classifiers since if one con-
siders the set S1 = F one recovers a result similar to McAllester’s (14). More precisely, we obtain:

Corollary 6 Let F be a set of functions taking their values in [−1;1]. Let 0 < β ≤ 0.73 and
K := K(ρn,π)+ log(2β−1). With P

2n-probability at least 1−β, we have

ρnP′
n f −ρnPn f ≤ 3.7√

n

√

K ρnP2n f 2 + 3.7√
n χ
(

ρnP2n f 2

K

)

.

As a consequence, for any β > 0, with P
n-probability at least 1−β, we have

ρnP f −ρnPn f ≤C
√

K(ρn,π)+log(2β−1)
n .

Note that this last inequality is slightly better than (14) since there is no extra logarithmic term.
However the cost of removing the logarithmic factor is to have a slightly bigger constant C.
Proof Even if it means expanding F , we may assume that the function f0 identically equal to 0 is
in F . Then we can take S0 := { f0} and S1 := F . We have for any j ≥ 1, S j = F and p j = IdF . The
first assertion is then a direct application of Theorem 2.

From the first result of the corollary, for any 0 < β ≤ 0.73, with P
2n-probability at least 1−β,

for any distribution ρn, we have

ρnP′
n f −ρnPn f ≤ 3.7

√

K(ρn,π)+log(2β−1)
n +

3.7max[0;1] χ√
n .

The second assertion of the corollary then follows.

4.4 Data-dependent Bounds

The obtained bound is not completely empirical since it involves the expectation with respect to an
extra sample. In the transduction setting, this is not an issue, it is even an advantage as one can
use the unlabelled data in the computation of the bound. However, in the inductive setting, this is
a drawback. Future work will focus on using concentration inequalities to give a fully empirical
bound.

5. Conclusion and Perspectives

We have obtained a generalization error bound for randomized classifiers which combines several
previous improvements. It contains an optimal union bound, both in the sense of optimally taking
into account the metric structure of the set of functions (via the majorizing measure approach) and
in the sense of taking into account the averaging distribution. It also is sensitive to the variance of
the functions and is thus ”localized”.

In particular it is the first PAC-Bayesian bound that remains finite when the averaging distribu-
tion is concentrated at a point.

There still remains work in order to get a fully empirical bound and to better understand the
connection with Rademacher averages. In particular, the way the approximating sets S j should be
constructed in practical cases has to be investigated.
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Appendix A. Proof of Our Main Results

The proof of our main results is inspired by previous work on the PAC-Bayesian bounds (Catoni,
2003), Audibert (2004b) and on the generic chaining (Talagrand, 1996). Classical PAC-Bayesian
bounds are mainly based on the combination of three ingredients:

1. the duality property of the entropy (Lemma 7),

2. Markov’s inequality (which leads to Lemma 8),

3. and upper bounds on the exponential moment of a bounded random variable (which is the
underlying idea of Lemma 9).

We reused these three main ingredients and slightly extended them to fit our needs. The additional
extra step that is required to obtain the generic chaining aspect is to decompose the functions into
a chain (as explained in Section 2.3.1) and to combine together all the individual PAC-Bayesian
bounds obtained for each element of the chain. This chaining part is actually done in two steps:
in the first one (Section A.1.4) we perform a non uniform union bound with appropriately chosen
weights in order to make the bound independent on λ, while in the second one (Section A.1.5), we
actually chain the inequalities to obtain the final result.

A.1 Proof of Theorem 2

In order to emphasize the various techniques that are used, we decompose its proof in a series of
short steps.

A.1.1 LEGENDRE TRANSFORM OF THE KULLBACK-LEIBLER DIVERGENCE

The first step consists in using a duality property of the relative entropy (see, for example, Dembo
and Zeitouni 1998, or page 10 of Catoni 2003). Namely, one has the following

Lemma 7 (Legendre transform of the KL-divergence) For any π-measurable function h : F →
R and any probability distribution ρ on F ,

ρh ≤ logπeh +K(ρ,π).

Proof We have ρh−K(ρ,π)− logπeh = −K
(

ρ, eh

πeh ·π
)

≤ 0 with equality when ρ = eh

πeh ·π.

Lemma 8 Consider a function h : F → R and probability distributions π and ρ on F that depend
on Z1, . . . ,Zn,Z′

1, . . . ,Z
′
n in a measurable way, we have for any β > 0, with probability at least 1−β

with respect to the samples distribution

ρh ≤ logE
2nπeh +K(ρ,π)+ log(β−1) .
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Also, with probability at least 1−β with respect to the first sample distribution,

E
′nρh ≤ logE

2nπeh +E
′nK(ρ,π)+ log(β−1) .

Proof From Markov’s inequality applied to the non-negative random variable πeh, we obtain that
for any t > 0 P

(

πeh > t
)

≤ 1
t E

2nπeh, hence for any β > 0, with probability at least 1−β with respect
to the samples distribution,

logπeh ≤ logE
2nπeh + log(β−1) .

Then the proof of the first result follows from Lemma 7. The second assertion can be proved in
a similar way (applying Markov’s inequality conditionally to the second sample) and using the in-
equality E

′n logE
n.. ≤ logE

2n...

A.1.2 DEVIATION INEQUALITY

Lemma 9 For any λ > 0, any function W : F ×Z → R and any exchangeable function π : X 2n →
M 1

+(F ), we have

E
2nπeλP′

nW−λPnW− 2λ2
n P2nW 2 ≤ 1.

Proof Denote ∆i := W (·,Z′
i)−W (·,Zi) and

h := λP′
nW −λPnW − 2λ2

n
P2nW 2.

By the exchangeability of π, for any σ ∈ {−1;+1}n, we have

E
2nπeh = E

2nπe−
2λ2

n P2nW 2+ λ
n ∑n

i=1 ∆i

= E
2nπe−

2λ2
n P2nW 2+ λ

n ∑n
i=1 σi∆i .

Now taking the expectation w.r.t. σ, where σ is a n-dimensional vector of Rademacher variables.
We obtain

E
2nπeh = E

2nπ
[

e−
2λ2

n P2nW 2
∏n

i=1 cosh
(

λ
n ∆i

)]

≤ E
2nπ
[

e−
2λ2

n P2nW 2
e∑n

i=1
λ2

2n2 ∆2
i

]

where at the last step we use that coshs ≤ e
s2
2 . The result follows from the inequality ∆2

i ≤
2W 2(·,Z′

i)+2W 2(·,Zi).

A.1.3 CONSEQUENCES

We first prove the following lemma.

Lemma 10 For any β > 0, λ > 0, any function W : F ×Z → R and any exchangeable function
π : X 2n → M 1

+(F ), with P
n-probability at least 1−β, for any probability distribution ρn ∈ M 1

+(F ),
we have

ρnP′
nW −ρnPnW ≤ 2λ

n
ρnP2nW 2 +

K(ρn,π)+ log(β−1)

λ
.
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Proof The result follows from Lemmas 8 and 9 applied to h := λP′
nW −λPnW − 2λ2

n P2nW 2 and
ρ = ρn.

Now let us apply this result to the projected measures [π( j)] j and [ρn] j and for W ( f ,Z) =
p j( f )(Z)− p j−1( f )(Z). Since, by definition, π( j), S j and p j are exchangeable, [π( j)] j is also ex-
changeable. With P

2n-probability at least 1−β, uniformly in ρn, we have

[ρn] j

{

P′
n[p j( f )− p j−1( f )]−Pn[p j( f )− p j−1( f )]

}

≤ 2λ
n

[ρn] jd
2
2n[p j( f ), p j−1( f )]+

K′
j

λ
,

where K′
j := K([ρn] j, [π( j)] j)+ log(β−1). By definition of [ρn] j, it implies that

ρn

{

P′
n[p j( f )− p j−1( f )]−Pn[p j( f )− p j−1( f )]

}

≤ 2λ
n

ρnd2
2n[p j( f ), p j−1( f )]+

K′
j

λ
,

which, by using the notation introduced on page 874, can be shortened into

ρn∆n, j ≤
2λ
n

ρnd2
j +

K′
j

λ
, (18)

The parameter λ =

√

nK′
j

2ρnd2
j

minimizing the r.h.s. of the previous inequality depends on ρn. To use

this data-dependent parameter, we need that (18) holds uniformly in λ.

A.1.4 WEIGHTED UNION BOUND ON THE PARAMETER λ

To get a uniform version of (18), introduce a grid (λk)k∈N∗ of R
∗
+. Let (wk)k∈N∗ denote some

positive real numbers such that ∑k≥1 wk = 1. Define B := infk≥1

{

2ρnd2
j

n λk +
K′

j+logw−1
k

λk

}

. Using a

weighted union bound of (18), precisely using (18) for (λ,β) = (λk,wkβ) for k ∈ N
∗, we get that,

with probability at least 1−β, we have ρn∆n, j ≤ B.

Our goal is then to choose the λk’s and the wk’s such that B is the smallest possible. Ideally, we

want to obtain a bound close to aλ := minλ∈R∗
+

{

2ρnd2
j

n λ+
K′

j

λ

}

.

Let m := e−
1
4
√ n

8 . Taking λk = me
k
2 and wk = 1

k(k+1) , we are going to prove that we achieve this
target up to a multiplicative constant and an additive log log term.

First, since we have ρn∆n, j = 0 when ρnd2
j = 0, we only focus on the case when ρnd2

j > 0.

Define λ∗ := 2m

√

K′
j

ρnd2
j
. We have ρnd2

j ≤ 4 and K ′
j ≥ 1 for β ≤ e−1, hence λ∗ ≥ m. So there exists

k∗ ∈ N
∗ such that λk∗e−

1
2 ≤ λ∗ < λk∗ . We have

B ≤ 2ρnd2
j

n λk∗ +
K′

j+logw−1
k∗

λk∗

≤ 2e
1
2 ρnd2

j

n λ∗ +
K′

j+log[k∗(k∗+1)]

λ∗

≤ 2
√

2e
1
4

√

ρnd2
j K′

j

n + log[k∗(k∗+1)]
λ∗ .
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The inequality λk∗e−
1
2 ≤ λ∗ implies k∗− 1 ≤ 2log

(λ∗
m

)

, hence k∗ + 1 ≤ log
(

4e2 K′
j

ρnd2
j

)

. Finally we

have proved that with probability at least 1−β,

ρn∆n, j ≤ 2
√

2e
1
4

√

ρnd2
j K

′
j

n
+

2
√

2e
1
4

√
n

χ
(ρnd2

j

K′
j

)

.

We recall that K ′
j := K([ρn] j, [π( j)] j)+ log(β−1) and χ(x) :=

√
x log log

(

4e2/x
)

.

A.1.5 CHAINING THE INEQUALITIES

By simply using a union bound with weights equal to 1
j( j+1) , the previous inequality holds4 uni-

formly in j ∈ N
∗ provided that β is replaced with β/[ j( j + 1)], hence to apply the result of the

previous section we need that β/2 ≤ e−1.
Since p j−1 = p j−1 ◦ p j, we have

ρn
[

P′
n f −P′

n f0 +Pn f0 −Pn f
]

= ρn∆n,J( f )+ρn

{

∑J
j=1

[

(P′
n −Pn)p j( f )− (P′

n −Pn)p j−1( f )
]

}

= ρn∆n,J( f )+∑J
j=1 ρn

[

(P′
n −Pn)p j( f )− (P′

n −Pn)p j−1( f )
]

= ρn∆n,J( f )+∑J
j=1[ρn] j

[

(P′
n −Pn) f − (P′

n −Pn)p j−1( f )
]

Setting K j := K([ρn] j, [π( j)] j) + log[ j( j + 1)β−1], with P
n-probability at least 1 − β, for any

distribution ρn, we have

ρn
[

P′
n f −P′

n f0 +Pn f0 −Pn f
]

≤ supF ∆n,J +2
√

2e
1
4 ∑J

j=1

√

ρnd2
j K j

n

+ 2
√

2e
1
4√

n ∑J
j=1 χ

(

ρnd2
j

K j

)

.

Making J → +∞, we obtain Theorem 2.

A.2 Proof of Theorem 3

It suffices to modify Lemma 10 in the proof of Theorem 2. Indeed, using the second part of Lemma
8 instead of the first one we get

ρnPW −ρnPnW ≤ 2λ
n

E
′nρnP2nW 2 +

E
′nK(ρn,π)+ log(β−1)

λ
.

The remaining parts of the proof (i.e., the union bound and the chaining) are similar.

Appendix B. Additional Material

Lemma 11 For any random variable Z f which is π⊗P measurable we have

logπeE[Z f ] ≤ E
[

logπeZ f
]

≤ logπE
[

eZ f
]

.

4. This is because ∑ j∈N∗ 1
j( j+1)

= 1.
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Proof By duality (Lemma 7), we have

E
[

logπeZ f
]

= E

[

sup
ρn

{

ρnZ f −K(ρn,π)
}

]

≥ sup
ρn

ρnE [Z f ]−K(ρn,π) = logπeE[Z f ].

This gives the first inequality. The second inequality follows from Jensen’s inequality (applied to
the convex function − log) and Fubini’s theorem.

B.1 Concentration Inequalities

In this section, we recall some concentration inequalities whose proofs can be found in Lugosi
(2003). We start with Markov’s inequality

Theorem 12 (Markov’s inequality) For any real-valued random variable X,

P(X >= t) ≤ e−t
E
[

eX] .

Theorem 13 (Hoeffding’s inequality, 1963) For any centered random variable X such that a ≤
X ≤ b, and any λ > 0, we have EeλX ≤ e

λ2(b−a)2

8 . As a consequence, for any i.i.d. random variables
X1, . . . ,Xn such that a ≤ Xi ≤ b, we have

P

(

1
n

n

∑
i=1

Xi > t

)

≤ e
− 2nt2

(b−a)2 .

Theorem 14 (Bernstein’s inequality) Let X1, . . . ,Xn be n i.i.d. centered random variables such
that a ≤ Xi ≤ b. We have

P

(

1
n

n

∑
i=1

Xi > t

)

≤ e
− nt2

2VarX+
2(b−a)t

3 .

We say that a function has the bounded differences property if for some constant c > 0

sup
x1,...,xn,x′∈X ,i∈{1,...,n}

∣

∣g(x1, . . . ,xn)−g(x1, . . . ,xi−1,x
′,xi+1, . . . ,xn)

∣

∣≤ c.

Theorem 15 (McDiarmid’s inequality) Let g satisfy the bounded differences assumption with con-
stant c. Then we have

P
[

g(X1, . . . ,Xn)−Eg(X1, . . . ,Xn) ≥ t
]

≤ e−
2t2

nc2 .

Note that McDiarmid’s result generalizes Hoeffding’s inequality.

B.2 Symmetrization Inequalities

Lemma 16 (Symmetrization in probability, Vapnik and Chervonenkis 1971) Assume the func-
tions in F have range in [a;b]. For any t > 0 such that nt2 ≥ 2(b−a)2,

P
n
(

sup
f∈F

{

P f −Pn f
}

≥ t

)

≤ 2P
2n
(

sup
f∈F

{

P′
n f −Pn f

}

≥ t
2

)

.
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Proof Let fn be the function (depending on the first sample) achieving the supremum of (P−Pn) f
over F (if it does not exist, one can use a limiting argument). We have

�

(P−Pn) fn>t
�

(P−P′
n) fn<

t
2
≤

�

(P′
n−Pn) f> t

2
. Taking expectations w.r.t. the second sample gives

�

(P−Pn) fn>tP
′n[(P−P′

n) fn < t
2 ] ≤

P
′n[(P′

n − Pn) f > t
2 ]. Now by Chebyshev’s inequality, we have P

′n[(P − P′
n) fn ≥ t

2 ] ≤ 4Var fn
nt2 ≤

(b−a)2

nt2 ≤ 1
2 . We obtain

�

(P−Pn) fn>t ≤ 2P
′n[(P′

n−Pn) f > t
2 ] and conclude by taking expectations w.r.t.

the first sample.

Remark 6 By replacing Chebyshev’s inequality with Bernstein’s inequality, we can improve the
previous result to take into account t of order smaller than 1/

√
n. One can also slightly generalize

the previous result to obtain: for any positive reals η and t,

P
n
(

sup
f∈F

{

P f −Pn f
}

≥ t

)

≤
P

2n
(

sup
f∈F

{

P′
n f −Pn f

}

≥ (1−η)t
)

1− e−
nη2t2

2Var f +2(b−a)ηt/3

.

Lemma 17 (Symmetrization for expectations, Giné and Zinn 1984) For any set F of functions,

E
n sup

f∈F

{

P f −Pn f
}

≤ 2
n

E
n
Eσ sup

f∈F

n

∑
i=1

σi f (Zi).

Proof We have

E
n sup

f∈F

{

P f −Pn f
}

= E
n sup

f∈F

{

E
′n [P′

n f ]−Pn f
}

≤ E
2n sup

f∈F

{

P′
n f −Pn f

}

= E
2n

Eσ sup
f∈F

1
n ∑σi( f (Z′

i)− f (Zi))

≤ 2
nE

n
Eσ sup

f∈F
∑σi f (Zi).

The following lemmas, due to Panchenko, allow to convert transductive bounds into inductive
ones.

Lemma 18 For any function B : Z2n → R, if for any β > 0, with P
2n-probability at least 1−β, we

have B ≤ log(β−1), then for any β > 0, with P
n-probability 1− eβ, we have

E
′nB ≤ log(β−1).

Proof It directly comes from Lemma 1 in Panchenko (2003).

Lemma 19 Let B1, B2 and B3 be three functions of Z1, . . . ,Zn and Z′
1, . . . ,Z

′
n with B2 ≥ 0 and B3 ≥ 0.

If for any β > 0, with P
2n-probability at least 1−β, we have

B1 ≤
√

B2(B3 + log(β−1))
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then for all β > 0, with P
n-probability 1− eβ,

E
′nB1 ≤

√

E′nB2 [E′nB3 + log(β−1)].

Proof It suffices to modify slightly the proof of Corollary 1 in Panchenko (2003). Specifically, we
apply Lemma 18 to the quantity B := supλ>0

{

4λ(B1−λB3)−B2
}

since simple computations show
that

{

B ≥ log(β−1)
}

=
{

B1 ≥
√

B3(B2 + log(β−1))
}

.

B.3 Proof of Known Results

Here we prove the results presented in the survey section (see Section 2).

B.3.1 PROOF OF INEQUALITY (5)

For any t ∈R, Hoeffding’s inequality (see Section B.1) implies P
n [P f −Pn f > t]≤ e−2nt2

. Choosing
β = e−2nt2

, we obtain

P f −Pn f ≤ 1√
2

√

log(β−1)

n
.

B.3.2 PROOF OF INEQUALITY (6)

Statement (5) holds uniformly over |F | functions with probability at least 1− |F |β. Setting β′ =
|F |β, we obtain the desired result.

B.3.3 PROOF OF INEQUALITY (7) (VAPNIK AND CHERVONENKIS, 1971)

First, use the symmetrization lemma 16. Denote FZ,Z′ the set of vectors formed by the values of each
function in F on the double sample. Let σi be independent random signs (+1,−1 with probability
1/2). We have

P
2n

(

sup
f∈F

{

P′
n f −Pn f

}

≥ t
2

)

= P
2n

(

sup
f∈FZ,Z′

{

P′
n f −Pn f

}

≥ t
2

)

= PσP
2n

(

sup
f∈FZ,Z′

1
n ∑n

i=1 σi[ f (Zi)− f (Z′
i)] ≥ t

2

)

= E
2n

Eσ sup
f∈FZ,Z′

�
1
n ∑n

i=1 σi[ f (Zi)− f (Z′
i)]≥ t

2

≤ E
2n

Eσ ∑
f∈FZ,Z′

�
1
n ∑n

i=1 σi[ f (Zi)− f (Z′
i)]≥ t

2

≤ E
2n|FZ,Z′ | sup

b∈{−1;0;+1}n
Pσ
(

1
n ∑n

i=1 biσi ≥ t
2

)

≤ e−
nt2
8 E

2n|FZ,Z′ |,

where the last step comes from Hoeffding’s inequality. Putting β = 2E
2n|FZ,Z′ |e− nt2

8 , we get with
probability at least 1−β,

∀ f ∈ F , P f −Pn f ≤
√

8

√

logP2nN(F ,1/n,d2n)+ log(2β−1)

n
.
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B.3.4 PROOF OF INEQUALITY (13) (MCALLESTER, 1998)

We use the same C as for statement (5). The probability that (13) does not hold is upper bounded
with

∑
f∈F

P
n

[

P f −Pn f > C

√

log1/[βπ( f )]
n

]

≤ ∑
f∈F

π( f )β = β.

B.3.5 PROOF OF INEQUALITY (11)

To prove (11), we replace Hoeffding’s inequality with Bernstein’s inequality (see Section B.1):

P
n [P f −Pn f > t] ≤ e−

nt2
2Var f +2t/3 . Then choosing β equal to the right-hand side gives the result.

B.3.6 PROOF OF INEQUALITY (14) (MCALLESTER, 1999; SEEGER, 2003)

Let c ≥ 1/2. Here we propose a slightly different proof in order to get rid of the logarithmic term in
(14). Using Jensen’s inequality and Lemma 7, we get

[ρn(P f −Pn f )+]2 ≤ ρn(P f −Pn f )2
+ ≤ c

n

(

logπe
n
c (P f−Pn f )2

+ +K(ρn,π)
)

.

Moreover, by Markov’s inequality and Fubini’s Theorem, we have

P
n
[

logπe
n
c (P f−Pn f )2

+ > t
]

≤ e−tπE
n
[

e
n
c (P f−Pn f )2

+

]

,

and
E

ne
n
c (P f−Pn f )2

+ =
R +∞

0 P
n
(

e
n
c (P f−Pn f )2

+ ≥ u
)

du

= 1+
R en/c

1 P
n
(

P f −Pn f ≥
√

c logu
n

)

du

≤ 1+
R en/c

1
du

u−2c

= 1+ 1−e−n(2c−1)/c

2c−1 ,

where the inequality comes from the proof of (5). Taking β = 1 + 1−e−n(2c−1)/c

2c−1 e−t , we obtain for
c = 1/2, with probability at least 1−β,

ρn(P f −Pn f ) ≤ 1√
2

√

K(ρn,π)+ log(2n+1)+ log1/β
n

and for any c > 1
2 , with probability at least 1−β,

ρn(P f −Pn f ) ≤
√

c

√

K(ρn,π)+ log( 2c
2c−1)+ log1/β

n
.

B.3.7 PROOF OF INEQUALITY (10)

From Theorem 15 and Lemma 17, we obtain that with probability at least 1−β,

sup
f∈F

(P f −Pn f ) ≤ 2
n

E
n

[

Eσ sup
f∈F

∑σi f (Zi)

]

+
1√
2

√

log(β−1)

n
. (19)
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B.3.8 PROOF OF INEQUALITY (8)

The starting point is Inequality (19). Let fn be the function achieving the supremum. (To shorten
the proof, we assume its existence.) Introduce the vectors h∗ and h(0) such that h∗i = fn(Zi) and

h(0)
i = 0. Consider the canonical distance on R

n: ‖x‖ :=
√

∑x2
i , and take the minimal covering nets

Nk of the set of vectors {[ f (Zi)]i=1,...,n : f ∈ F } of respective radius 2−k for k = 1, . . . ,K where K :=
blog2

√
nc+1. Let h(k) be a nearest neighbour of h∗ in the net Nk. Let ek := Eσ max

(h′,h′′)∈ ¯̄Nk

∑i σi( fi−gi)

and
¯̄Nk :=

{

h′ ∈ Nk,h′′ ∈ Nk−1 : ‖h′−h′′‖ ≤ 32−k
}

.

We have

Eσ sup
f∈F

∑σi f (Zi) = Eσ ∑σih
∗
i

= Eσ ∑σi

(

h∗i −h(K)
i

)

+Eσ∑
i,k

σi

(

h(k)
i −h(k−1)

i

)

≤ 1+Eσ∑
i,k

σi

(

h(k)
i −h(k−1)

i

)

≤ 1+∑
k

Eσ ∑
i

σi

(

h(k)
i −h(k−1)

i

)

≤ 1+∑
k

ek.

From the following lemma, using that for any (h′,h′′) ∈ ¯̄Nk, ‖h′−h′′‖ ≤ 3×2−k and | ¯̄Nk| ≤ |Nk|2,
we get ek ≤ 3×2−k

√

4n logN(F ,2−k,dn).

Lemma 20 (Pisier 1986) Let σi, i = 1, . . . ,n be Rademacher variables and c j, j = 1, . . . ,J be R
n-

vectors such that for any j ∈ {1, . . . ,J}, ‖c j‖ ≤ c. Then we have

E max
j∈{1,...,J}∑i

σic j,i ≤ c
√

2n logJ.

Proof For any λ > 0, we have

E max
j∈{1,...,J}∑i

σic j,i ≤
1
λ

log∑
j

Ee∑i λσic j,i ≤ logJ
λ

+
λnc2

2
.

Optimizing the parameter λ, the upper bound becomes c
√

2n logJ.

Then we have
∑k ek ≤ 12

√
n∑2−(k+1)

√

logN(F ,2−k,dn)

≤ 12
√

n
R 1

0

√

logN(F ,r,dn)dr.

To conclude, the chaining trick showed that Rademacher averages are bounded by the Koltchinskii-
Pollard integral.

886



COMBINING PAC-BAYESIAN AND GENERIC CHAINING BOUNDS

B.3.9 PROOF OF INEQUALITY (9)

The proof is inspired from Talagrand (1996). Let
(

π( j)
)

j∈N
be a family of probability distributions

on F . We want to prove that the Rademacher averages are bounded with

C sup f∈F ∑∞
j=1 r− j

√

log{1/π( j)[A j( f )]}. For any j ∈ N and any A ∈ A j, we choose an arbitrary

point xA ∈ A. Let us define p j( f ) := xA j( f ) and S j := {p j( f ) : f ∈ F }. We have A0 = {F }. Let
f0 = xF . Define X f := ∑i σi f (Zi).

From Cauchy-Schwarz inequality, we have sup
σ,Z1,...,Zn, f

|X f −Xp j( f )| ≤
√

nr− j, hence ∑ j≥1[Xp j( f )−

Xp j−1( f )] converges uniformly towards X f −X f0 . Introduce a probability distribution π′ such that

π′({xA}) ≥ 2− j−1π( j)(A) for any A ∈ A j. Define the quantities a j( f ) := r− j+1
√

2n log[2/π′( f )]
and M := sup

f∈F
∑ j≥1 a j[p j( f )]. We have

Eσ exp
{

λ(X f −Xg)
}

= ∏n
i=1 Eσ exp

{

σiλ[ f (Zi)−g(Zi)]
}

= ∏n
i=1 cosh{λ[ f (Zi)−g(Zi)]}

≤ ∏n
i=1 exp

{λ2[ f (Zi)−g(Zi)]
2

2

}

= e
nλ2d2

n ( f ,g)
2 ,

hence for any u > 0, Pσ(X f −Xg ≥ u) ≤ e
− u2

2nd2
n ( f ,g) . Then for any u ≥ 1, we get

Pσ

(

sup
f∈F

{

X f −X f0

}

≥ uM

)

≤ ∑
j≥1,v∈S j

Pσ

[

Xv −Xp j−1(v) ≥ ua j(v)
]

≤ ∑
j≥1,v∈S j

e
−

u2a2
j (v)

2nDiam2A j−1(v)

≤ ∑
j≥1,v∈S j

e
−u2 log 2

π′(v)

≤ 21−u2
,

since π′(v)u2 ≤ π′(v). We obtain

Eσ sup
f∈F

X f = Eσ sup
f∈F

{

X f −X f0

}

≤ R +∞
0 21−u2

duM ≤ 2.2M.

By plugging the definitions of X f and M, we obtain

Eσ sup
f∈F

∑i σi f (Zi) ≤ 4
√

n sup
f∈F

∑ j≥1 r− j+1
√

log{2 j+2/π( j)[A j( f )]}.

From (19) and by using that
√

log{2 j+2/π( j)[A j( f )]} ≤√
j +2+

√

log{1/π( j)[A j( f )]}, we get the
desired result.
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