
SPECIAL FEATURE: PERSPECTIVE

Combining paleo-data andmodern exclosure
experiments to assess the impact of megafauna
extinctions on woody vegetation
Elisabeth S. Bakkera,1, Jacquelyn L. Gillb, Christopher N. Johnsonc, Frans W. M. Verad, Christopher J. Sandome,
Gregory P. Asnerf, and Jens-Christian Svenningg

Edited by Christopher E. Doughty, University of Oxford, Oxford, United Kingdom, and accepted by the Editorial Board August 25, 2015
(received for review March 18, 2015)

Until recently in Earth history, very large herbivores (mammoths, ground sloths, diprotodons, and many

others) occurred in most of the World’s terrestrial ecosystems, but the majority have gone extinct as part

of the late-Quaternary extinctions. How has this large-scale removal of large herbivores affected land-

scape structure and ecosystem functioning? In this review, we combine paleo-data with information from

modern exclosure experiments to assess the impact of large herbivores (and their disappearance) on

woody species, landscape structure, and ecosystem functions. In modern landscapes characterized by

intense herbivory, woody plants can persist by defending themselves or by association with defended

species, can persist by growing in places that are physically inaccessible to herbivores, or can persist where

high predator activity limits foraging by herbivores. At the landscape scale, different herbivore densities

and assemblages may result in dynamic gradients in woody cover. The late-Quaternary extinctions were

natural experiments in large-herbivore removal; the paleoecological record shows evidence of widespread

changes in community composition and ecosystem structure and function, consistent with modern exclo-

sure experiments. We propose a conceptual framework that describes the impact of large herbivores on

woody plant abundance mediated by herbivore diversity and density, predicting that herbivore suppres-

sion of woody plants is strongest where herbivore diversity is high. We conclude that the decline of large

herbivores induces major alterations in landscape structure and ecosystem functions.
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During the late Quaternary, megafaunas were drasti-
cally reduced in most regions (1, 2), representing the

start of an ongoing trophic downgrading that has

resulted in the loss of entire functional guilds and re-

laxation of top-down control in today’s ecosystems (3).

A high proportion of the large herbivores that have

survived into the Anthropocene (4) are now drastically

reduced in range and abundance, rendering them

functionally extinct, or have been replaced by live-

stock in much of their historic ranges (5–8). How has

this loss of wild-living large herbivores affected land-

scape structure and ecosystem functioning?
Contemporary large herbivores have strong effects

on the abundance of woody species, plant diversity,

nutrient cycling, and other biota (9). Most likely, the

ecological effects of preextinction herbivores were

as large, possibly much more so given the great size

and diversity of the lost large herbivore assemblages

(10, 11). We hypothesize that Pleistocene herbivore

assemblages, including large and megaherbivore

browsers, would have greatly reduced woody plant

abundance and altered species composition and land-

scape structure, if present at sufficient densities. We

review the impact of large herbivores (≥45 kg in body

weight) on woody vegetation, with a focus on mega-

herbivores (≥1,000 kg), and combine information from

modern exclosure experiments with paleoecological
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records to estimate herbivore impacts and the consequences of

their late-Quaternary declines.

Impact of Large-Herbivore Assemblages on Woody Plant
Abundance
Much of our understanding of the impact of large herbivores on

woody vegetation comes from Africa, where the Pleistocene her-

bivore assemblage has remained fairly intact, albeit at a much re-

duced distribution and abundance (8). Exclosure studies in African

savannas reveal that species-rich herbivore assemblages may re-

duce woody species cover by 15–95% (Fig. 1A) (12–17). This broad

range reflects factors such as body size and feeding mode (18) and

soil fertility, topography, and hydrology (12, 19, 20).
African elephants (Loxodonta africana) have strong effects on

woody plants due to their physical strength and height (21),

causing disproportionate mortality of adult shrubs, by pulling

them out (16), and trees, by pushing them over (22). Experiments

with size-selective exclosures on savannas showed that elephants

accounted for more than 80% of all woody plant loss across all

plant height classes (22) whereas exclusion of elephants resulted

in 42% more trees (23). Furthermore, elephants and all large

herbivores debark trees and also feed on saplings and adult

Fig. 1. Modern exclosure experiments demonstrate strong impacts of large herbivore assemblages on woody plants. (A) In subtropical savanna, a
diverse large herbivore assemblage (>5 kg) greatly reduces the abundance of woody plants outside the 302-ha exclosure (upper part of the
picture) (12). The 3D infrared color indicates woody vegetation (in red, more intense red revealing more gross primary productivity) and
herbaceous vegetation (in green–blue). Fire is controlled both inside and outside of the exclosure [Carnegie Airborne Observatory image (122),
Kruger National Park, South Africa (12)]. (B) In temperate wetland grasslands, Heck cattle, Konik horses, and red deer (Cervus elaphus) break
down the established elderberry woodland (Sambucus nigra) where it is not protected by fencing (123) (Oostvaardersplassen, The Netherlands).
(C) In the boreal forest, after logging, white-tailed deer strongly influence the recruitment of woody species, with the exclosure dominated by
palatable deciduous species whereas a spruce parkland developed under intense browsing (38) (Anticosti Island, Quebec, Canada). (D) Thorny
shrubs (Prunus spinosa) function as natural exclosures, where they protect establishing palatable oak (Quercus sp.) from herbivory (35, 47)
(Borkener Paradies, Germany). (E) In temperate sagebrush and grassland vegetation, American bison (Bison bison) and elk (Cervus elaphus)
strongly suppress establishment of palatable trees (Populus sp.), which abundantly regenerate inside the exclosure (center of the picture)
(Yellowstone National Park, United States). C courtesy of Bert Hidding.
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shrubs and trees without killing them, but with the effect of lim-
iting woody plant growth and abundance (Fig. 1B) (17, 24). The
removal of large browsers is thought to generally lead to a net
increase in abundance of woody plants (20), but this effect de-
pends in part on the compensatory response of smaller herbi-
vores, which can have strong impacts, particularly on the
recruitment of woody species (14, 16, 25–28).

Ground-dwelling browsers control woody plants mainly by
increasing mortality in early life stages or suppressing growth to
maturity by injuring plants or removing photosynthetic tissue.
These impacts depend on plant height and the reach of the her-
bivore assemblage (29): Plants can be subject to a “browser trap”
where they experience high impact while within the reach of
browsers, but escape this trap by growing beyond the browse
height. In species-rich herbivore communities, containing large as
well as small browsers and a variety of feeding strategies,
browsing impacts extend to a wider range of plant growth stages.
Demographic bottlenecks imposed by browsing are therefore
more difficult to escape (13, 14, 16). Temporary reductions in
herbivore numbers allow trees to regenerate and grow into taller
height classes, escaping herbivory by the time herbivore pop-
ulations have recovered (17). Fruit and seed consumption might
offset the demographic effects of browsing injury by seed dis-
persal, but the net effect of large herbivore assemblages on seed
predation versus dispersal remains unclear (16).

The feeding mode of herbivores dictates their impact on
woody plants. Browsers generally have direct inhibitory effects on
growth and survival of woody plants. Grazers can suppress woody
plants through trampling or occasional feeding, but can also pro-
mote recruitment and survival by reducing competition with her-
baceous vegetation, thereby reducing rodent densities and
reducing fire frequency by preventing fuel accumulation (15, 30,
31). Nevertheless, feeding mode impacts are complex and poorly
understood because large herbivores are often mixed feeders (32).

Impact of Large Herbivores on Woody Plant Species
Composition
By selecting palatable species, large herbivores affect woody
species composition and promote the abundance of defended
browsing-tolerant shrubs and trees (33, 34); furthermore, by cre-
ating a certain degree of vegetation openness, they promote the
abundance of light-demanding woody species (35). Exclosure
studies have documented these effects across a broad range of
biomes. For example, in the North American boreal forest, moose
(Alces americanus) and white-tailed deer (Odocoileus virginianus)
selectively feed on hardwoods and the soft-needled balsam fir
(Abies balsamea), but avoid the hard-needled white spruce (Picea
glauca) (36), creating a spruce parkland, whereas hardwood spe-
cies dominate in exclosures (Fig. 1C) (37, 38). In deciduous forest,
deer browsing likewise reduces regeneration of palatable hard-
wood species, resulting in a more open habitat resembling oak
savanna, with many light-demanding plant species (39). Browsers
shift the species composition of African savanna from dominance
by palatable shrubs to dominance by thorny acacias (14) and
chemically defended or browsing-tolerant species (40).

Similar dynamics are seen in response to forest management.
In European forest reserves, removal of domestic cattle and
horses and culling of wild ungulates, such as deer and European
bison (Bison bonasus), have resulted in the expansion of shade-
tolerant tree species such as lime (Tilia spp.), hornbeam (Carpinus
betulus) and beech (Fagus sylvatica), creating closed canopy

forest and out-competing the shade-intolerant oak (Quercus spp.)
(41–44).

Spatially Structured Landscapes
In landscapes characterized by intense herbivory, woody plants
can persist by defending themselves, by associating with defen-
ded species, or by growing in areas that are physically in-
accessible or that are risky for herbivores because of high activity
of predators (34, 45). The resulting variation in the local intensity
of herbivory can create spatial mosaics of herbaceous plants,
shrubs, and trees.

Palatable woody species can regenerate in the vicinity of
thorny or poisonous forbs and shrubs that protect them from
browsing (Fig. 1D) (46–48). Cyclic succession may occur as
grasslands are colonized by thorny shrubs, from which palatable
trees can grow, which outcompete the shrubs; with death of the
trees, herbivory suppresses woody plant regeneration, returning
the system to a grassland state. Because, spatially, patches are
out-of-phase over time, this cyclic succession may result in a
mosaic of grasslands, shrubs, single trees, and clumps of trees at
the landscape scale (35).

Alternatively, palatable species may grow in areas that are
physically inaccessible, such as steep slopes or between rocks and
logs (49, 50). Spatial heterogeneity in landscape structure can also
be induced by the presence of predators imposing a landscape of
fear (51). As a response to perceived predation risk, often het-
erogeneously distributed across the landscape (52), herbivores
may select less risky areas, creating spatial variability in herbivore
pressure and thus varying impacts on vegetation (34, 53). There-
fore, the presence of predators can allow local increases in the
abundance of woody species, such as observed after the in-
troduction of wolves in temperate woodlands followed by re-
duced browsing pressure from deer and locally enhanced
recruitment of palatable shrubs and trees (45, 54–56), resembling
that observed in exclosures (Fig. 1E).

Because extremely large size confers a high degree of in-
vulnerability to predation (21), adult megaherbivores may prefer
areas with a higher density of trees, because of greater forage
availability, whereas smaller herbivores often prefer open grass-
land due to higher risk of ambush by predators in the woodland
(53). As a result, assemblages of different-sized herbivores will
exert spatially heterogeneous grazing and browsing pressure
across the landscape, which affects woody plant abundance and
species composition (34).

How Did Extinct Late Pleistocene Megaherbivores Affect
Woody Plants?
The interpretation of extinct megaherbivore impact relies on the
comparison with the ecology of modern megaherbivores. There
are 8 extant megaherbivores, from three orders (Cetartiodactyla,
Perissodactyla, Proboscidea), and 35 extinct megaherbivores
from the Late Pleistocene, from seven orders (Cetartiodactyla,
Cingulata, Diprotodontia, Notoungulata, Perissodactyla, Pilosa,
and Proboscidea) (1). An open question is whether extinct meg-
aherbivores would have had similar effects on woody plants as
their contemporary closest relatives. The nine extinct Late Pleis-
tocene proboscideans had divergent feeding strategies, from the
predominantly grazing woolly mammoth (Mammuthus pri-
migenius) to the browsing American mastodon (Mammut ameri-
canum) (57–59), the latter being supposedly most similar in
feeding ecology to present-day browsing black rhinoceros
(Diceros bicornis) or moose (A. americanus) (60, 61). Whereas
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some niche separation was evident (57, 61, 62), recent multiproxy

data on megaherbivore paleodiets suggests that many were

mixed feeders that adapted their diets to local plant availability

(62–64). Similarly, extant megaherbivores are mostly mixed

feeders with a few grazing specialists like the hippopotamus

(Hippopotamus amphibius) and white rhinoceros (Ceratotherium

simum) (65). Further work comparing the guild structures of

megaherbivores both in the present and the Late Pleistocene

would provide better understanding of the potential impact of

these species on vegetation structure.
Extinct megaherbivores would have impacted woody plants

through consumption, but also by other physical impacts. Wear

patterns on the teeth and tusks of mastodons have been inter-

preted as indication of their bark stripping behavior (60, 66), which

would undoubtedly have killed many trees and shrubs as ob-

served with contemporary African elephants (59). Selective feed-

ing of mastodons on spruce may have contributed to the spruce–

pine transition in the US Great Lakes region in the Late Pleisto-

cene (57). Furthermore, many extinct and extant megaherbivores

are avid fruit consumers and thus contributed strongly to the

abundance of woody plants through dispersal of fruits, in partic-

ular those that bear the megafaunal dispersal syndrome (67, 68).
The paleoecological record provides evidence of geo-

morphological engineering by mammoths, presumably digging

for water and mineral-rich sediments, trail formation, and tram-

pling, similar to what elephants do today (69). Combined geo-

engineering and enhanced nutrient cycling by extinct mega-

herbivores would have significantly contributed to the mainte-

nance of open habitats, dominated by fast growing palatable

herbaceous vegetation over slower growing woody species (59,

70). The impact of Pleistocene herbivore assemblages may have

been amplified by lower atmospheric CO2 concentrations during

glacial episodes. Low CO2 probably limited woody plant growth,

impeding recovery from herbivory and increasing total impact of

herbivores (71, 72).

Evidence of Large-Herbivore Impact from the
Paleoecological Record
The extinction and density reductions of Late Pleistocene large

herbivores represent a grand removal experiment (1). We assess

this experiment by comparing landscape structure and vegetation

composition in the presence and absence of Late Pleistocene di-

verse large-herbivore faunas over time, under more or less similar

climatic conditions. Similarities between patterns of woody plant

response to large herbivore removal in the paleoecological record

and modern exclosure experiments are indicated in Table 1.
The initial ecological adjustment of plant communities to re-

lease of browsing and grazing after megafauna extinctions should

be completed within relatively short periods of decades or cen-

turies and can thus seem rapid in paleoecological records span-

ning thousands of years. After that, long-term changes, such as

through reduced seed dispersal, would continue to influence

plant species distributions up until present times (67). The eco-

logical consequences of megafaunal extinctions have received

little study, which is in part due to limitations inherent to com-

paring a discontinuous vertebrate bone record with a vegetation

record constructed primarily from lake sediment records that are

typically not associated with megafaunal fossils. Recently, the use

of Sporormiella and other coprophilous fungi has shown promise

for determining the abundance of large herbivores and testing

their impact on vegetation in the paleoecological record. Spor-

ormiella spores are preserved in lakes and mires along with pollen

Table 1. Examples of the impact of large herbivores on woody plants, species composition, and landscape structure as found in
contemporary (exclosure) studies and from the paleoecological record

Process Contemporary pattern Paleoecological record

Large herbivores reduce the

abundance of woody

plants.

Higher woody plant cover in exclosures and after removal

of large herbivores (12–16)

Landscapes of previous interglacials seem to have been

more open than after Pleistocene extinctions in the early

Holocene (81, 82).

Moas may have maintained mosaics of open canopied

woodland and scrub (95).

Large herbivores induce shifts

in woody species

composition.

Under intense browsing, unpalatable and thorny species

thrive and palatable species are suppressed (14, 37, 40).

Increase in palatable and shade-tolerant hardwoods

immediately after the Pleistocene extinction in North

America (75, 78).

Browsing may also promote browsing-tolerant

species (102).

Increase in unpalatable trees during historically high

herbivore densities in European forest (111).

Under intense herbivory, light-demanding trees and

shrubs are promoted (35, 39).

Large herbivore impact is

mediated by soil fertility.

More thorny shrub species in fertile habitats may indicate

higher browsing pressure (35).

Vegetation openness was greater in fertile lowland areas,

compared with less fertile upland areas (82).

Higher elephant impact on treefall at fertile soils (22)

Herbivores modify vegetation

responses of woody plants

to climate and soils.

In tundras, herbivores can inhibit shrub encroachment

with climate warming (87), but this effect is site-

dependent (88).

Mosaic forest tundra in northeastern Siberia during the Last

Interglacial, with browsing tolerant trees frequent—likely

(at least partly) due to large herbivores (86).

In savannas, woody species cover does frequently not

reach its abiotic potential due to fire and herbivory

(115, 116).

Large herbivore presence maintained the mammoth

steppe in northeastern Siberia, which disappeared after

Late Pleistocene extinctions (70, 85).

Higher openness of vegetation in last interglacial than

expected based on climate and soil may be mediated

by large herbivores (81).

Herbivores reduce fuel load

for fires.

Herbivores reduce herbaceous biomass and fire

frequency, which benefits woody species, unless these

woody plants are also browsed (30, 116, 117).

Increased fire activity immediately after the Pleistocene

extinctions (73–76, 78)
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and so can be used to provide the ecological context of functional
large herbivore collapse (73–77).

Several pollen records from eastern North America show an
increase in hardwood deciduous taxa immediately after the
Sporormiella-indicated megafaunal decline, including increases in
palatable and shade-tolerant woody species (74, 75, 78), and a
more closed vegetation, consistent with release from browsing
pressure. The continued postextinction presence of light-demanding
oak (Quercus alba) indicates that the surviving large herbivores
could have maintained a certain degree of openness of the
landscape (42), which has also been ascribed to the effect of
dry climate and anthropogenic fires (79). Similarly, the now-
endangered grass balds of the southern Appalachian mountains
are hypothesized to be remnants of past herbivory (later main-
tained by Native American burning) (80).

Pollen and Sporormiella records from northeastern Australia
(76) during the last glaciation record a decline of large herbivores
around 40,000 years ago, followed by a shift from a mixed and
relatively open vegetation, consisting of elements of angiosperm
and gymnosperm rainforest along with sclerophyll species, to
pure sclerophyllous vegetation, in apparent absence of major
climate change. This vegetation shift was evidently due to a
combination of relaxed herbivory pressure and increased fire that
closely followed the onset of herbivore decline (76).

Evidence from fossil beetles indicates that regions of European
vegetation were more open in the Last Interglacial and supported
more dung beetles, than after the extinctions, in the pre-
agricultural Holocene. Some wood-pasture and moderate open
vegetation remained in the early Holocene, indicating a role for
the remaining wild herbivores (81–84).

In northeastern Siberia, the productive pastures of the mam-
moth steppe disappeared after the removal of the high densities
of large herbivores that may have maintained this ecosystem and
was replaced by mossy forests and tundras (85, 86). The modern
climate of this area is inside the mammoth steppe climatic enve-
lope, suggesting that the removal of high densities of large her-
bivores determined the biome transition from pasture to tundra
with woody plants (70). Modern experiments show that herbivores
can inhibit shrub encroachment on tundra with climate warming,
but this effect is site-dependent (87, 88).

The presence and loss of megafauna might also have long-
term impacts on biotic communities that are still ongoing and
witnessed by current plant traits that coevolved with megafauna,
which may be less adaptive in modern landscapes (e.g., ecolog-
ical anachronisms) (89). For example, woody species that are
adapted to megafauna dispersal (67) may still be experiencing
slow declines (90), depending on whether megafauna have been
substituted by smaller wild animals, domestic livestock, or hu-
mans. Similarly, coevolution with the recently exterminated moa
and elephant birds, flightless ratite birds 20–500 kg (91), can ex-
plain some remarkable idiosyncrasies of New Zealand and
Madagascar vegetation, especially the high representation of
“wire plants,” a growth form likely to have reduced the foraging
efficiency of moa, thus providing protection from browsing (92–
94). Browsing by moa might also have created canopy gaps that
sustained high diversity of light-loving herbs and regeneration of
light-demanded conifer seedlings (95).

In summary, modern studies and paleo-studies indicate that
removal of large herbivores is followed by increased abundance
of woody plants and altered vegetation composition and structure
toward less open landscapes, with more shade-tolerant and pal-
atable species (Table 1).

Under What Conditions Would Pleistocene Large
Herbivore Assemblages Have Had Most Impact?
Based on the evidence from modern exclosure studies and the

paleoecological record, we expect that the Late Pleistocene large

herbivore assemblages would have had at least equal, but prob-

ably stronger impacts on woody plant abundance than most

contemporary assemblages, due to their broader range of body

sizes and higher species-richness imposing more complete in-

hibition of woody plant life stages (Fig. 2). However, a central

question that needs to be answered is under what conditions were

herbivore densities high enough to have strong impacts on

landscape structure.
Landscape geomorphology plays an important role in sus-

taining particularly megaherbivore densities because these

animals often tend to avoid steep slopes. Therefore, high con-

centrations of large herbivores are more often found in a plains

habitat than in steep terrain, both in modern times and in the

Pleistocene, resulting in higher impacts on woody plants and

greater openness on plains (96, 97). The effect of terrain may be

amplified by hydrology because both modern and Pleistocene

large and megaherbivores frequently visit water bodies, resulting

in enhanced local landscape openness around fresh water (98).

Modern large herbivore communities reach their highest densities

and diversities at sites of high soil fertility, due to high food

quantity and quality (99, 100). Plant traits confirm this pattern

because woody species in fertile areas defend themselves heavily

with thorns or tolerate herbivory through rapid growth, indicating

adaptations to high browsing pressure (35, 47, 101, 102). Simi-

larly, during the Last Interglacial, open vegetation was found in

European lowlands whereas less fertile uplands were more

wooded, suggesting a larger herbivore impact in fertile habitats

(Table 1) (82).
Although the places in the landscape attracting the highest

densities of large herbivores can be identified, the absolute

densities and the fluctuations therein of Pleistocene large herbi-

vore assemblages remain difficult to determine. In the Late

Pleistocene, communities of large predators were also more di-

verse than today, and they probably limited the densities or

habitat use of large herbivores (103). Despite this predator di-

versity, Late Pleistocene densities of large herbivores at the

mammoth steppe in Alaska and northeastern Siberia have been

estimated at 88 and 105 kg·ha−1, respectively, during the Last

Glacial (61, 85). In the Last Interglacial in Great Britain, densities

were estimated at ≥2.5 large ungulates per hectare in over half of

the studied sites (81), which amounts to ≥125 kg·ha−1 (at a mean

ungulate weight of 50 kg). These densities of Pleistocene large

herbivores are in the range of the African game reserves (9–191

kg·ha−1 [in Pachzelt et al. (104)] and imply strong impacts on

woody plants. They also suggest that at least some landscapes

were kept open by herbivory, given that to allow regeneration of

modern temperate closed-canopy forests herbivore densities

(deer) have to be very low (<3.5 kg·ha−1) and that at densities of

>25 kg·ha−1 the forest is transformed toward oak savanna or

wood-pasture (39). The temperate wood–pastures, in turn, re-

spond fundamentally differently to herbivory than closed-canopy

forests because here trees can persist by regeneration within light-

demanding thorny shrubs, also in the presence of high densities

of large ungulates at fertile soils (110–187 kg·ha−1) (35, 47, 105,

106). More estimates of densities of Pleistocene herbivores would

greatly advance our understanding of their ecological impacts.
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Perspectives for Future Research
The paleoecological record provides several examples that sup-

port the hypothesis that the Quaternary extinctions of mega-

herbivores rapidly changed vegetation composition and structure

in different regions, but further tests are needed to confirm the

generality of these findings. We propose the following ap-

proaches to provide such evidence.

Geographically Spread Paleoecological Records. More de-
tailed, chronological records of herbivore abundance and vegeta-

tion change from the Late Pleistocene-to-Holocene transition are

needed to determine whether herbivore decline preceded vege-

tation change or not. Sampling more lake and peatland cores for

both pollen and Sporormiella would yield such data to allow gen-

eralization of the few currently available studies (75, 76), taking into

account improvements in the calibration of Sporormiella (77). Fur-

thermore, comparisons of landscape openness and herbivore

abundance before and after megafaunal extinctions under similar

climatic conditions yields evidence of the impact of large herbivores

[e.g., Sandom et al. (81)]. In both cases, the use of multiple proxies

for herbivore density and abundance of woody plants would be

valuable (Table 2) because each proxy will have its own limitations.

Proxies need to be calibrated with modern data. Geographical

spread of the sample locations across continents would allow for

further generalization of herbivore impact across taxonomically very

different faunas. These samples should be distributed over gradients

of climate, fertility, and topography to assess the abiotic factors

governing the impact of large herbivores on vegetation.

Large-Scale Modeling. Modeling climate envelopes in which
biomes occur, when regulated by climate conditions alone, allows

identification under what conditions large herbivore impacts

would potentially make a strong difference. Especially where al-
ternative vegetation states are climatically possible, this approach

generates testable hypotheses about the impact of herbivores,

such as in the case of the mammoth steppe and savannas (85,
107). These hypotheses could subsequently be addressed either

by adding herbivores in the model, using literature data or per-

forming experiments. Similarly, the present-day landscape struc-

ture and woody species composition can be linked to abundance
and species richness of large herbivore assemblages over large

biogeographical areas [see, for instance, Greve et al. (108)]. This

relationship will yield baseline data that can be applied to Late
Pleistocene conditions to predict what the landscape structure

was, given estimates of large herbivore abundances. Furthermore,

mechanistic models can be used to predict the interaction be-

tween herbivore communities and vegetation. Recently, large-
scale coupling of physiologically based vegetation and herbivore

population models has been applied to predict herbivore pop-

ulation dynamics at continental scales (104). This approach could
also be used to predict herbivore impact on the vegetation.

Experiments. Because woody species have long generation
times and spatial heterogeneity in landscape structure is a key

feature of wooded habitats under herbivory, small-scale and

short-term exclosures may capture only part of the resulting
woody plant dynamics at the landscape scale. Therefore, long-

term and large-scale experiments—including unintentional ex-

periments—are extremely valuable to determine large herbivore

impact on woody plants (12). These conditions can be found, for
instance, at the Finnish–Russian border [which had markedly dif-

ferent reindeer densities across the border (109)], in ongoing and

Fig. 2. Hypothesized impact of large herbivore removal on landscape structure, proportion of light-demanding woody species, and fire
frequency. All of these landscapes represent sites where the climate and soil allow trees to dominate. The dotted and dashed lines in A–C
correspond to the three herbivore assemblages indicated on the x axis of D. The three herbivore combinations represent a series of herbivore
diversity indicating simplification from the full Pleistocene fauna to the common late Holocene condition. We predict that removal of
megaherbivores would result in (A) increased woody plant abundance, (B) reduced percentage of light-demanding species, and (C) increased fire
frequency, depending on the densities of the remaining wild herbivores. (D) The resulting landscape structure. In essence, over time, the
landscape developed in many areas from open in the Late Pleistocene, with high densities of diverse herbivore assemblages (D, Top Right), to
defaunated wild herbivore communities controlled at low densities in the Holocene, resulting in a wooded landscape (D, Bottom Left), unless
livestock is introduced, which could take over the role of native extinct grazers, resulting in a wood pasture (D, Middle). In the wood pasture,
palatable light-demanding trees can regenerate within the protection of light-demanding thorny shrubs. When browsers are not managed, they
can reach high densities, resulting in an open landscape with unpalatable, light-demanding trees (D, Top Left).
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future rewilding projects (110), and in forest reserves where large
herbivores were removed to protect tree regeneration (42). In this
respect, the forestry literature may offer valuable information
about the regeneration ecology, competitive ability, and herbi-
vore tolerance of woody species (42, 44). Such long-term fencing
studies are also very useful to test proxies for herbivore and
woody species abundance in an experimental setting (111).

Study of Contemporary Large Herbivore-to-Megaherbivore

Impacts. Studies on current megaherbivore impacts are ex-
tremely valuable because these animals are the only proxies that
we have for extinct megafauna. Better insight into the behavior,
habitat preferences, and whole ecosystem functions of large
herbivores is required (112) to predict their impact on landscape
structure. Because most are experiencing alarming declines,
some may already be too rare to study whereas, for several spe-
cies, the wider impacts of their ecosystem engineering effects
only very recently have started to become clear (8, 113, 114).

Conclusions
Given the ecological importance of modern large herbivores, we
see the end-Pleistocene reduction in diversity and biomass of such
animals as being a significant event in global ecology. Growing
evidence supports the hypothesis that the loss of large herbivores
strongly affected woody plants and triggered regime shifts across
the World’s biomes. Linking large herbivores and their impact on
vegetation at Quaternary timescales is an enormous task, but an

interdisciplinary approach that combines proxy records and mod-
eling grounded by modern studies will help to link pattern and
process in the paleoecological record (Table 2). Modern large
herbivores are now among some of the most threatened species,
facing the combined threats of anthropogenic land use and climate
change (8). The ecological consequences of the end-Pleistocene
extinctions are therefore relevant not only to understanding the
vegetation changes of the early Holocene, but also to the man-
agement of ecosystems in the Anthropocene. In this respect,
modern and paleoecological analyses have much to contribute to
one another. Testing hypotheses to explain the variation in effects
of large herbivores and their decline on woody plants and land-
scape structure should be a priority for future work. This hypothesis
testing should integrate the effects of fire and herbivory across
large abiotic and geographical gradients to obtain a better un-
derstanding of herbivore regulation of woody plants and the im-
portance of herbivore body size, density, and diversity.
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