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Abstract [ System [# CPUY MTBF/I |
[ ' ASCIQ | 8192 6.5 hrs

Today's largest High Performance Computing (HPC) systerteed one ASCT White | 8192 | 5740 hrs (01703)
Petaflops {0'° floating point operations per second) and exascale systems PSC Lemieu 3:016 9.7 hre

are projected within seven years. But reliability is becognone of the major
challenges faced by exascale computing. With billion-qoaeallelism, the Google 15’00(1 20 reboots/day
mean time to failure is projected to be in the range of minuteshours ASC BG/L |212,9926.9 hrs (LLNL est.
instead of days. Failures are becoming the norm rather thHam éxception T
during execution of HPC applications. TABLE 1. Reliability of HPC Clusters [17]

Current fault tolerance techniques in HPC focus on reactwvays to Even for small systems, such causes result in fairly low

mitigate faults, namely via checkpoint and restart (C/R)as from storage _ti _ _fai i i
overheads, C/R-based fault recovery comes at an additionat in terms mean-time-between fallureS/lnterrths (MTBF“) as dm

of application performance because normal execution isugied when N Table_l, and the 6.9 hOl_JrS eSti_mated by Livermore Natio_nal
checkpoints are taken. Studies have shown that applicatieming at a large Lab for its BlueGene confirms this. In response, long-rugnin

scale spend more than 50% of their total time saving checdkporestarting applications on HPC installations are required to Supﬂmft t
and redoing lost work.

Redundancy is another fault tolerance technique, whichieyapedundant Checkpoint/restart (C/R) paradigm to react to faults. Tikis
processes performing the same task. If a process fails, lcaepf it can take  particularly critical for large-scale jobs: As the core nbu

over its execution. Thus, redundant_ copies can decrease)\zhsal_l failure increases, so does the overhead for C/R, and it does so at
rate. The downside of redundancy is that extra resourcesregeired and

there is an additional overhead on communication and syorihation. an exponential rate. This does not come as a surprise as any
This work contributes a model and analyzes the benefit of iC@Rardina- single component failure suffices to interrupt a job_ As we

tion with redundancy at different degrees to minimize thal twallclock time ;
and resources utilization of HPC applications. We furthenduct experiments add system components (SUCh as cores, memory and dISkS)’

with an implementation of redundancy within the MPI layeradluster. Our  the probability of failure combinatorially explodes.
experimental results confirm the benefit of dual and tripléuredancy — but For example, a study from 2005 by Los Alamos National

not for partial redundancy — and show a close fit to the modek:A&0, 000 . .
processes, dual redundancy requires twice the number eEpging resources Laboratory estimates the MTBF, eXtrapO|a‘tmg from current

for an application but allows two jobs of 128 hours wallclaie to finish System performance [26], to be 1.25 hours on a Petaflop
within the time of just one job without redundancy. For navreanges of machine. The wall-clock time of a 100-hour job in such as
processor counts, partial redundancy results in the lowiese. Once the . .

count exceedsz 770, 000, triple redundancy has the lowest overall cost.SyStem Wa.\S es'[_lmated to increase to 251 hours due to the C/R
Thus, redundancy allows one to trade-off additional reseurequirements Overhead implying that 60% of cycles are spent on C/R alone,
against wallclock time, which provides a tuning knob forras® adapt to gg reported in the same study. More recent investigaticﬂr,ls [7

resource availabilities. [8] revealed that C/R efficiency,e., the ratio of useful vs.

1. Introduction scheduled machine time, can be as high as 85% and as low
Today's HPC systems are commonly utilized for longaS 55% on current-generation HPC systems.

running application jobs that employ MPI message passing # Nodegwork]| checkpf{recomp]restar

as an execution model [16], [35]. Yet, application exeautio 100 96;%) 12/0 32/0 OgA)

may be interrupted by faults. For large-scale HPC, faults 1%’888 %Q 1;({/‘; éojg 2(2

have bec_ome the norm ra_ther than the exception for parallel 100100C 35%  20%| 10%| 35%

computation on clusters with 10s/100s of thousands of cores

Past reports attribute the causes to hardware (1/O, memory, TABLE 2. 168-hour Job, 5 year MTBF

processor, power supply, switch failure etc.) as well a$-sof A study by Sandia National Lab from 2009 [14] shows
ware (operating system, runtime, unscheduled maintenamggidly decaying useful work for increasing node count (se
interruption). In fact, recent work indicates that (i) senw Table 2). Only 35% of the work is due to computation for a
tend to crash twice a year (2-4% failure rate) [32], (i) 1-5%68 hour job on 100k nodes with a MTBF of 5 years while the
of disk drives die per year [27] and (ii)) DRAM errors occulremainder is spent on checkpointing, restarting and thetiapa
in 2% of all DIMMs per year [32], which is more frequentrecomputation of the work lost since the last checkpoirtl&a
than commonly believed. 3 shows that for longer-running jobs or shorter MTBF (closer
This work was supported in part by NSF grants 1058779, 09588937908, to the ones repo_rted _above)’ useful work becomeignificant
DOE DE-AC05-000R22725 as well as by subcontracts from Gaadd as most of the time is spent on restarts.

Lawrence Berkeley (LBL-6871849) National Laboratoriebe Tresearch at The most important finding of the Sandia study is that
SNL was supported by DOE DE-AC04-94AL85000 and that at ORNQffice

of Advanced Scientific Computing Research and DOE DE-AQ@IR22725 rgdundancy n cqmputlng can S'gn'f'camly revert this
with UT-Battelle, LLC. picture. By doubling up the compute nodes so that every




job work| MTBF|work|checkptrecomp]restar - e o i
168 hrd 5 yrs| 35% 209 10%| 35% Individual faults are generally classified into permanénain

700 hrd 5 yrs| 38%|  18% 0%| 43% sient, and intermittent [1]. A permanent fault is a faultttha
5,000 hrs 1yr| 5% 5% 5%| 85% exists until it is repaired. A transient fault is a fault tleedists

TABLE 3. 100k Node Job, varied MTBF for a finite time and disappears at an unknown frequency.

node N has a shadow node N', a failure of primary no(]lgtermlttent faults occur and disappear at a known frequenc

N no longer stalls progress as the shadow node N’ can takeA parallel HPC system is composed of a number of system

over its responsibilities. Their prototype, rMPI, provideual pomponents with processes that cooperate to sol\{e a single
redundancy [14]. Andedundancy scalesAs more nodes are job. The system components (nodes) are coupled via commu-

added to the system, the probability for simultaneous fiaia nication so that the failure of one process can lead to failur

a primary Nand its shadow rapidly decreases. This is due { f the ent|_re job. Progess fa|l.ure is often classified inte oh
- the following categories [10]:
the fact that only one node of the remaining n-1 nodes after ) ;
(1) Fail-stop failure: when the process completely stops,

a failure represents the shadow node, and only failing this . due to system crash. (2) Omission failure: if a process

node causes the job to fail — and choosing just that shad 'I to send or receive messages correctly. (3) Byzantine
node becomes less likely as the number of nodes increaPaéﬁ ) Sag ctly. y
ailure: when a process continues operating but propagates

(see the “birthday problem” in Section 4 for details). Of the : ;
r[eneous messages or data. Byzantine failures are usually

above overheads, the recompute and restart overheads can . .
L . .. _caused by soft errors resulting from radiation.
nearly eliminated (to about 1%) with only the checkpointing In this work. we focus on the issues emanating from fail-
overhead remaining — at the cost of having to deploy tWiceto rocess %ailures Detection and correction o%‘ Bynanti
the number of nodes (200,000 nodes in Table 3) and uDchr;rsf) usin software. redundancy and voting are beyond the
four times the number of messages [14]. But once restart aSnC(EO o of th?s aper y 9 y
rework overheads exceed 50%, redundancy becaheaper P Paper. . . .
I Fault tolerance uses protective techniques to provide a
than traditional C/R at large core counts.

. resilient computing environment in the presence of fasure
In summary, redundancy cuts down the failure rate of t ; e )
L . : . These techniques can be broadly classified into Algorithm-
MPI application, which result in less overhead for checkpoi .
. ) S .. Based Fault Tolerance (ABFT), message logging, check-
ing and repeated execution. The downside is that additional: L ;
0|f1t/restart and replication/redundancy. ABFT requisps-

computing resources are required depending on the degreg.o :
redundancy, i.e, dual (2x), triple (3x) or some partial levk cial algorithms that are able to adapt to and recover from pro

redundancy (1.5x, 2.5x). There is also an increase in tha tfess loss due to faults [19]. ABFT is achieved by techniques
execution time.du,e fo rédundant communication such as data encoding and algorithm redesign. MPI-based

Contributions: In this work, we try to answer following ABFT applications require resilient message passing., E.g.

L . FT-MPI [12] continues the MPI task even if some processes
questions: (1) Is it advantageous to use both C/R and Gfe lost. Applications that follow a master/slave progra
dundancy at the same time to improve performance or jgb - APP prograngn

throughput? (2) What are the optimal values for the (pa)rtiaﬁarad'gm can be easily adapted to ABFT applications [22].

degree of redundancy and checkpoint interval to achieve tlheMessage logging techniques record message events n a
0g that can be replayed to recover a failed process from its
best performance?

HPC users, depending on their needs, may have differ('arrlltteT.rT]et(.j'at(t3 stzt:. AIL ”lﬁss"’?ge Ioggmdg :eChn'qlffS reqhar

goals. The primary goal of the user may be to complefé)p cation to adnere o Ie piecewise deterministic ap‘:““_ m
N A . at states that the state of a process is determined bytitd in

application execution in the smallest amount of time. Oth% te and by the sequence of messages delivered to it [30].

users may want to execute their application with the leas ; . . .
y . PP ({,heckpomt/restart (C/R) technigues involve taking snap-
number of required resources. A user may also create a cgs

function giving different weights to execution time and riagn Shots of the app_llcatlon dun_ng failure-free operation in a
of resources used. synchronous fashion and storing them to stable storagen Upo

. : failure, an application is restarted from the last sucaegssf
We derive a mathematical model to analyze the effect 01 : . .
eckpoint. Stable storage is an abstraction for somegstora

. .. .C
using both redundancy and checkpointing on the executlggvices ensuring that recovery data persists throughrésilu

time of the application. Using this model, we identify thesbe Checkpoint Restart: The C/R service supported by MPI

configuration to optimize the cost of executing the appiacat . . o ; .
ryntlme environments utilizes a single-process checksan

We further conduct experiments with an implementation o I : o .
. . vice specified by the user as a plug-in facility. Depending
combined C/R and redundancy within the MPI layer on a . S
. , : upon the transparency with regard to the application progra
cluster. These experimental results confirm the benefit af du; : . o
. , single-process checkpoint techniques can be classifieg-as a
and triple redundancy and show a close fit to the model. Parfi : -
. . plication level, user level or system leve\pplication-level

redundancy where just a subset of nodes are replicated ofl . ! . : : -
) s chieckpoint services interact directly with the applicatim

has a narrow window of applicability.

capture the state of the program [38]ser-levelcheckpoint

2. Background services are implemented in user space but are transparent
A widely researched topic in HPC is to mitigate the effect® the user application. This is achieved by virtualizing al

of faults occurring during the execution of an applicatiorsystem calls to the kernel, without being tied to a particula



kernel [24]. System-levecheckpointing services are eitherfull one to create a complete process image.
implemented inside the kernel or as a kernel module [9]. Redundancy: To decrease the failure rate for large-scale
The checkpoint images in system-level checkpointing ate rapplications, redundancy can be employed at the procesk lev
portable across different kernels. for our experimentsysed [14], [21]. Multiple copies (or replicas) of a process run
Berkeley Lab Checkpoint Restart (BLCR) [9], a system-leveimultaneously, so that if a process stops performing iirelé
checkpoint service implemented as a Linux kernel module.function, a replica of the process can take over its comjmutat
The state of a distributed application is composed of stat€hus, a distributed application can sustain failure of apss
of each individual process and all the communication chisnnef redundant copies are available. An active node and its
Checkpoint coordination protocols ensure that the stdtéseo redundant partners form a node sphere that is considerad to f
communication channels are consistent across all the ggese if all the nodes in the sphere become non-functional. Oleral
to create a recoverable state of the distributed applicatioedundancy increases the mean time between failures (MTBF)
These protocol events are triggered before the individual p This allows us to checkpoint less frequently while retagnin
cess checkpoints are taken. A distributed snapshot digoritthe same resiliency level.
[4], also commonly known as Chandy-Lamport algorithm, is rMPI [14] developed at Sandia National Laboratories is a
one of the widely used coordination protocols. This protoc@ser-level library that allows MPI applications to transgly
requires every process to wait for marker tokens from eveiige redundant processes. MR-MPI [11] is a modulo-redundant
other process. After a process receives tokens from evenp| solution for transparently executing HPC applications
other process, it indicates that the communication chanmgla redundant fashion that uses the PMPI layer of MPI.
between the process and every other process is consistentvéipexMPI [21] is a MPI library implemented from scratch
this point, this process can be checkpointed. The checkpaifat supports redundancy internally with the objectiveda-c
coordination protocol implemented in OpenMPI [20] is awertidle PCs into virtual clusters for executing parallephca-
all-to-all bookmark exchange protocol. Processes exahangns. In Volpex MPI, communication follows the pull model;
message totals between all peers and wait until the totgle sending processes buffer data objects locally andviagei
equalize. The Point-to-point Management Layer (PML) iprocess contact one of the replicas of the sending process to
OpenMPI tracks all messages moving in and out of the poiret the data object. RedMPI is another user-level libraag th
to-point stack. uses the PMPI layer to implement wrappers around MPI calls
As expected, the C/R techniques come at an additional cgsld provide transparent redundancy capabilities. RedMdPI i
since performing checkpoints interrupts the normal exenut capable of detecting corrupt messages from MPI processes
of the application processes. Additional overhead is irezlir that become faulted during execution. With triple redurayan
due to sharing of processors, I/O storage, network reseurde can vote out the corrupt message and thereby provide the
etc. When assessing the cost of C/R fault tolerance tecsiqlerror-free message to the application. The library operate
we must consider the effect on both the application anghe of the two modes: All-to-all mode or Msg-PlusHash mode.
the system. Checkpoint overhead accounts for the increasell-to-all mode, complete MPI messages are sent from each
in execution of the application due to the introduction ofeplica process of the sender and received by each replica of
a checkpoint operation [28], [34]. Checkpoint latency ig ththe receiver process. In contrast, one complete MPI message
time required to create and establish a checkpoint to aestabm a sender replica and a hash of the message from another
storage. Various optimization techniques have been studie replica is received by the receiver process in Msg-PlusHash
improve both forms of overhead as described below. mode. We used the RedMPI redundancy library with its All-
Forked checkpointingforks a child process before theto-all mode in this work for experiments.
checkpoint operation is performed [5], [33]. The image Design
the child process is taken, while the parent process resumes
execution. Afterward, the pages that have changed since thdhe RedMPI library is positioned between the MPI applica-
fork are captured from the parent process, thereby reducii@n and the standard MPI library (e.g., OpenMPI, MPICH2).
the checkpoint overhead. It is implemented inside the profiling layer of MPI and
Checkpoint compressias a method for reducing the check-intercepts all the MPI library calls made by the application
point latency by reducing the size of process images befdi@ change is needed in the application source code. The
writing them to stable storage [33], [23llemory exclusion redundancy module is activated by MRiit(), which divides
skips temporary or unused buffers to improve checkpoititt MPLCOMM_WORLD communicator into active and re-
latency [29]. This is done by providing an interface to thgundant nodes.
application to specify regions of memory that can be safely To maintain synchronization between the redundant pro-
excluded from the checkpoint [2lncremental checkpointing cesses, each replica receives exactly the same messages in
reduces the checkpoint latency by saving only the changbs same order. This is ensured by sending/receiving MPI
made by the application from the last checkpoint. Thessessages to/from all replicas of the receiver/sender psoce
techniques commonly rely on hardware paging support, e.g.Consider the scenario shown in Figure 1(a), where A sends
the modified or dirty bit of the MMU [15], [18]. During a message via MPSend() to process B while Process B issues
recovery, incremental checkpoints are combined with tise la blocking receive operation via MARecv(). Process A has



~_ "
MPI_Send(B) N\ MPI_Recv(A)
MPI_Isend(B’) MPI_Irecv(A”

(a) Redundancy . . . . (b) Partial Redundancy
Fig. 1. Blocking Point to Point Communication

2 replicas, A and A, similarly process B has 2 replicas, B an@quest handles returned by all the non-blocking MPI calls.
B’. Corresponding to this send operation, process A performequest handle that acts as an identifier to this set is rdurn
a non-blocking send to each of the replicas of the destinatito the user application. When the application, at a latentpoi
process, B and B’. Only after both these sends have bessues a call to MPWait(), RedMPI waits on all the requests
completed is the send performed by the application consilebelonging to the set before returning from the call.
complete. The redundant partner of A, A, performs exadty/ t 4 Mathematical Analysis

same operations. We make the followi tions i del about th
At the receiver side, process B posts two receive calls, € make the Tollowing assumplions in our model about the

one receive from A and other from A. In the general cas xecution environment: (1) Studies [31] have shown that the

a process posts receives from all redundant partners of ﬁgure rate of a system grows proportional to the number of

sender processes that are alive. The RedMP! library a&eca?OCketS in the system. Researchers usually consider atsocke

additional buffers for receiving redundant copies. Wheln g5 unit of failure and refer to the number of sockets when

receives are complete, the message from one of the buﬁg}gasurlnghgystem r(.ef!|a(tj>|l|tty:|B:¢Jt fortilmg_llcny and o m; ¢
is copied to the application-specified buffer before retgn aw(?y r_natc;Tme spkecll_||c etal Sd rorrf1 et |scuSS|on,t\_/ve re (?tr
control to the application, nodesin this work. Here, anoderefers to an execution uni

Figure 1(b) depicts the sequence of steps that take pléregt fails independently. Most commonly, the temodeis used

when partial redundancy is employed. Here, process A h|Q£erchangeably wittsocket (2) Each process of the parallel

two replicas while process B has just one. Hence, processagphcatlon is allotted a separate node. Spare resourees ar

receives two messages via two MREcv() calls. On the other used for performing redundant computation. This meansdfthat

rand processes A and & sen st one message cach REPICAUON WIS procesees moves o 2y
single copy of process B. P :

assumption guarantees that redundancy does not slow down

Special consideration is required for wildcard receive . L .
(MPI_ANY_SOURCE). Since a message sent from any prgsw_e computation of the application. (3) Node failures fallo

cess can complete a wildcard receive request, we have to mgklggissc?r?erF:triZf%?:irizﬂzolgt(a(%a[rﬁzt\:‘va(eiIir;efarlrlgc?es'l Iiz ?r':ft noby
sure that all the replicas of the process get the message fr%rr?ﬂ P :

the same “virtual” sender. To ensure this, RedMPI performs St.Op behavior. This is the m_ost_frequent failure type !
the following steps: practice that can be detected via timeout-based monitoring

(1) On the receiving node B, only one receive operatio%ther failure models are beyond the scope. (5) Spare nodes
with tag MPL ANY SOURCE is ’posted are readily available to replace a failed node. This gives an

implied assumption that failures can occur anytime between

(2) When this call completes, the receiver information 'he start and the end of application execution, i.e., faguzan
determined and is sent to node B’ (if it exists). Also, anothe bp o

L . . occur even when a checkpoint is taken or when the application
receive is posted to determine the message from the rergainin .
. IS restarted after a failure.
replicas of the sender process. o
(3) Node B’ uses this envelope information to post a specifft 1. Degree of Redundancy and Reliability
receive call to obtain the redundant message from the nade th When redundancy is employed, each participating appli-
sent the first message to B. cation process is a sphere of replica processes that perform
The MPI specification requires that non-blocking MPI callexactly the same task. The replicas coordinate with eaddr oth
return a handle to the caller for tracking the status of thre cao that another copy can readily continue their task afteréa
responding communication. When redundancy is employeuf,a copy. The set (sphere) of replica processes, performing
corresponding to a non-blocking MPI call posted by ththe same task and hidden from each other at the application
application, multiple non-blocking MPI calls are posted folevel, is called a virtual process. The processes insidédarsp
each replica of the peer process. RedMPI maintains the setaoé called “physical processes”.



Here, we present a qualitative model of the effect dhis assumption, the reliability of a node has the faRft) =
redundancy on reliability of the system. Reliability of sgym e~ with failure rate A and mean time to failurd = 1/)\.
is defined as the probability that the given system will perfo The probability of failure before time is
its required function under specified conditions for a sfeti Pr(Failure) =1—e7 . (2
period of time. When 4 is large,e~*/? may be approximated aB(t) = 1 —

The analysis that follows applies not only to Mp|_base@/_9. Hence, the probability that a single node fails before time
applications but to any parallel applications where failof ¢ 1S Pr(Node Failure) =1—(1—1t/60) = /0. ®)
one or more participating processes cause failure of thieeent Next, assuming we have a node with a positive integer
application. k level of redundancy and all node failures are independent

Consider such a parallel application with the followingnd identically distributed, then the probability that thede
parameters: survives until timet is 1 — Er(all redundant copies fail),

N: number of virtual processes involved in the applicationyhich is &

M: number of virtual messages within the application; Rrea(t) =1 - Ht/9 =1-(t/0) ()

r. redundancy degree (number of physical processes pe =

virtual process); E3) Mapping partial redundancy to a real system is quite

) L Lo different from a traditional redundancy model as we may not

t: base execution time of the application; . " .

0- Mean Time to Failure (MTBE) of each node have a system with homogeneous failure rates, which occurs
) ( ) : only whenr € Z* . Given that the user provide¥ real

th (1,[) As tdlicusse?hbeforel,_ dl:.e todthe toverzeag of requndark]);%cesses, we must partition thedevirtual nodes into sets
€ time taken by the application due to redundancy IS grea dicating their real-world redundancy levels, which irrrtu

]tchatn the_ balsz_execunon t|r_ne.t_Thet overhea(tj ?epen(tj_s %gr S to a subsystem of homogeneous failure rates. To begin,
actors, including communication to computation ratio we partition N into two sets

application, degree of redundancy, placement of replicaks a N = Nip + Npa, (5)
relative speed of the replica processes. It is very diffitdlt and assuming that thgloor and ceiling operators have the
construct an exact formula to represent the overhead insterioperty that ifi € Z*, then|i| = [i] = i, we define

of the degree of replication. In the analysis developed here Ny = [([r] =7)N]|, and (6)
we consider overhead due to redundant communication but Nppp=N— N - (7)
ignore overheads caused by other factors, such as redund¥égte the special case whene i’L, thenN|,; = 0 and we
I/O (which is not supported by RedMPI and not triggered iRave a system witlV virtual processes that all share the same

experiments). failure rate. The total number of processes required toaiper
Let « be the communication/computation ratio of the aghe system at redundancy is then
plication. Hence,(1 — «) is the fraction of the original Niotal = Npp1 X [r] + Ny % |1], (8)

time ¢ required for computation. This time remains the sami%)cnoe%(?glenn% thatViorar < N x 7, as a fraction of a process is

with redundancy since iny f:ommunlcanon is affec_ted by (4) Using Eq. 4, and the two se,; and N}, the
redundancy. The remaining time, namely- ¢, is the time L .
reliability of the system is

required for f:ommunicati_on,_whigh is affgcted by redun@gnc Ruys = Pr(all virtual processes survive) ,
AII_coIIectlve communication in MPI is based on point- =Pr(all N|,; survive and all Np,q survive) ,
to-point MPI messages (except when hardware collectives —[1 = (trea/0) PD]VED (1 = (tpeq/6) D] (NI
are used). The redundancy library interposes the point-to- 9
point calls and sends/receives to/from each copy of thealirt  (5) The reliability can be written in terms of failure ra&e;(
process. Thus, each point-to-point MPI call is translatéd i as R(t) = e=**. Using Eq. 9, the failure rate and MTBF of
r point-to-point MPI calls per physical process, wheris the the system can be obtained as
redundancy level (e.g., 2 or 3). Asys = —In(Rgys) /trRea,  @nd Oy = 1/Agys. (10)
Hence, the total number of point-to-point MPI calls per pro- Figure 2 shows how varying (the degree of redundancy)
cess with redundancy istimes the number of MPI point-to- changes the reliability of the entire system, given thedatéd
point calls per process in plain (non-redundant) execulibis  Sample input parameters. To begin, consider the dasheeedot
implies that the total communication time with redundargy fine with node MTBFf = 2.5 years and the dashed line with

r-a-t. The total execution time with redundancy can then Jgode MTBF O = 5 years. In this case, the node reliability
expressed as  tp.y = (1 — )t + atr. 1) alone demands triple redundancy whea: 2.5, whereas with

theta = 5 partial redundancy may be suitable. Next, consider
(2) As per the assumption, the arrival of failures for eacthe solid and dash-dotted lines wheres varied. The impact

node follows a Poisson process. Hence, if the probability ofof « may be interpreted as efficiency, as the curve with lowest
process failing before timeis F'(t), then the reliability of the « spikes faster (dotted line) and maintains a more lineareurv
process, which is the probability that the process sunvies afterwards. Conversely, for larger communication/corapan
timet¢, is R(t) = 1— F(t). It is widely accepted that electricalratios (), the slope decreases so that more potential for partial
devices in its mid-life (neither in the early stages of use noedundancy exists. Not shown is the impact ofvhich shifts
near end-of-life) follow an exponential distribution [3¥]nder the curves to the right.
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be calculated as
ny = Total timex Failure rate= Tioq\. (12)

o
©
T

o
®
T

The total time (T) of running an application is the sum of:
(1) The time taken by the application to perform actual
computation = t.
(2) The total time taken to perform checkpoints until the end
of task. We assume that there is no information availableiabo
5yr, N=20k, (=128 hr, a=0.005 impending failures through a monitoring or feedback system
/ — = 0=5 =100k, t=128 hr, =0.200 . . . .
/| ——6=55r, N=100k t=128 hr, a=0.600 Instead, we periodically checkpoint at a constant intepfal
L L0 NP IR I8 e 020200, 5. This time is equal to (number of checkpoints)(overhead
Degree of Redundancy (r) per CheCprint) or

1 15 2 25 3 35 4 4.5 5
Fig. 2. Effect of Redundancy on Reliability (Total Time)/(Checkpoint intervaly ¢ = (t/d)c.

4.2. Effect of Checkpointing on Execution Time (3) The total restart time derived from the total number of

Checkpointing does not affect the reliability of the systenf@ilures during the lifetime of the application and the eoteel
i.e., it does not improve the mean time between failures pyount of restart time. Since failures can occur even when th
it avoids the need to restart the process from the beginnifigPlication is undergoing restart, the average time speat i

by capturing the state of the application at an intermediat&9/e restart phase is less than the maximum possible time,
execution state. R, of a restart phase.

As discussed earlier, performing checkpoints comes at a(4) The total rework time, i.e., the total time spent on reeom

cost. Each checkpoint taken has certain overheads depé?létjng lost work. The amount of lost work depends on the time

ing on various parameters including the number of parall@ which a failure occurs after a checkpoint is establishetl a

processes, time taken to synchronize the processes and T .the I|kel|hooq of fal_Iure d“”r?g checkpointing (ha!m;gl
taken to store checkpoints to stable storage. The minimdy!tiPle failures, incl. failures during recovery). We imlse
number of checkpoints should be performed so as to redJPg t_ermtlw to denote the expected amount of work lost due
these overheads. o fgulures. ) .

Another consideration while choosing acheckpointintbrvzg Since after the occurrence of a failure restart is always

Reliability (R)
o o o o
B (52 o ~
T T T T

o
w
T

o
)
T

0.1-

is that it determines the average time for repeated exatut llowed by rework, we can chblne th_em Into a smgle.phase.
he expected duration of this phase is thent ¢;,,, which

after a failure. The greater the checkpoint interval, theeno denot
rework needs to be performed after a failure to return e denote a%R' )
Before derivingt g g, let us find the average amount of work

application to the state at which a failure occurred. that Id be lost due to failure duri tation. Reall
Consider an application with the following parameters: . at could be lost due to failure during computation. Reggll
is this expected value, i.e., the expected time at whichlaréi

e t: time to complete the original application without failsre oceurs after a checkpoint is taken.

o A system fa_ﬂurg rate (”“T“ber of failures per unl_t time); The computation time of the application can be divided into
e 4. checkpoint interval (time between successive checjbs-

T egments of lengtld 4+ ¢. Each segment consists of a work
pomt;), . . . phase (length§ followed by a checkpoint phase (length=c).
e c: time required for a single checkpoint to complete; The lost work depends on the time at which a failure occurs
e ©: MTBF of the entire system computed from Eq. 10, jger the start of segment. L&t= d+c. The PDF describing

* R: restart overhead accounting for the time taken to reggh probability of failure occurring at timefrom the start of
checkpoint images, instantiation of each application gss¢c segment can be calculated as

coordination between processes, etc.; _

o

o Tiorar: total time taken for completion, i.e., time after whichy, () — 16%4_16’“3{5“) +le’“tf‘5°) fe= %"
‘t" amount of actual work is performed. o o O(1 —e®)
Figure 3 shows the lifetime of a process in the presence ofwhen a failure occurs at timeé < ¢ < 4, the lost work
periodic checkpointing and occurrence of failures. is alsot. When a failure occurs at timé < ¢t < 6. (during
Am;lti::tﬁon Fault checkpointing), lost work i$. Hence, the expected time for
‘ lost work can be cglculated as
work ‘ckpt‘ work ‘ckpt‘ work\ restart reworklwork]ckpt[ work ‘ tlw _ ‘. p(t) dt N / c 5 . p(t) dt
c 5 R 0 5
Fig. 3. Life-cycle of an application Solving the above integral yields
Number of failures: Failures can occur anytime during the 1 s s
execution of the application, including the restart andadw bw = 7—"5 [6 —©e7® —de e} : (12)
phases. Hence, the entire execution time of the application (1 e )

Tiotal, 1S susceptible to failures. Leti; be the number of After the occurrence of a failure, the application begins in
failures that occur till the application completes, whicinc the restart phase, which také&stime followed byt;,, rework



time. As mentioned earlier, we combine these two phases it T

a single phase with expected duratidty+¢;,,. The derivation
of the expected time of this phasg;r, is presented below.

The reliability of a system, i.e, the probability of surviva
until time ¢ is e = . This implies that the probability of a system
failing before timeR + t;,, is

MTBF/node, § =5 years

Number of parallel processes, N = 100,000
Plain execution time, ¢ = 128 hours
Checkpoint overhead, ¢ = 10 min.

Restart overhead, R = 10 min.
Comm/computation ratio, v = 0.2
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—(R+t,)
1—Pr(system survives up to time R+ t,) =1—e  © e

This also implies that the probability of failure after tirfi@ -+

. —(Rttq) . . . .
tiw) IS e @ . This is the probability that the application
completes restart ang,, amount of reworktgg can now be 150 ‘ ‘ ‘ ‘ :
1 1.5 2 25 3 3.5 4 4.5 5

calculated as . . . Degree of Redundancy (7:% . .
trr = Pr(failure before R+ t) Fig. 4. Configuration 1: Total Execution Time with Varying

x (expected time of failure in interval O t& + ¢;,,)

Degree of Redundancy

Completion Time (Tyotar)
N
o
o

O Tynin = 163; Chkpts = 26; A = 0.0002
O Tynar = 371; Chkpts = 458; A = 0.0381
; ;

+ Pr(failure after R+ t1,) X (R +tw), after a failure instead of having to re-run the application
e — (1_6%) RH““LL. le%dt from the start. Eq. 14 shows that the time required for
Rit = application completion increases as the failure rate as@s

re o™ (R4 b)), (equivalently, the MTBF decreases). From Eq. 10, we see

P (1 B e‘(mé“”)) [_e_mgm (R -+t + ) + @} that with redundancy we can decrease_th_e failure rate of the
RR . fw system and thus decrease the checkpointing frequencyhwhic
+ e et (R+ t) - (13) ultimately results in less checkpointing overhead andefast
Thus, the total time spent in rework and restart during tf&€cution of the application. _ o
entire run of the application is ITet us assess the effect of this hybrld approach quahllatlvg
Using Egs. 1, 10, and 14, we simulated various completion

Totalrr = (Number of failuresk trr = Tiotal AL RR- times obtained using various configurations. The figuresvbel
The total time taken by the application can be written as are annotated with several statistics pertaining to thermim

Tiotal =t + %‘3 + Tiotal \tRR, run timeT,,;,, the maximum runtimd,,.., and the runtime

t+ %c with no redundancyl,—;. Chkpts refers to the expected

Tiotal = A= Nrn) (14)  number of checkpoints, whila indicates the failure rate for

] _ this particular data point. One may compute the expected
Itis easy to understand that there is a trade-off between f\¢mper of failures by substituting and the runtime into

interval between checkpoints, i.é,,and the checkpoint/restartEq_ 11.
overhead. Too low a checkpoint interval leads to UNNECESSar kig res 4-6 show the variation in total time over varying

checkpoints and thus higher overheads. But a very higligrees of redundancy of an application for an original inmn

checkpoint interval leads to greater loss of computatioa dyme of 128 hours with different MTBFs ands. Immediately

to failures. Thus, we need to choose the checkpoint interglnarent from the figures is that a redundancy level of 2 is

that minimizes overhead. , o the best choice in all cases. Comparing Figures 4 and 6,
Instead of deriving our own optimum checkpoint intervaky,o only change was in the checkpoint write tine In

and to simplify the analysis, we use Daly’s optimal chechpoi,:igur 6, considering point = 1, the expected number of

interval [6]: checkpoints isl, 163, indicating that checkpoints contributed
1, c 1 c ~ h to the total runtime, whereas in Figure 4, when
5, = V20 |14+ (V24— (] — e 15 19.34 hours ) g ,
Pt 3(26) 9(26) (13) r = 1 the expected number of checkpointsiiss, indicating

We then evaluate our model with = 1 and Daly’s model, that checkpoints contributeet 76.3 hours to the runtime.

both usingd,,:, and find that both models perform similarlyThis illustrates the benefit of choosing the checkpointrirae

(plots omitted due to space). carefully, solving Eq 15 for both figures at = 1 yields

4.3. Combining Redundancy and Checkpointing 0 = 22.9 for Figure 4, andd = 7.2 in Figu_re 6. Ex_amination
Employing redundancy helps to increase the reliability (ﬂf Dal_y_’s formula reveals thai,, from Figure 4 is roughly

the system. But even a high degree of redundancy does mﬂgn'f'ed by/10.

guarantee failure free execution, though it certainly dases 5. Experimental Framework

the probability of failure: The probability of simultane®u Some assumptions and approximations had to be made

failure of a node and its replica is equivalent to the “biethhd while performing the mathematical analysis. The most sig-

problem”[13]. This can be approximated agn) ~ 1 — nificant one is in Equation 1 and relates to the degree of

(2=2)n(n=D/2 for n nodes, which very rapidly approachesedundancy and total execution time. Here, we omitted the

zero for increasing, i.e., lim p(n) = 0. Thus, we still overheads originating from factors such as placement di rep

need to checkpoint so that an application can be recovers and relative speeds of replica processes. It is expected



2or events of a Poisson process. (3) As and when the failure time
MTBF/node, 6 = 15 years . . . .
Numbet of paralll prosesses, N — 100,000 of a physical process is reached, the mapping is updated by
Plain execution time, ¢ = 128 hours marking the process as dead. (4) If all the physical prosesse
heckpoint overhead, ¢ = 10 min. corresponding to a virtual process have been marked dead,
estart overhead, R = 10 min. . . . . . .
Comm/computation ratio, a = 0.2 application termination is triggered followed by a resfanim
the last checkpoint.

Figure 7 shows how failure of a physical process does
not necessarily imply a failure of the MPI application. The
application fails and a restart is triggered only when ad th

E 200

O T,=1 = 228; Chkpts = 230; A =0.0127 . . . .
160f O Tos = 157; Chkpts — : A — 0.0000 physical processes corresponding to a virtual processTiad
O Tonaz = 230; Chkpts = 05 A = 0.0000 l:l - Virtual Process (O - Physical Process
150 L L L L T T T I}
1 15 2 25 3 35 4 45 5
H - H Degree Of REdundan'Cy (T-%—' . . Vrank=0 Vrank=1 Vrank=2 Vrank=3
Fig. 5. Configuration 2: Total Execution Time with Varying ® olo e o
4 8 2 6 7
Degree of Redundancy @ e ‘ @
240
MTBF/node, § = 5 years
230[ Number of parallel processes, N = 100,000 brocess.
/_;5\; 220 Plain execution time, t = 128 hours faure L
F? Checkpoint overhead, ¢ = 1 min.
e 210 Restart overhead, R = 10 min.
5 2001 Comm/computation ratio, a = 0.2
E 190
2 el Metne
g_ Resmn*)’ H ' X
3 170 ; 1 i
© 160 O Ty— = 225; Ehkpts =1,163; A =0.0381 I l l
r O Toni 157; Chkpts = 82; A = 0.0002 . . . . . . . .
O Tomme Z 230; Chlts = 0: 1 = 0.0000 Fig. 7. Failure Injection within MPI Applications
150; 15 2 25 3 a5 p 25 s second background process is a checkpointer that calsulate

Degree of Redundancy (

Fig. 6. Configuration 3: Total Executi0n7+ime with Varying
Degree of Redundancy )
that in a real execution environment the outcome obser/iif timer goes off.
will differ to some extent from those in Figures 4-6 in thd. Results
previous section. Experimental platform: Experiments were conducted on
To validate the mathematical analysis of the previous 108 node cluster with QDR Infiniband. Each node is a
section, we collected empirical data by running benchmadkial socket shared-memory multiprocessor with two octe-co
applications in an HPC environment. Though the study pe&xMD Opteron 6128 processors (16 cores per nodes). Each
formed in this work is targeted towards exascale computingede runs CentOS 5.5 Linux x86 64. We used Open MPI
computing systems at such a large scale are not availablg.3 for running our experiments and BLCR as the per-
today. Hence, we run the application to the maximum scabeocess checkpointing service. The RedMPI library is used
possible on resources available to us. Node failures agetay for performing redundant computation.
instead of waiting for actual failures. We scale down the FTB We chose the CG benchmark of the NAS parallel bench-
per node according to the number of nodes available and tharks (NPB) suite as a test program. CG stands for con-
execution time of application so that the application gsffe@ jugate gradient. It is used to compute an approximation to
sufficient number of failures to analyze the combined effettie smallest eigenvalue of a large sparse symmetric pesitiv
of C/R and redundancy. We run the application with a certadefinite matrix. This kernel is typical of unstructured grid
degree of redundancy and also checkpoint the applicationcaimputations in that it tests irregular long distance commu
the optimum frequency calculated from Eq. 15. Two processeigation employing unstructured matrix vector multiptioa.
run in the background of the application with the followingsince this study is targeted towards long running appbcesti
functionality: The first background process is the failureve need an application that runs long enough to suffer a
injector that triggers failures for the entire applicatibased sufficient number of failures to assess its behavior in afail
on per-process failures. The occurrence of a failure foheaprone environment. Hence, the CG benchmark was modified
process is assumed to be a Poisson process. to run longer by adding more iterations. This was done by
The failure injector performs the following steps: (1) Irepeating the computation performed between Nift() and
maintains a mapping of virtual to physical processes. Th&PI_Finalize() callsn number of times. This modified CG
status of each physical process at a particular time isreittdass D benchmark with 128 processes takes 46 minutes
dead or alive. (2) For each physical process in the MRhder failure free execution without redundancy and C/R.
environment, the time for the next failure is calculatechgsi Larger inputs would become infeasible (require weeks of
an exponential distribution that describes the time betweexperiments). Processes were pinned onto 14 cores per node

the optimal checkpoint interval using Equations 15 and 10.
It sets a timer for tim& and checkpoints the application when



for application tasks leaving one core each for the opegati 000 S0 HI0A0 =N00150 #0100 2050
system and runtime activities.

The MTBF of a node was chosen between 6 hours a
30 hours, with an increment of 6 hours. A MTBF/node of ( =
hours gives a high failure rate ef 20 failures per hour, while
MTBF/node of 30 hours gives a lower failure rate of 4 failure
per hour. We ran the application with the injector initialljth-
out redundancy and then with double and triple redundan
To denote redundancy degrees we use the notatiah tb
signify that there are physical processes corresponding to
virtual process. For example, 2x redundancy means thag th=
are 2 physical processes corresponding to a virtual proce "
Experiments were also performed with partial redundanc
i.e., some processes have replicas, while some have just
primary copy. For example, a redundancy degree of 1.
means that every other process (i.e., every even process)
a replica. Partial redundancy was assessed in steps of 0. .
between 1x and 3x. . Degree of Redundaney (0 MIBEmode

The results of the experiments for the optimal applicaticF'g‘ 9.‘ Surfgce Plot of Appl|c_at|on Performance (Execu-
execution time using various degrees of redundancy is shotlon Time [Minutes]) for Combined C/R+Redundancy
in Table 4. The minimum time taken by the application for We make the following observations from the above results:
each value of MTBF is highlighted in the table. As seen (1) For a high failure rate or, equivalently, lower MTBF
from the results, the minimum application execution timée.g., 6 hours), the minimum total execution time (bestquerf
(best performance) with MTBF of 6 hours is obtained ahance) is obtained at higher redundancy levels3k here).
3x redundancy. When the MTBF is 12 hours, the maximum (2) For lower failure rates (e.g., 24 hours and 30 hours) the
performance is seen at 2.5x redundancy. Yet for a MTBF ofinimum total execution time (best performance) is actdeve
18, 24 and 30 hours, the maximum performance is achievada redundancy level of 2x. Increasing the redundancy degre
at 2x redundancy. Figures 8 and 9 show these results in thether has adverse effects on execution time.
form of line graphs and surface graphs, respectively. As the(3) The minimum execution time (best performance) can
surface graph shows, local minima exist at different pointdso be achieved at partial redundancy levels, e.g. for a MTB
of the surface indicating an intricate interplay of MTBF an@f 12 hours. Here, the maximum performance is obtained when
redundancy with respect to overall performance. 2.5x redundancy is employed.

(4) An interesting finding is that in most cases 1.25x

250

200

150

tal Time for Completion (T mins)

MTBF Degree of Redundancy ;
IX[1.25x] 15X 1.75X] 2x]2.25X] 2.5X[2.75x] 3x redungangy yleld_s poorlper;orma_nc_:e Tompared 0 Iﬁx (when
6 hrsl 275l 279 212 189/ 146 158|139 132/123 no redundancy is employed). Similarly, 2.25_x yields poor
12 hrs201] 207| 167| 143[103] 113] 98| 111125 performance compared to 2x redundancy. This behavior can
18 hrg184] 179] 148] 120] 72| 126] 88| 80| 84 be attributed to a higher increase in redundancy overhead in

24 hrg159] 143[ 133] 100] 67| 92| 78] 84| 83
30 hrg/136] 128 110| 101] 66| 73] 80| 82| 84

return for a smaller decrease in failure rate as we move from
1x to 1.25x (or from 2x to 2.25x). To support this argument,
TABLE 4. Application Performance (Execution Time a separate experiment was carried out to calculate thedailu

[Minutes]) for Combined C/R+Redundancy free execution time with increasing redundancy levels. The

fy— results are shown in Table 5 and Figure 10. It can be seen that

""" O T TR T eABhr meeea e 30w the rate of increase in execution time is larger in the firsp st
(i.e., from 1x to 1.25x) while there is a decrease in the nate i
the subsequent steps.

(5) The purpose of these experiments is to verify the
mathematical model developed in Section 4. Hence, we mod-
eled our execution by estimating/calculating the envirentn
parameters and substituting them in the set of equations
developed in Section 4.3. There is a subtle difference in the
. experimental setup and our model discussed in Section 4.3.

ool s 17 2% 2% 7% K While running the application, failures are not triggeretew
Degreeof Redudancy (1) a checkpoint is performed or when restart is in progress.
Fig. 8.  Application Performance (Execution Time Our model, though, considers failures at any time, inclgdin
[Minutes]) for Combined C/R+Redundancy checkpointing and restart. We simplified our model to match
our experiments, which results in the following time fuocti
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Degree of Redundancy Ix | 1.25x | 1.5x | 1.75x | 2x | 2.25x | 2.5x | 2.75x | 3x
Observed increase in execution tinme46 55 59 61 63 70 76 78 82
Expected linear increase 46 48 51 53 55 58 60 62 64

TABLE 5. Increase in Execution Time with Redundancy
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Degree of Redundancy (r)
Trotal = tred + Lrea V2¢O + trea)sys R. We have used this Fig. 11. Modeled Application Performance

equation for modeling the application behavior in the pnese 30‘1
of C/R and redundancy. This simplified model pertains just" '
this sub-section, specifically to Figures 11 and 12.

The overhead per checkpoiatwas calculated as 120 sec.
by first running the plain application, then running it witt
one checkpoint taken during execution, and calculating tl
difference between the later and former execution timeseTi
taken to restart the application after a failure and begigoif
re-execution (restart overhead, R) was measured as app =
500 sec. The CG benchmark, on average, spends 20% 3
the total time in MPI communication, so the communicatio

to computation ratio ¢) is 0.2. Plotting the equations in U012 14 16 18 2 22 24 26 28

MATLAB, we get the expected application behavior show., Fig. 12. Obser]'?/eggi/osf }l{\jl(gélg?éldyléerformance

in Figure 11. It can be seen that the actual behavior of tii¢ a constant compute overhead per process. The cross-over
application (Figure 8) is similar to the modeled behavig§oints between no redundancy (1x) and dual redundancy (2x)
shown in Figure 11, thus Validating our analytiC model. FC&t 47351 processes and tr|p|e redundancy (3)()124‘_551 pro-
closer comparison, Figure 12 overlays the performanceesuryesses indicate an early benefit for combined C/R+reduydanc
in Figure 11 over those in Figure 8 for selected MTBRyhen it is not always feasible to minimize runtime due to
values. The trend followed by the observed curves is vefysource scarcity, resilience may still be improved throug
similar to the modeled curves, and a Q-Q plot of the modelegrtial redundancy as a tunable knob (e.g., 1.5x or 2.5x).
and observed values indicates a close fit. However, we Segntrary to our experiments with smaller processor counts,
some absolute differences in the execution times that can H%ﬁtial redundancy never results in the lowest compleiine t
attributed to various causes: for the given settings.

(a) The redundancy overhead in actual runs is higher th 210 — i -
the modeled overhead (see Figure 10). The increase in 200—‘ }sz,?iz)fss %021421155 8 %0211261235 %;13'{;0‘“
execution time is due to additional failures occurring dgri <, 7 L
this extra time. (b) The fault injector generates failurgs I:&
using inputs from a random number generator that follow g
Poisson distribution. The application running time may et
long enough for the observed failure rate to converge to tl
average failure rate.

Simulations: We also performed simulations using oul S 140f
analytic model to determine at which point an applicatio s
begins to benefit from redundancy. Figure 13 depicts t ‘ C i dSx - - oo - - 3x]
execution time of a 128 hour job for different redundanc  ° * Number Ofpmcegsf)ri( ») 2 28
levels and number of processes (with a factor of 10,000 &ig. 13. Modeled Wallclock Time of a 128 Hour Job for
the latter/x-axis) under weak scaling, i.e., the problene $6 Different Redundancy Levels up to 30k Nodes

scaled at the same rate as the number of processes resultingsing additional nodes for redundancy is a cost, while

-0- Modeled with MTBF 6 hrs.
-0— Modeled with MTBF 18 hrs.
-0- Modeled with MTBF 30 hrs.

2501 0 Observed with MTBF 6 hrs.
~. ¢ Observed with MTBF 18 hrs.
~ o 8- Observed with MTBF 30 hrs.
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gaining a shorter execution time is a benefit: The nodés used to select values of a and | to minimize the expected
become available sooner and can be used for other johsning time of the program.

Hence, when the runtime with redundancy is twice that of In [25], authors have presented a reliability-aware method
dual redundancy at8,536 processes, we can actually rurfor an optimal C/R strategy towards minimizing rollback
two dual redundant jobs of 128 hours in the time of just orend checkpoint overheads. Their model considers variable
job without redundancy (see Figure 14). This indicates theteckpoint intervals by taking actual system reliabilibtoi
redundancy is a powerful technique to increase the utitinat account.

of exascale HPC installation for capacity computing (where The works cited above have considered C/R as the only
job throughput is the objective). It does not provide a sotut method for achieving fault tolerance and analyzed the effec
to capability computing (where all nodes are utilized by af C/R on application execution time. As discussed befare, r
job without redundancy), which presents an open problem dg@ndancy is another way of achieving fault tolerance. Ferre
resilience handling of exascale systems. The figure furtheral. [13] have studied the viability of process replicatis
underlines that pure C/R without redundancy results at ee primary fault tolerance mechanism for exascale systems
ponential increases in execution time after80,000 nodes. employing C/R as a secondary mechanism. Results from their
Once the counts exceed$1, 251 (beyond the shown range),work show that replication outperforms traditional C/R ap-

triple redundancy has the lowest overall cost. proaches for large sockets counts and limited 1/0O bandwidth
700 Degree of Redundancy r frequently anticipated at exascale. The study compareg onl
[ b bhx - o9x - - 3x] two models of execution, one without redundancy and another

@
o
=]

MTBF/node 6 = 5 years, t = 128 hours,
| ¢ =10 min., R = 10 min., « = 0.2

with dual (2x) redundancy assuming that processes have to
double up on the same number of nodes. In contrast, our work
assumes that the number of nodes is increased at the same
rate that the number of processes increases under redyndanc
This is more realistic since high-performance application
tend to fully utilize the available memory space of a node.
Furthermore, we model the execution of an application in the
presence of redundancy at various degrees (includingaparti
redundancy) in combination with C/R. Using this model,
0092 04 os o8 1 12 14 1s 18 2 Wwe study the trade-off between levels of redundancy and

. N b fP. e o (N) X 5 . . . . P
Fig. 14. Modeled Wallclock Time of a 128 Hour Job for SZ?f%l;I?r]oallrrlltcérequenCIeS with the goal of optimizing system

Different Redundancy Levels up to 200k Nodes
7. Related Work 8. Conclusion

Several models to determine the optimal checkpointing Petascale and forthcoming exascale computing systems ex-
strategy for parallel programs have been developed in priggrience outages due to failed components, software bods, a
works. Young [38] presented an optimal checkpoint and rower disruptions. A common method to allow application
covery model and obtained a constant optimal checkpoitns longer than interval between faults is to checkpoint
interval to reduce the overall execution time. Based on gsunapplications to stable storage. But studies show that darge
work, Daly [6] improved the model to an optimal checkpoinscale applications spend more than 50% of their time in
placement from a first order to a higher order approximatio@/R activities. Another way to achieve fault tolerance is to
These studies establish a cost function for the total ei@tutemploy redundancy, wherein multiple processes perform the
time and try to minimize the output of the cost functionsame computation.

The results derived are similar to those obtained in SectionThis work shows that C/R-based fault tolerance can be
4.2. Other work considers those and additional approxomati used in synergy with redundancy to optimize application
under a variety of failure distributions [3]. performance. We have developed an analytic model to egtimat

Authors of [29], [36] have taken a different approach bthe execution time of long-running large-scale programs in
modeling the problem as a Markov availability model andresence of failures that combines C/R with redundancydJsi
obtained an optimal checkpoint placement that maximizéss model, HPC users can configure their application tocsele
system availability. [29] has addressed the issue of pdggin- the right redundancy degree and checkpoint frequency to ob-
cesses on available processors (task mapping) and detegmirain the maximum performance for the available resources. W
corresponding checkpoint intervals to obtain the bestwi@t also validated the model by injecting faults into applioas
time. They model the performance of coordinated checkpointith an implemented redundancy layer on our computing
ing systems where the number of processors dedicatedcloster. The modeled application behavior closely mimies t
the application (termed “a” for active) and the checkpoirdbserved application behavior on our cluster and we oblen t
interval (termed “I") are selected by the user before rugnirbest performance at the same redundancy levels as given by
the program. The model is used to determine the averafe model. We observed that there are some deviations from
availability of the program in the presence of failures ttat the modeled performance curve. This was partially caused by
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an underestimation of execution time for experiments so thas)
fewer failures were injected than under the model.

Overall, combined C/R and redundancy results in shortgg)
overall execution time even for HPC applications with
4,000 processes for 2x redundancy for high failure rates ?
year MTBF/node). At= 80,000 processes, dual redundancy
(2x) requires twice the number of processing resourcesrfor [A8]
application but allows two jobs of 128 hours wallclock time
to finish within the time of just one job without redundancyjg
Beyond~ 770,000 processes, 3x redundancy outperforms all
other redundancy levels. Partial redundancy of 2.5x alsolt® [20
in the lowest time for certain process counts and MTBF values
which usually span a short window. Overall, our work allows
a trade-off between additional resources and wallclocle timf?*]
which effectively presents a tuning knob for users to adapt t
resource availabilities.

[22]
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