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Abstract

Background: Modern analytical methods in biology and chemistry use separation techniques coupled to sensitive

detectors, such as gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry

(LC-MS). These hyphenated methods provide high-dimensional data. Comparing such data manually to find

corresponding signals is a laborious task, as each experiment usually consists of thousands of individual scans, each

containing hundreds or even thousands of distinct signals. In order to allow for successful identification of metabolites

or proteins within such data, especially in the context of metabolomics and proteomics, an accurate alignment and

matching of corresponding features between two or more experiments is required. Such a matching algorithm

should capture fluctuations in the chromatographic system which lead to non-linear distortions on the time axis, as

well as systematic changes in recorded intensities. Many different algorithms for the retention time alignment of

GC-MS and LC-MS data have been proposed and published, but all of them focus either on aligning previously

extracted peak features or on aligning and comparing the complete raw data containing all available features.

Results: In this paper we introduce two algorithms for retention time alignment of multiple GC-MS datasets: multiple

alignment by bidirectional best hits peak assignment and cluster extension (BIPACE) and center-star multiple

alignment by pairwise partitioned dynamic time warping (CEMAPP-DTW). We show how the similarity-based peak

group matching method BIPACE may be used for multiple alignment calculation individually and how it can be used

as a preprocessing step for the pairwise alignments performed by CEMAPP-DTW. We evaluate the algorithms

individually and in combination on a previously published small GC-MS dataset studying the Leishmania parasite and

on a larger GC-MS dataset studying grains of wheat (Triticum aestivum).

Conclusions: We have shown that BIPACE achieves very high precision and recall and a very low number of false

positive peak assignments on both evaluation datasets. CEMAPP-DTW finds a high number of true positives when

executed on its own, but achieves even better results when BIPACE is used to constrain its search space. The source

code of both algorithms is included in the OpenSource software frameworkMaltcms, which is available from http://

maltcms.sf.net. The evaluation scripts of the present study are available from the same source.
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Background
Metabolomics, the study of an organism’s biochemistry,

has become increasingly relevant along with other “omics”

technologies during the last ten years. Some of the tech-

niques of choice to distinguish the metabolites present

in a biological sample of an organism are separation

techniques coupled to sensitive detectors, such as gas

chromatography-mass spectrometry (GC-MS) and liquid

chromatography-mass spectrometry (LC-MS). In contrast

to flame ionization detectors, UV absorbance detectors,

and other one-dimensional detectors, these hyphenated

methods provide high-dimensional data of analyte molec-

ular ions or analyte molecular ion fragments collected

over the runtime of the separation. In the context of

metabolomics, this usually involves the observation of

potentially hundreds of ion signals of different masses

simultaneously in every recorded scan. These numbers

may be even higher for proteomics, owing to the larger

masses of peptides and peptide fragments. Comparing

such data manually to find corresponding signals is very

labour intensive, as each experiment usually consists of

thousands of individual scans. Thus, the goal must be to

obtain a high level of automation during data acquisition

and data processing, allowing scientists to focus on the

informative parts of their data, while still alerting them to

potential errors or problems.

Often it is the goal of a metabolomics experiment to

detect differences between a treated and a control group

of measurements. Therefore, an accurate alignment and

matching of corresponding features in all measurements

is an extremely important part of data preprocessing.

Data matrices representing the detected and aligned fea-

tures across all measurements may be generated in order

to be used for further statistical analysis. It is essen-

tial that an alignment algorithm captures fluctuations

in the chromatographic system that lead to non-linear

distortions of the retention time of individual features

[1,2]. Further, it needs to group those features that are

most similar to each other and to discover whether fea-

tures are present or absent. In the end, a matrix of

grouped peak features of single or related coeluting ana-

lyte ions should be generated to establish relationships

in abundance between different experimental conditions.

Then, based on other characteristics such as parent ion

mass, ion fragments or isotope pattern, an identifica-

tion of those features for integration with downstream

analysis is required. Here we focus on the first few

steps of such an analysis pipeline, including the genera-

tion of a matrix of grouped features for retention time

normalization.

The currently available algorithms for retention time

alignment can be distinguished into two general cate-

gories: peak-based and raw data-based alignment. The

peak-based algorithms require prior peak- or feature-

finding and often also peak deconvolution to reduce the

effect of overlapping signals, before a score function is

applied to establish correspondence between peaks [3-7].

Raw data-based algorithms on the other hand require

little or no preprocessing, but are computationally very

expensive [8,9]. We will now give a brief characterization

of existing algorithms for the two categories before we

introduce and categorize the algorithms presented in this

paper.

Peak-based algorithms are very sensitive to the correct-

ness of the a priori peak detection. A peak may be defined

as the time-resolved signal intensity trace of an ana-

lyte ion’s corresonding mass matching predefined criteria,

such as the goodness-of-fit to a predefined peak model

shape, together with a signal-to-noise ratio threshold [7].

If a peak is tagged to be absent during preprocessing, it

cannot be aligned by a peak-based algorithm. In order

to handle missing peaks in data matrices for statistical

analysis, Smith et al. [7] then filled the gaps by using

estimates based on prior grouping of the data. Such a

grouping usually consists of at least two groups, e.g. con-

trol and treated group. Then, for a peak missing within

a group, where most other peaks are present, the miss-

ing value can be estimated from the present members of

the group. However, such peak imputation may be erro-

neous if it is only based on the final peak tables and does

not access the original data to ensure that a peak is really

present.

To be able to assign peaks that may not have been

aligned, Krebs et al. [6] proposed an approach based on

prior peak detection and grouping, followed by polyno-

mial interpolation to infer warping in between grouped

peaks. Prince and Marcotte introduced a similar interpo-

lation scheme for raw data-based alignment with dynamic

time warping [8].

A further division of peak-based algorithms may also

be applied concerning the use of mass spectra (MS)

for peak similarity calculation. Warping based on peaks

detected in the total ion chromatogram (TIC) is usu-

ally supplemented by using MS, to increase the number

of true positive peak assignments [4,6,10]. Some algo-

rithms work on a more complete set of extracted fea-

tures, e.g. points of retention time, m/z and intensity

[11,12], but often resort to linear regression in order to

compute a retention time correction, due to the large

amount of points that need to be processed. A more

exhaustive overview of existing feature-based alignment

algorithms to align point sets is given by Lange et al.

[11], especially for the application to LC-MS data in pro-

teomics and metabolomics. Aberg et al. [13] described

the peak correspondence problem for NMR, showing that

there is a significant amount of overlap considering the

algorithms for these, at first sight different, application

domains.
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Raw data-based algorithms operate on the complete col-

lection of (binned) MS data, also termed the uniform

matrix, such as ObiWarp [8], which is based on dynamic

time warping (DTW) with pairwise similarities between

binned mass spectra, or the signal maps approach by

Prakash et al. [9]. Therefore, these algorithms should

find more and possibly better correspondences compared

to the peak-based algorithms, which only have access

to a limited amount of reported peak features. Other

approaches use correlation optimized warping (COW)

[14] for TIC alignment, or generalizations thereof [15,16],

selecting specific mass traces to improve over simple

TIC-based alignment. However, using many mass traces

increases the computational demand, as well as the

amount of data in need of processing, and may also

increase the tendency of aligning noise [15]. Possibly

owing to that computational demand, most raw data-

based algorithms do not consider alignment or matching

of individual points of retention time, m/z and intensity,

but instead only try to correct the retention time devia-

tion for each mass spectrum as a whole. The advantage of

raw data-based methods is that they assign a definite posi-

tion to each mass spectrum together with its corrected

retention time after alignment. They use a pairwise sim-

ilarity function between either TIC or sequences of mass

spectra, finding an optimal global similarity with respect

to their objective function [17-19]. The local correspon-

dences between two raw data sets then allow to select the

mass spectra with the highest pairwise similarities after

the alignment to pinpoint peaks of interest for further

investigation [8].

In this paper we introduce two novel methods for

retention time alignment of multiple GC-MS and LC-

MS experiments, which may be used individually and

in combination as a hybrid method. The first method,

bidirectional best hits peak assignment and cluster exten-

sion (BIPACE), is related to the clique-finding method

described by Styczynski [4], but without relying on decon-

voluted peaks and choosing a different criterion for peak

correspondence and clique coherence, which drastically

decreases computation times. It is a peak-based align-

ment method that automatically finds conserved groups

of peaks among an arbitrary collection of chromatograms,

based on the bidirectional best hit criterion as introduced

by Tatusov et al. [20] and later by Overbeek et al. [21]

for the matching of orthologous genes. Peaks are com-

pared using user-definable similarities based on their mass

spectra, for example with the similarity introduced by

Robinson et al. [10], or by derived similarity functions,

that we will introduce in this work, and are successively

grouped into clusters of best pairwise correspondence.

This method allows to find clusters of arbitrary size, up

to the number of chromatograms under consideration. It

may be applied to different experimental protocols with

more than just two groups of treatment and control, since

the algorithm requires no prior knowledge of an existing

grouping.

The second method, center-star multiple alignment by

pairwise partitioned dynamic time warping (CEMAPP-

DTW), involves the application of DTW as in [8], but to

all pairs of chromatograms. DTW was first introduced

and used in speech recognition for the alignment of time

dependent feature traces of speech samples [22-24]. One

of the first applications of alignment methods to low-

resolution GC-MS data was performed by Reiner et al.

[25], based on the local squared distance of the TIC.

More recent applications have been reported by Christin

et al. [15], Clifford et al. [17], Prince and Marcotte [8],

and Ramaker et al. [16]. Prince and Marcotte [8] showed

that different local score or cost functions can be used in

order to align data from LC-MS experiments with good

performance. Other methods for the alignment of raw

chromatographic data exist, such as aligning the time

series data to a latent trace, which is constructed from

training series, with an underlying stochastical model [26]

or by different means of regression [27]. We use the

grouped peaks from BIPACE as anchors to constrain the

pairwise DTW alignments, as outlined in a previous pub-

lication [28]. This results in faster computation and at the

same time considerably less memory usage than in the

unconstrained cases through the use of an optimized data

structure, while providing comparable alignment results.

Building on the pairwise alignments, we choose the chro-

matogram with the highest sum of pairwise similarities as

the reference for the final alignment of all remaining chro-

matograms to the reference. We use DTW to compute the

pairwise alignment, due to its applicability to data with

non-linear time scale distortions, its relatedness to classi-

cal sequence alignment algorithms [22-24] and its proven

power to perform retention time correction and signal

alignment [8,15,16].

Methods
First we describe the peak and raw data-based alignment

algorithms BIPACE and CEMAPP-DTW in detail. Then

we combine them to create a new hybrid method that

benefits from the speed and accuracy in peak matching

of the peak-based alignment algorithm, while still provid-

ing a profile multiple alignment of all GC-MS datasets in

reasonable time and space.

BIPACE - multiple alignment by Bidirectional best hits peak

assignment and cluster extension

Given a chromatogram C = {p1, p2, ..., pℓ} as an ordered

set of peaks, we define a peak p = (m, i, t) as a triple

of a mass vector m, an intensity vector i, both with the

same dimensions, and a retention time t. Peaks can be

matched between chromatograms by exhaustive search,
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if a feasible criterion for their identity exists. Based on

GC-MS electron ionization (EI) fragmentation mass

spectra alone, such a criterion is hard or even impossible

to find especially due to the ambiguity of the mass spectra

of isomers. Additionally, we have to deal with inher-

ent noise, introduced by contaminations of the sample

from external sources (sample preparation) or internal

sources (sample injection, chromatographic system, MS

acquisition). Thus, we use a proven similarity function,

the modified cosine similarity between mass spectra, rep-

resented as (nominal) mass intensity vectors, weighted

by an exponentially penalized difference in retention time

(RT) (acquisition time) of the spectra [10]. For two peaks

p = (mp, ip, tp) and q = (mq, iq, tq) and a retention time

tolerance of D, following [10] we define this similarity

function as:

f (p, q) := s(p, q) · exp

(

(tp − tq)
2

2D2

)

, (1)

where s would typically be the cosine value of the angle

between the two peaks’ mass spectral intensity vectors:

s(p, q) = cos∠(ip, iq). However, s could also be realized

by any other similarity function defined between two

vectors, such as the negative Euclidean distance, the dot

product, Pearson’s linear correlation or Spearman’s rank

correlation. The similarity function f leads to a good pre-

filtering of candidate peaks for matching throughout our

input chromatograms.

In order to assign peaks to their best corresponding

counterparts, we calculate all pairwise similarites using

the similarity function f between all peaks from dis-

tinct chromatograms. The time required to calculate all

pairwise similarities between peak candidates within the

different chromatograms can be reduced by using a cutoff

for the maximum allowed time deviation. This is achieved

by first calculating the time deviation penalty, whose value

ranges between 0, indicating a large RT difference, and 1

for perfect RT correspondence, and then deciding, based

on that value, whether the proximity indicates a good can-

didate to go on and calculate the cosine score. However,

the overall complexity for this first step remains quadratic

in the number of peaks to be compared.

Apparently, the simplification should only be applied if

the retention time deviation between two chromatograms

is expected to be within a fixed time tolerance and as

long as the order of elution of compounds is roughly pre-

served locally. Otherwise, potential candidates are pruned

too early from the search space. Other similarity functions

than f may also be applicable for some datasets. How-

ever, our experiments show, that f gives the best overall

performance on undeconvoluted spectra with low mass

resolution.

Assignment of peak pairs

We calculate the pairwise similarities using f as defined

above for all possible pairs of peaks from K different

chromatograms C1,C2, ...,CK (partitions). This allows us

to define a K-partite edge-weighted similarity graph S =

(V ,E), where each vertex in one of the K disjoint par-

titions represents a peak from a distinct chromatogram

Cj and each edge represents a similarity value of a peak

pair from two different partitions. Ultimately, we want to

enumerate all cliques of S, a problem that relates to the

classic NP-complete problem CLIQUE [29] with a run-

time complexity that is unbearable for realistic problem

sizes. We thus prune S using different heuristics to create

the reduced weighted K-partite graph S’. S’ is then used to

construct the unweighted K-partite bidirectional best hit

graph S”. On this special graph, the CLIQUE problem can

be solved by a polynomial time algorithm since the maxi-

mum degree of each vertex in S” is always smaller or equal

to K [30].

Since only the similarities between peaks of different

chromatograms are considered by our algorithm, we do

not calculate the self-similarity of peaks from the same

chromatogram, which differentiates our method from the

method of Styczynski et al.[4] and allows us to neglect

all edges within partitions. Additionally, we exclude edges

from S if they are outside the maximum retention time

difference window as defined byD, which reduces the can-

didate space for peak matching, but may exclude valid

peak assignments. Figures 1(a) and 1(b) show this exam-

plarily for two peak lists. We then define S’ as the graph

with this reduced edge set E’ and V as its vertex set.

Bidirectional best hits merging

In order to identify all bidirectional best hits (BBHs), that

are all cliques of size 2 of S’, we look up for each pair of

peaks p ∈ C and q ∈ C′ from distinct chromatograms C

and C’, the peak with highest similarity to p in C’, denoted

q’, and the peak with highest similarity to q in C, denoted

p’. If p = p′ and q = q′, then p and q are BBHs of each

other and all peak similarities of p to other peaks in q’s

parent chromatogram and of q to other peaks in p’s par-

ent chromatogram are set to a minimum similarity value,

while the similarity of the two associated peaks p and q is

retained. We then define V’ as the set of all vertices that

are part of at least one BBH and define S′′ = (V ′,E′′) as

the reduced K-partite graph with V’ as its vertex set and

E” as its unweighted BBH edge set. We now want to enu-

merate all maximal cliques of S”, a problem that is known

to be solvable in polynomial time on graphs with a polyno-

mial bound on the number of maximal cliques contained

in the graph [30], as is the case for S” by construction.

We proceed greedily by trying to merge each pair of

BBHs into a clique containing at least k and at most K

peaks, where k ≥ 2 is the minimal clique size (MCS)
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Figure 1 Schematic of the forward and reverse similarity

calculation phase of BIPACE. The hard retention time difference

limit is depicted by shaded cones with dashed outline. Individual

Gaussian retention time penalty functions are mean centered on

each peak’s apex retention time (rt). (a) BIPACE with a Gaussian

retention time penalty function for peaks A through D from

chromatogram 1 to chromatogram 2. (b) BIPACE with a Gaussian

retention time penalty function for peaks A through D from

chromatogram 2 to chromatogram 1 (reverse direction).

parameter. Merging is only performed if the new clus-

ter remains a complete subgraph, which is equivalent to

all peaks within the cluster being BBHs of each other.

Otherwise, we select the largest common fully connected

subgraph and omit all peaks that are not fully connected.

We continue merging until all BBHs have been processed.

Finally, we report cliques with at least k peaks ordered by

their median retention time in a multiple alignment table.

The clique finding is illustrated for three chromatograms

and a limited number of peaks in Figure 2(a) for a maximal

bidirectional-best hit clique and for a non-maximal clique

with one not completely connected peak in Figure 2(b).

Time and space complexity of BIPACE

We need
(K
2

)

ℓ2 comparisons to calculate all pairwise peak

similarities between K chromatograms with ℓ peaks each,

using a symmetric similarity function f (p, q) = f (q, p).

Figure 2 Cliques after bidirectional-best hits have been

evaluated with BIPACE. Cliques after bidirectional-best hits have

been evaluated with BIPACE. Subfigure (a) shows a complete clique of

bidirectional-best hits of peak C in all three chromatograms. Subfigure

(b) shows an incomplete case, where peak C in chromatograms 1 and

2, and in chromatograms 2 and 3 has a bidirectional-best hit.

However, peak B in chromatogram 3 is only a bidirectional-best hit of

peak C in chromatogram 1, destroying the possible complete clique

of bidirectional-best hits between peak C in all three chromatograms.

Thus, the calculation of similarities requiresO(K2ℓ2) time

and space, if we need to keep all pairwise similarities,

e.g. for plotting purposes. However, we can save space by

recording for every peak p from chromatogram Ci only

its best hit set of size K − 1, containing the best match-

ing peaks q1, q2, ..., qK , where each qj is from a different

chromatogram Cj, j �= i. Then, the total size of all best hit

sets is proportional to the number of peaks,Kℓ, multiplied

by the number of partitions a peak can have best hits for,

K − 1, giving a total space requirement ofO(K2ℓ) for S’.

Finding the bidirectional best hit for each peak p of the

Kℓ peaks in S” requires that we retrieve p’s best hit q and

q’s best hit p’, and test whether p = p′. This amounts to

O(Kℓ) comparisons for all peaks.

In order to identify all maximal cliques, we employ

a greedy, bottom-up approach based on the BBHs of

each peak. Storing all BBHs clearly requires O(Kℓ) space.

Then, for each pair of peaks (p, q) from different parti-

tions, we try to merge their corresponding cliques. This

requires checking whether all peaks in the candidate

cliques P and Q are fully connected, which takes 2|P||Q|

comparisons per pair. Since |P| + |Q| ≤ |K |, this amounts

toO(K2ℓ2) time.

In total,BIPACE requiresO(K2ℓ2) time andO(K2ℓ) space.

Multiple alignment projection

Up to now, only the grouped peaks have been aligned,

so we have a peak-based multiple alignment. For a full
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multiple alignment of the complete datasets, all unas-

signed signals should also be aligned. In this situation,

one could choose to implement an approach like the

one proposed by Krebs and co-workers [6], selecting a

representative chromatogram as alignment reference and

calculating a cubic spline or other higher order polyno-

mial, to interpolate between the aligned peaks. However,

such a method can only work well if the number of aligned

peaks is high and there are no large areas of unknown peak

assignments in the chromatograms. To circumvent these

problems, we will show in the next section how to use

dynamic time warping (DTW) to calculate signal assign-

ments in between paired peaks, using the same similarity

function as in BIPACE. Additionally, we show how the

aligned pairwise peak groups from BIPACE, or any other

peak alignmentmethod, can be used as alignment anchors

for DTW, before using the pairwise DTW scores to auto-

matically select a reasonable alignment reference using

the center-star heuristic.

CEMAPP-DTW - Center-Star Multiple alignment by Pairwise

Partitioned Dynamic TimeWarping

In this section, we introduce an improved version of

DTW for series of time-resolved feature vectors, as

they occur in GC-MS and LC-MS data processing. In

[28], we described how to speed up DTW using pre-

defined anchors of features which could be matched

a priori with high confidence, while still allowing the

alignment flexibility by defining a neighborhood radius r

around the positions of the anchors. Here, we extend this

approach and show how anchors can also be combined

with other constraints, such as the Sakoe-Chiba Band

constraint [23] to save both execution time and space,

using an optimized data structure for alignment matrix

storage.

Pairwise DTW is a global alignment of two series A =

(a1, a2, ..., aM) and B = (b1, b2, ..., bN ) of lengths M and

N, respectively, where ai,bi ∈ R
L are the individual fea-

ture vectors of equal dimension L. In the context of GC-

and LC-MS, a feature vector corresponds to a binnedmass

spectrum of intensities, a base peak ion intensity or a TIC

value.We assume thatmass resolution and range are equal

for the experiments to align, thus only the intensity dis-

tribution over a fixed range of mass channels is used as

feature vector.

The common definition of DTW involves a local dis-

tance function and a global distance or objective function

that should be minimized [17]. To be consistent with

our previous notation, we use an equivalent formulation

using similarities, which then requires maximization of

the objective function. Since A and B are series sampled

at discrete intervals, we seek an optimal matching of ele-

ments (i, j) connecting every element in A to at least one

element in B and vice versa, termed a path or simply

alignment. In order to find an optimal alignment of A and

B, an (M + 1) × (N + 1) alignment matrix Q is set up,

in which the optimal similarity value for aligning the pre-

fixes (a1, ..., ai) and (b1, ..., bj) is stored at position Q(i, j).

A path P = (p1, ..., pK ) thus consists of elements pk =

(i, j), where the path length K is bounded by 1 ≤ K <

2 · max(M,N) for non-empty A and B.

Pairwise DTW usually performs a global alignment of

two series of features, requiring that the start and end of

both series have to be aligned: p1 = (1, 1) and pK =

(M,N). However, this constraint can be relaxed for sub-

sequence matches to gain the equivalent of a free-end

gaps alignment [8]. Note that DTW allows mapping of an

element to multiple counterparts, which differentiates it

from classical sequence alignment, where an element can

only map to at most one counterpart [24]. Additionally, a

continuity constraint requires that P must move only to

directly adjacent cells of the alignment matrix vertically,

horizontally or on the diagonal, such that if pk = (i, j), and

pk+1 = (i′, j′), then i′ − i ≤ 1 and j′ − j ≤ 1 must hold.

A third constraint requires monotonicity of the path, such

that i′ − i ≥ 0 and j′ − j ≥ 0 hold, and (i′ − i)+ (j′ − j) > 0.

An optimal alignment path satisfying the above con-

straints maximizes the sum of pairwise similarities. This

allows us to define the optimal DTW alignment between

non-empty A and B through the following expression:

DTW (A,B) := max
P∈P(A,B)

(

∑

pi∈P

Q(pi)

)

(2)

where P is the set of all possible global alignment paths of

A and B.

Maximization alone would favor the highest number

of steps to align A to B, given the above constraints,

resulting in alternating combinations of vertical and hor-

izontal steps. Hence, additional weighting factors need

to be included to treat diagonal (match), vertical (expan-

sion) and horizontal (compression) steps equivalently [24].

Expansion and compression are similar to insertion or

deletion in classical sequence alignment. We thus define

three weight parameters, wmatch, wcomp and wexp, which

allow to vary the degree of flexibility of the alignment

between overadaptation and the shortest possible align-

ment.

Finding an optimal warping path to actually recover the

mapping between A and B can be achieved by applying

the dynamic programming principle and tabulating inter-

mediate optimal results. We thus calculate the value of

each Q(i, j) by applying Equation 3 recursively, with f cor-

responding to the same similarity function as used in the

section about BIPACE. Initialization of row 0 and column

0 with −∞ is required to only allow a global alignment,

effectively forcing the alignment of (a1, b1).
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Q(i, j) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if i = j = 0,

− ∞ if i = 0 and 0 < j ≤ N

− ∞ if j = 0 and 0 < i ≤ M

max

⎧

⎪

⎨

⎪

⎩

Q(i − 1, j − 1) + wmatchf (ai, bj)

Q(i, j − 1) + wcompf (ai, bj)

Q(i − 1, j) + wexpf (ai, bj)

⎫

⎪

⎬

⎪

⎭

for 1 ≤ i ≤ N , 1 ≤ j ≤ M

(3)

The optimal score can then be found in the bottom-right

entry of the alignment matrix Q, such that DTW (A,B) =

Q(M,N). We finally correct the optimal score for the

weights to achieve a score that can be used to compare

series of different lengths [8].

Postprocessing - obtaining bijectivemaps

As described in [8], the obtained map from DTWmay not

be bijective, depending on the similarity function used.

The authors of [8] describe a method to select bijective

anchors as control points for a polynomial fit, in order to

interpolate in between the anchors. In CEMAPP-DTW,

however, we choose to define path weights that either

boost diagonal moves by user-definable factors, resulting

in a less or more adaptive alignment path. For symmetric

DTW, these factors can be used to efficiently reduce the

problem of overadaptation of the path, when maximizing

a similarity function and avoiding the need to predeter-

mine additional gap penalties. CEMAPP-DTW reports a

list of the maxima of the similarity function found along

the alignment trace, which coincide with aligned, highly

similar mass spectra.

An efficient datastructure for pairwise DTWalignment with

anchors

The unconstrained pairwise DTW algorithm requires

O(N2) time and space, where N is the number of fea-

ture vectors to be compared. Additionally, due to the

pairwise similarity used, the method requires another

factor of L for each pairwise similarity calculation. For

long feature vectors, L may be larger than N. However,

most regions of the calculated pairwise similarities are

never needed in practice, as chromatograms tend to be

distorted most around the diagonal of such a pairwise

similarity matrix. In practice, the Sakoe-Chiba band [23]

or the Itakura parallelogram [22] constraints are often

used to prune regions that are too far away from the

diagonal.

These constraints still do not capture the chromato-

graphic reality, where retention time distortion is mostly

caused by large peaks eluting from the column, shifting

all subsequent peaks by a nonlinear factor [1]. We there-

fore introduced easily identifiable peaks as anchors to

DTW [28]. These anchors define regions within which the

alignment is calculated exactly, whereas outside of these

regions no calculations are performed at all. In order to

implement this idea, here we introduce a partitioned array

data structure to store only those elements that are con-

tained in the anchor-constrained regions. This requires

the previous association of anchors, e.g. by BIPACE or

other methods.

Efficient storage of partitioned array

We use the row compressed storage (RCS) technique

to store all elements of an alignment matrix in a lin-

ear array d, where each element is accessed via an offset

index array idx for each row in the virtual matrix and

Figure 3 Schematic alignment matrix of partitioned dynamic

time warping. Schematic of a pairwise alignment matrix of

partitioned dynamic time warping for two arbitrary chromatograms A

and B. The light shaded region represents the unconstrained

alignment matrix, whereas the dark shaded areas represent the

constrained partitions. For every pair of predefined anchors, in this

case depicted as mass spectra, a small region around the anchor is

kept to allow the alignment a higher degree of flexibility. Each

partition is additionally constrained by a local Sakoe-Chiba band

constraint. The intersection of all constraint setsL defines the final

layout of the pairwise alignment matrix and thus the number of

elements that are compared and stored.
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Figure 4Workflow for evaluation of BIPACE and CEMAPP-DTW. (a) Sequence of preprocessing commands for evaluation of BIPACE. (b)

Sequence of preprocessing commands for evaluation of CEMAPP-DTW. Path indicated with (A) with and (B) without anchors.

a length len for the number of elements stored contigu-

ously in that row. An element of the virtual matrix at

row i and column j can be accessed using the index k =

idx(i) + j in array d. Iteration for virtual row i can be

performed from idx(i) to idx(i) + j, j < len(i). Query of

elements outside of the defined regions returns a config-

urable default value, such as positive or negative infinity.

Setting of such elements has no effect, since the lay-

out is static and determined before initialization of the

matrices.

Layout calculation

The layout of the partitioned array is determined

by explicit constraints, regarding the elements that

require evaluation during the alignment. These con-

straints are defined by geometric primitives within

the 2-dimensional plane, e.g. rectangular regions

defined by the alignment anchors, as well as trape-

zoid or arbitrary other regions. However, the layout

needs to satisfy the monotonicity and continuity con-

straints of DTW. Thus, directly neighbouring adjacent

anchors and anchors with inverted order are detected

and removed.

The final shape of the partitioned array is determined by

the intersection of the set of constraints L, where L con-

sists of all pairs (i, j) for which the alignment is calculated.

This may lead to a less optimal alignment concerning the

optimization function, but allows for further speedup and

smaller memory footprint. One option here is to include

either a global or a local Sakoe-Chiba band constraint

between successive anchors. The width w for such bands

can be defined by the user either for the whole alignment

matrix (global) or for every partition (local).

We then define Q̂ as the DTW recursion to calculate Q

using the constraint set L:

Q̂(i, j) :=

{

− ∞ if (i, j) /∈ L

Q(i, j) otherwise.
(4)

A schematic of the corresponding partitioned array with

a constraint set L using anchors and a local Sakoe-Chiba

band constraint is shown in Figure 3.
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Figure 5 Boxplots of the runtimes of BIPACE and CEMAPP-DTW

for the Leishmania dataset. Boxplots of the runtimes of (a) BIPACE

and (b) CEMAPP-DTW for the Leishmania dataset.

Multiple alignment of chromatograms

In order to capture machine dependent fluctuations in

retention times and signal intensities, multiple chro-

matograms are usually measured from the same origi-

nal sample as technical replicates. These often exhibit

notable, but rather small deviations in retention times and

intensities, when compared pairwise.

However, biological replicates show larger deviations

due to the heterogeneity of the sampled population and

corresponding differences in the metabolic state of cells at

the time of harvesting [15].

When comparing the metabolic response of an organ-

ism under different conditions, deviations are even larger,

as some metabolites may not occur at all, and others

occur in different quantities, depending on the affected

pathways of the organism. Thus, a multiple alignment

algorithm needs to handle all of these aspects as good as

possible.

Reference selection

A general method for multiple alignment of chro-

matograms does not necessarily require a reference to

align to. However, most published algorithms either use a

manually selected reference [3], or construct a reference

by adding otherwise unassigned peaks [5] or by averaging

over total ion chromatograms [17]. Automatic selection

of a reference among the available chromatograms is sel-

domly reported [31] but is beneficial to methods using a

manually defined reference [10] that can introduce a bias

in the process of alignment early on.

In metabolomics and proteomics applications, the num-

ber of measurements typically ranges from dozens to hun-

dreds, such that a multiple alignment algorithm should

scale well and be as memory efficient as possible, since

file sizes may approach several hundred MBytes or even

GBytes per raw data file. To avoid a direct multiple align-

ment, we calculate pairwise DTW scores between all pairs

of chromatograms first. These scores can be obtained

from the pairwise DTW scores, but faster methods can

also be used to estimate the true scores, e.g. based on

peak-matching and scoring as performed by BIPACE,

although these may not be as accurate. Then, we select

the chromatogram that has the highest sum of scores to

all other chromatograms as the alignment reference. All

remaining chromatograms are then aligned to this center

chromatogram independently of each other [28]. Other

authors report to use comparable clustering methods

[5,15].

Multiple alignment construction

The construction of the multiple alignment differs slightly

from the approach taken in standard sum-of-pairs mul-

tiple sequence alignment, since we use DTW, which is

potentially a non-metric similarity function [32]. Addi-

tionally, every pairwise alignment is a global alignment

without gaps, so in principle we can not worsen the multi-

ple alignment by introducing gaps. However, since DTW

uses compressions and expansions, chromatograms hav-

ing peaks which are absent in the selected reference may

artificially decrease the quality and score of the alignment.

Hence, we can not guarantee that the multiple alignment

will be within a specific error bound of the optimal mul-

tiple alignment. Nontheless, our method performs well in

practice, which will be discussed in detail in the Results

section.

We finally obtain a dense matrix of aligned feature vec-

tor indices, e.g. of the binned mass spectra, or derived

figures, such as the retention time of each mass spectrum

for all chromatograms. In case of CEMAPP-DTW, and in

contrast to BIPACE, there are no missing features within
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Figure 6 Scatter plots for BIPACE for the Leishmania dataset with alignment false positives and true positives for the D and T parameters.

Scatter plots for BIPACE for the Leishmania dataset with alignment false positives and true positives conditioned on retention time tolerance D

(columns) and retention time threshold T (rows). Instances without retention time penalized similarity function are shown in the NA row/column for

reference. It is visible that the unpenalized instances perform consistently worse on true positives and false positives.

the table, as all features are aligned. These matrices will be

used for evaluation of the alignment performance.

Time and space complexity of CEMAPP-DTW

Following the notation for time and space complexity of

BIPACE, we need O(K2ℓ2) comparisons to calculate all

pairwise alignments between K chromatograms with ℓ

mass spectra each. Using the pairwise DTW alignment

similarities, we select the center chromatogram in O(K)

time and align all remaining K − 1 chromatograms to it

in O(Kℓ) time. If we store the pairwise alignments, they

can be reused at this point, otherwise, they need to be

recalculated in O(Kℓ2) time. Thus, the calculation of all

unconstrained pairwise DTW alignments takes O(K2ℓ2)

in time and space.

For partitioned DTW, the runtime and space require-

ments for each pairwise alignment are a function of the

partition length s and of ℓ. We then need O(ℓs) time and

space to calculate each pairwise alignment. Using an addi-

tional local Sakoe-Chiba band constraint with width w,

the space and time requirements for partitioned DTW are

O(ℓw). In total CEMAPP-DTW then requires O(K2ℓw)

time and space.

Results
In this section, we first give a short review of exist-

ing strategies for the evaluation of peak and profile-

based multiple alignment algorithms in the context

of metabolomics. We then describe our approach and

define useful metrics to compare alignment quality
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Figure 7 Scatter plots for BIPACE for the Leishmania dataset with alignment false positives and true positives for theMCS parameter.

Scatter plots for BIPACE for the Leishmania dataset with alignment false positives and true positives conditioned on the minimum clique size (MCS)

parameter (columns). The highest number of true positives is found for the smallest possible value ofMCS = 2. Fewer false positives are obtained

for higher values ofMCS losing true positives.

before we evaluate BIPACE and CEMAPP-DTW on two

metabolomics datasets. In order to evaluate our meth-

ods we need to define what a good alignment is. To

achieve this, we can use a ground truth of highly con-

served and putatively grouped peaks, which are confirmed

by MS/MS. For LC-MS in the domain of metabolomics

and proteomics, such data sets were prepared and used

for the evaluation of alignment algorithms [11]. However,

the ground truth defined by these datasets is only well

defined for feature-based alignments and also requires a

Figure 8 Scatter plots for BIPACE for the Leishmania dataset with alignment precision and recall. The retention time penalized variant of

BIPACE performs better than the plain variant using the rank or linear correlation similarities. The published alignment of Robinson [10] performs

best using a time penalized dot product similarity.
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Figure 9 Scatter plots for CEMAPP-DTW for the Leishmania dataset with alignment true positives and false positives. SubFigure 9(a) shows

alignment true positives and false positives conditioned on anchor radius (columns) and alignment match weight (rows). It is clearly visible that an

anchor radius of R = 0 combined with a match weight ofW = 2.25 gives the best results for linear correlation and the dot product. SubFigure 9(b)

shows alignment true positives and false positives conditioned on Sakoe-Chiba bandwidth constraint as relative number of scans (columns). Rows

show whether the constraint was applied globally, indicated as FALSE, or locally, indicated as TRUE. The best results were obtained for a local

window of SC = 0.1 · max{|A|, |B|}.

grouping of individual mass-to-charge ratio (m/z), reten-

tion time (rt) and intensity features, which are currently

not provided by either BIPACE or CEMAPP-DTW. For

GC-MS metabolomics data, Robinson et al. [10] compare

their method against a ground truth defined by a human

specialist.

Each alignment evaluation requires ground truth files,

containing grouped features, such as triples of m/z, rt

and intensity in the case of Lange et al. [11], and sim-

ply rt in the case of Robinson et al. [10]. In the first case

one scan may have multiple features, while in the second

case a scan is a feature that is only identified by its rt. In

order to perform the evaluation, we focused on the cor-

rectly assigned rts and the corresponding scan indices,

since those will usually have the largest deviation across

samples.

The ground truth peak group defines whether a peak

is present in a sample or absent. The results of an align-

ment algorithm are then tested in turn against each

ground truth group. If the alignment algorithm reports

an aligned peak group, we count all of the group’s peaks

that are present in the corresponding ground truth group

as true positives (TP). Peaks that are absent in the

ground truth group and in the reported peak group are
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Figure 10 Boxplots of the runtimes of BIPACE and CEMAPP-DTW

for the wheat dataset. Boxplots of the runtimes of (a) BIPACE and

(b) CEMAPP-DTW for the wheat dataset.

counted as true negatives (TN). A peak that is reported

as absent in the ground truth group, but as present in

the alignment algorithm’s reported group, is recorded

as a false positive (FP). Finally, if a peak is reported as

present in the ground truth peak group, but as absent

in the reported peak group, it is reported as a false

negative (FN).

We then use the following commonly applied measures

to assess the quality of a multiple alignment:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 = 2·
Precision · Recall

Precision + Recall
(7)

We evaluate the performance of BIPACE and Robinson’s

method using precision and recall, as well as the total TP

and FP numbers. For CEMAPP-DTW, however, the TN

and FN values are not available, since CEMAPP-DTW

reports an alignment for all peaks, so we will compare

CEMAPP-DTW only using absolute TP and FP numbers.

The three major configurations that we will evalu-

ate are schematically shown in Figure 4. We evaluate

each of BIPACE and CEMAPP-DTW individually, before

we evaluate CEMAPP-DTW using the BIPACE align-

ment with the highest F1 score as a constraint set.

The actual alignment is preceded by a preprocessing

phase, in which the peak features are imported and

converted for use in our pipeline. Then, BIPACE is

applied with its processing steps to calculate a multi-

ple alignment, before CEMAPP-DTW is used first with-

out anchors and then with the anchors as defined by

the best multiple alignment of BIPACE. Throughout all

evaluations, we used five different local similarities to

compare the binned mass spectra, namely the cosine

(cosine), the dot product (dot), the negative Euclidean dis-

tance (euclidean), Pearson’s linear correlation (linCorr),

and Spearman’s rank correlation (rankCorr), each with

and without a retention time penalty, as defined in

Equation 1.

Evaluation of BIPACE and CEMAPP-DTW on a reference

dataset

We evaluated the BIPACEmethod on the Leishmania par-

asite raw data and peak lists published in [10], using as

ground truth the manual multiple alignment reference

from the same paper.

Data preparation and parameter settings

Preprocessing was performed by removing intensites

linked to the derivatization agent at masses 73 and 147.

Due to lack of access to the manually edited peaks lists, we

used the ChemStation (Agilent Technologies) peak data

provided as supplementarymaterial directly and imported

them as peak annotations into our processing pipeline.

The peak data files contained between 169 and 174 peaks

and were stored in tab delimited format. A line in such

a file reported the apex scan index of the correspond-

ing peak for retrieval of the raw mass spectra from the

8 different ANDI-MS/netCDF chromatogram files. Each

of these files contained approximately 2780 centroided

mass spectra. The spectra were binned with nominal mass

accuracy in a range from 50 to 550 Dalton for further

processing.

The reference manual alignment containing 173 aligned

peak groups was then used in order to calculate

the classification performance numbers, as defined in
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Figure 11 Scatter plots for BIPACE for the wheat dataset with alignment false positives and true positives. Scatter plots for BIPACE for the

wheat dataset with alignment false positives and true positives conditioned on retention time tolerance D (columns) and retention time threshold T

(rows). Instances without retention time penalized similarity function are shown in the NA row/column for reference. It is visible that the unpenalized

instances perform consistently worse on true positives, while they perform better with regard to the number of false positives.

Equation 5. This was performed for each multiple align-

ment reported by either BIPACE or CEMAPP-DTW indi-

vidually, or in conjunction, where CEMAPP-DTW used

the multiple alignment of BIPACE as anchors, following

Figure 4.

We varied the minimum clique size (MCS) parameter

from 2 to 8 chromatograms in order to control the size

of the smallest clique that should be reported by BIPACE.

Other varying parameters for the time penalized instances

included the width parameter D of the retention time

penalty function, as defined in Equation 1. We also used

a threshold parameter T on the value of this function

so that the costly pairwise similarity function was only

evaluated if the retention time penalty function’s value

was greater or equal to T. This pruning leads to lower

runtimes of BIPACE and CEMAPP-DTW, visualized in

Figure 5.

For CEMAPP-DTW, we assessed two different

approaches, one without any anchors from BIPACE,

and one using the anchors as reported by the best

BIPACE instance, as determined by the F1 measure. Each

CEMAPP-DTW configuration was further parameter-

ized on the weight W used for diagonal matches and

on the Sakoe-Chiba band constraint BC, given as the

percentage of scans from a chromatogram. For those

CEMAPP-DTW instances which used the best BIPACE

anchors, we additionally varied the use of the Sakoe-

Chiba band to be applied globally or locally and the size

of the radius around anchors. In total, we evaluated 3106

different parameterizations.
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Figure 12 Scatter plots for BIPACE for the wheat dataset with alignment false positives and true positives. Scatter plots for BIPACE for the

wheat dataset with alignment false positives and true positives conditioned on the minimum clique size (MCS) parameter (columns). The highest

number of true positives is reported for the smallest possible value ofMCS = 2. Better false positive numbers are found for higher values ofMCS at

the expense of true positives.

The exact configuration and evaluation results for all

parameterizations together withmemory usage details are

available in Additional file 1.

Results of BIPACE

Our results for BIPACE show good performance for the

time-penalized dot product, which was also used for

Robinson’s method, but also for the time-penalized vari-

ants of Pearson’s linear correlation (linCorr) and Spear-

man’s rank correlation (rankCorr). All instances using a

time-penalized variant of the similarity function are indi-

cated in the similarityFunction column of Additional file

1: Table S1 and are shown in Figure 6 for varying T and

D parameters. The impact of the different similarity func-

tions on the runtime of BIPACE can be seen in Figure 5(a),

showing that for BIPACE the runtime median was close

to 38 seconds, while it was reduced for BIPACE with

retention time penalty D and threshold T to less then

10 seconds. Our best result is achieved for BIPACE with

Pearson’s linear correlation as pairwise similarity using

the time penalized variant with a minimum clique size

of MCS = 2, T of 0.25 or 0.0 and D of 2.5 seconds.

The results of the cosine similarity function are equal. For

these best cases, we achieve 1206 true positives, 26 false

positives, 28 false negatives and 84 true negatives. This

results in a precision of 0.98, a recall value of 0.977, and a

F1 value of 0.978. Figure 7 indicates that, for the best per-

forming similarities, the choice of the MCS parameter is

not critical, unless a false positive number of 0 is wanted.

Figure 8 shows that Robinson’s [10] result performs bet-

ter than any of our parameterized instances and achieves

1264 true positives and at the same time only 3 false

positives. Additionally, 3 false negatives and 114 true neg-

atives improve the precision to 0.9976 and the recall to

0.9976, giving an F1 value of 0.9976. An explanation for

this result can be found in our best performing align-

ments. There we see a larger number of false positives,

meaning that ourmethod reports more potential matches,

which are scored as false positives against the given refer-

ence, but would otherwise be true positive matches. Thus,

we suspect that Robinson’s manually defined ground truth

that we evaluate against is probably not error-free. Addi-

tionally, our best parameterizations report a number of

potential aligned peak groups with significant sizes, which

are not contained in the reference at all and are thus

not assignable for the evaluation. If only the number

of false positives is important, for example to retrieve

only highly conserved peak groups with as few errors

as possible, a number of parameterizations achieve that

goal with 488 true positives and only 1 false positive

assignment with maximum clique size of 8, a reten-

tion time threshold T of 0.9 and retention time penalty

D of 0.1.

Results of CEMAPP-DTW

The best scoring CEMAPP-DTW result using the dot

product as a pairwise similarity with diagonal match

weight W of 2.25, a local Sakoe-Chiba band of BC =

0.1 and D = 3, using the anchors as defined by the

best-scoring BIPACE instance with an anchor radius of

0 achieves 1149 true positives and 219 false positives.

However, the number of false positives is potentially exag-

gerated since the manual reference alignment contains

absent peaks, which are of course reported by CEMAPP-

DTW and are thus counted as false positives. The best

CEMAPP-DTW result used the dot product without

using anchors and a match weight of 2.25, a global Sakoe-

Chiba band of BC = 0.1 and D = 2.5 and achieved
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Figure 13 Scatter plots for BIPACE for the wheat dataset with alignment precision and recall. The retention time penalized variant of BIPACE

using the dot product performs better than the plain variant using the cosine as the similarity function. The evaluation results of some instances

report neither false positive nor false negative assignments, leading to precision and recall values of 1. These instances in general report only about

one third of the maximum number of true positives reported for other parameterizations.

739 true positives and 549 false positives. The results for

CEMAPP-DTW are visualized in Figure 9(a) for varying

match weight W and anchor radius R and in Figure 9(b)

for varying global or local (BCScope) Sakoe-Chiba band

constraint BC.

Evaluation of BIPACE and CEMAPP-DTW on a real world

dataset

In order to assess the quality of BIPACE and CEMAPP-

DTW with and without BIPACE anchors on a GC-MS

dataset of a more realistic size, we used samples from

a plant metabolomics experiment [33]. Spring wheat

(Triticum aestivum L.) was grown under atmospheric and

increased CO2 concentration conditions [34] in a free-air

carbon dioxide (CO2) enrichment (FACE) field experi-

ment. The wheat was grown, harvested, and sampled at

maturity in two successive years (2005, 2006), and pre-

pared for analysis with GC-MS according to the proto-

col published in [33] in order to determine whether the

plants showed ametabolic response in their grains evident

through CO2 enrichment.

Our evaluation was based on a total of 40 chro-

matograms and 10 interspersed blank chromatograms.

Each year was represented by 20 chromatograms, divided

into two groups of 5 chromatograms each, with one

technical replicate per chromatogram, summing to 10

chromatograms per condition and year. Blank runs were

excluded from this evaluation. The chromatograms con-

tained between 4615 to 4685 centroided mass spectra.

The maximal scan difference that we found was around

50 scans which amounts to a maximum retention time

deviation of 32 seconds between the groups of 2005 and

2006.

Data preparation and parameter settings

The acquired raw data was exported using the ANDI-

MS/netCDF export function of the Xcalibur software

(Thermo Fisher Scientific Inc.). For all further prepro-

cessing steps, we used our framework Maltcms. The data

was first binned along the mass axis with nominal mass

accuracy by arithmetic rounding to create a dense sig-

nal matrix. Then, for each signal matrix individually, the

intensities were normalized to length one for each column

(binnedmass spectrum) to remove linear scaling effects in

intensities.

In order to assess the grouping performance, we per-

formed a peak detection with XCMS [7], using the

matched filter method with a signal-to-noise ratio of 5 and

full-width at half height of 5 in order to find well repre-

sented peaks. The peak finding step reported between 410

and 465 peaks per chromatogram. The apex scan indices

for each chromatogram’s peaks were stored in one tab

separated value file for each chromatogram.
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Figure 14 Scatter plots for CEMAPP-DTW for the wheat dataset with alignment true positives and false positives. SubFigure 14(a) shows

alignment true positives and false positives conditioned on anchor radius (columns) and alignment match weight (rows). It is clearly visible that an

anchor radius of R = 0 combined with a match weight ofW = 2.25 gives the best results for linear correlation and the dot product. SubFigure 14(b)

shows alignment true positives and false positives conditioned on Sakoe-Chiba bandwidth constraint BC as relative number of scans (columns).

Rows show whether the constraint was applied globally or locally (BCScope). The best results were obtained for a local window of 0.1 · max{|A|, |B|}.

We then chose signals within a retention time win-

dow of +/ − 30 seconds. To be counted as a com-

plete group, the scans corresponding to the tags were

required to have a pairwise cosine similarity between

their binned mass spectra of > 0.99 throughout all

chromatograms and a maximum mass deviation of

0.01 Dalton. The selection process lead to 184 peak

groups containing peaks appearing in all chromatograms,

which defined our ground truth for the evaluation

of the multiple alignments produced by our methods.

This reference selection and grouping was performed

by a profiling method, which was recently added to

MeltDB [35].

The evaluation was then performed following the

flowchart in Figure 4. BIPACE was run using the raw

ANDI-MS/netCDF files as input together with the tab

separated value peak lists. Subsequently, the CEMAPP-

DTW instances without anchors from BIPACE were run,

before finally the CEMAPP-DTW instances using the

BIPACE anchors from the best scoring multiple peak

alignment were executed.

The reference data was then compared to the align-

ment results generated by the three separate eval-

uation workflows for BIPACE, CEMAPP-DTW, and

BIPACE+CEMAPP-DTW using the five different similar-

ity functions mentioned at the beginning of the Results
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section, all of them plain and in combination with a reten-

tion time penalty, as described by Robinson et al. [10],

who only report use of the time penalized dot product.We

combined each similarity function with the time penalty

function as in Equation 1.

In order to assess the precision of BIPACE, we started

with a minimum clique size (MCS) parameter value of 40

chromatograms, meaning that only those groups that con-

tained exactly one peak from each file were reported. For

the time penalized instances we varied the width parame-

ter D of the retention time penalty function. We also used

the threshold parameter T on the value of this function

so that the costly pairwise similarity function was only

evaluated if the retention time penalty function’s value

was greater than or equal to T. The positive effect of this

pruning on the runtime of BIPACE and CEMAPP-DTW

is visible in Figure 10.

For CEMAPP-DTW, we assessed two different

approaches, one without any anchors from BIPACE,

and one using the anchors as reported by the best

BIPACE instance, as determined by the F1 measure. Each

CEMAPP-DTW configuration was further parameter-

ized on the weight W used for diagonal matches and

the Sakoe-Chiba band constraint width BC, given as the

percentage of scans from a chromatogram. For those

CEMAPP-DTW instances which used the best BIPACE

anchors, we additionally varied the use of the Sakoe-

Chiba band to be applied globally or locally and the size

of the radius around anchors.

The exact configuration and evaluation results for

all 1641 parameterizations including memory usage are

available in Additional file 2.

Results of BIPACE

The results for BIPACE on the wheat dataset show

very good performance in absolute and relative numbers.

Figure 11 shows the absolute numbers of true positive

versus false positive assignments for varying T (rows)

and D (columns) parameters. The overall best result

is achieved using the dot product (dot) for instances

using the time penalty function, and the cosine (cosine)

for instances not using the time penalty function. The

instances using no additional retention time penalty are

visible at the bottom left of Figure 11. These do not

achieve as many true positives as the time penalized

variants, however, they tend to produce fewer false posi-

tives as well. The negative Euclidean distance (euclidean)

in combination with a time penalty, produces the

fewest number of false positives, regardless of the value

of D.

Figure 12 shows the dependency of true and false pos-

itives with regard to the MCS parameter. This parameter

shows the relation of a small MCS value to a high num-

ber of true positives, but also to more false positives,

since a larger number of small cliques with lower indi-

vidual support are reported. Larger cliques have a high

support for each contained peak and are thus more influ-

ential for the total number of true positives, but they occur

less often, as is visible for MCS = 40, where each peak

group must contain peaks from all 40 chromatograms.

Again, as in Figure 11, dot product and cosine give the

best results in absolute numbers of true and false positive

assignments.

The precision and recall plot in Figure 13 does not

clearly visualize a superior parameterization, but from

Additional file 2: Table S2 we see, that the dot prod-

uct is the best similarity function for retention time

penalized instances with MCS = 10, 6891 true pos-

itives, 36 false positives, and 433 false negatives. The

best parameterization without retention time penalty also

used the cosine with MCS = 2, resulting in 5357 true

positives, 39 false positives and 1924 false negatives.

However, the retention time penalized variants tend to

have a lower runtime, depending on the T parameter

used.

There are no true negatives reported for the wheat eval-

uation, as there were no missing peak annotations in the

ground truth. This explains the high number of false neg-

atives for BIPACE, due to not completely connected peak

groups, which prohibits BIPACE to form larger cliques.

The peaks which could not be assigned to any cliques are

consequently missing from the reported multiple align-

ments.

Results of CEMAPP-DTW

For CEMAPP-DTW, the results are comparable to those

obtained for the Leishmania dataset. Without the anchors

defined by BIPACE, CEMAPP-DTW has fewer true pos-

itive results and more false positive results. Here, the

time penalized variant of the dot product with D =

30 seconds, BIPACE anchors, a local Sakoe-Chiba band

constraint of BC = 0.1, and a matchWeight = 2.25

achieves the best result with 6459 true positives, 387

false positives and 514 false negatives. The best result

using no anchors from BIPACE uses the dot product

with D = 1 seconds retention time penalty, a global

Sakoe-Chiba band constraint of 0.1, match weight W =

2.25, achieving 5017 true positives, 2194 false positives

and 149 false negatives. These results are illustrated in

Figure 14, showing the dependencies of true and false pos-

itives on the different parameters. Figure 14(a) shows that

a small anchor radius R = 0 combined with a match

weight W = 2.25 yields the highest number of true pos-

itives. In Figure 14(b), the dependency between the use

of a global or local (BCScope) Sakoe-Chiba band ver-

sus different values for the band width parameter BC is

shown. In general, a local band of width 0.1 yields the

best results.
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Discussion
The results of BIPACE and CEMAPP-DTW presented in

the previous sections show the advantage of using a reten-

tion time penalty as an additional criterion together with

the mass spectral similarity function. The runtime box-

plots in Figures 5(a) and 10(a) show the advantage of

using the T parameter as a threshold on the retention

time penalty function. If the value of the retention time

penalty function is larger than the T, then the costly sim-

ilarity functions are applied, otherwise, the calculation is

stopped immediately for that peak pair.

Therefore, tuning of the T parameter is one possible

option to speed up the calculation of both BIPACE and

CEMAPP-DTW. Since the time penalized similarity vari-

ants consistently perform better than the non-penalized

ones, it is also advisable to check on the T parameter. Our

results show that this parameter should initially be set to

a rather small number, since it does not directly corre-

spond to the expected retention time deviation. Finally,

the minimum clique size MCS is an important parameter

for BIPACE and influences the number of cliques that are

reported in the multiple alignment. Using a high value for

MCS returns only those cliques whose peaks are all bidi-

rectional best hits of each other and thus support each

other as members of the clique. Lower values for MCS

return more cliques, but at the expense of returning a

higher number of smaller cliques with potentially more

misaligned peaks.

CEMAPP-DTW on the other hand has a few other

parameters to tune. Our results show that themost impor-

tant ones are the use of anchors and an anchor radius of 0,

meaning that the DTW alignment must pass through the

anchor positions for example defined by BIPACE . Addi-

tionally, the use of a local Sakoe-Chiba band constraint

and a match weight of 2.25 are beneficial for the number

of true positives CEMAPP-DTW is able to achieve.

Concerning the best similarity function to use, there is

no decisive answer possible from our results. In accor-

dance with [8], Pearson’s linear correlation and Spear-

man’s rank correlation give good results in terms of low

false positive numbers, but time penalized dot product

and cosine tend to give significantly higher true positive

numbers. Using the time penalty function as a pre-filter

for the actual similarity function seems to reduce the dif-

ferences of the individual similarity functions. However,

the instances using a correlation-based similarity have a

significantly longer runtime (Figures 5 and 10), than the

ones using the dot product or cosine similarity.

Conclusions
We have introduced a fast and accurate method for

multiple peak alignment of GC-MS data, BIPACE, that

is capable of finding groups of similar peaks between

chromatograms from different experimental groups (e.g.

treatment and control), achieving a high number of true

positive and a very low number of false positive assign-

ments. Our method achieves results comparable to that

of Robinson et al. [10], while being easily tunable to a

very low false positive rate via the minimum clique size

parameter.

With the use of the peak groups aligned by BIPACE as

anchors within partitioned DTW, we address one major

issue of similar profile-alignment algorithms, namely their

quadratic time and space complexity by partitioning the

pairwise alignment matrix into adjacent regions. Thus,

strong peak candidates, such as reference compounds

with unique mass traces (LC-MS) or characteristic frag-

mentation patterns (GC-MS) are definitely aligned, while

weaker peaks that were not discovered during peak find-

ing are also aligned, but with more flexibility.

We have shown that the partitioned DTW algorithm

used in CEMAPP-DTW on its own is able to calcu-

late a profile-based multiple alignment in less time and

with fewer space requirements when compared to uncon-

strained DTW. Combining CEMAPP-DTW with the

aligned peak groups from BIPACE as alignment anchors

allowed us to improve both on the runtime, as well as on

the number of true positives recovered by the alignment.

This combination of the two algorithms is feasible if a def-

inite alignment is not the main requirement, but instead

the output of CEMAPP-DTW is used for a subsequent

retention time correction of the profile data. For a definite

multiple peak alignment BIPACE is the better alternative.

Additional files

Additional file 1: Archive containing evaluation tables for the

Leishmania parasite dataset. The complete evaluation table giving the

parameters and classification results for BIPACE, CEMAPP-DTW and

Robinson’s [10] method for the Leishmania parasite dataset is contained in

a zip-archive along with the corresponding figures. Table S1 in the

manuscript corresponds to the file ‘evaluation.csv’ in this archive.

Additional file 2: Archive containing evaluation tables for the wheat

dataset. The complete evaluation table giving the parameters and

classification results for BIPACE and CEMAPP-DTW for the Wheat dataset is

contained in a zip-archive along with the corresponding figures. Table S2

in the manuscript corresponds to the file ‘evaluation.csv’ in this archive.

The corresponding raw dataset together with experimental parameters,

peak lists and reference multiple peak alignment is available from the

Metabolights database at http://www.ebi.ac.uk/metabolights/MTBLS21.
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