
BIOINFORMATICS Vol. 19 no. 18 2003, pages 2369–2380
DOI: 10.1093/bioinformatics/btg329

Combining phylogenetic data with co-regulated
genes to identify regulatory motifs

Ting Wang and Gary D. Stormo∗

Department of Genetics, Washington University Medical School, St. Louis,
MO 63110, USA

Received on April 3, 2003; revised on June 2, 2003; accepted on June 12, 2003

ABSTRACT
Motivation: Discovery of regulatory motifs in unaligned DNA
sequences remains a fundamental problem in computational
biology. Two categories of algorithms have been developed
to identify common motifs from a set of DNA sequences. The
first can be called a ‘multiple genes, single species’approach. It
proposes that a degenerate motif is embedded in some or all of
the otherwise unrelated input sequences and tries to describe
a consensus motif and identify its occurrences. It is often
used for co-regulated genes identified through experimental
approaches. The second approach can be called ‘single gene,
multiple species’. It requires orthologous input sequences and
tries to identify unusually well conserved regions by phylogen-
etic footprinting. Both approaches perform well, but each has
some limitations. It is tempting to combine the knowledge of
co-regulation among different genes and conservation among
orthologous genes to improve our ability to identify motifs.
Results: Based on the Consensus algorithm previously
established by our group, we introduce a new algorithm
called PhyloCon (Phylogenetic Consensus) that takes into
account both conservation among orthologous genes and
co-regulation of genes within a species. This algorithm first
aligns conserved regions of orthologous sequences into
multiple sequence alignments, or profiles, then compares
profiles representing non-orthologous sequences. Motifs
emerge as common regions in these profiles. Here we present
a novel statistic to compare profiles of DNA sequences and
a greedy approach to search for common subprofiles. We
demonstrate that PhyloCon performs well on both synthetic
and biological data.
Availability: Software available upon request from the
authors. http://ural.wustl.edu/softwares.html
contact: stormo@ural.wustl.edu

INTRODUCTION
Finding regulatory motifs in unaligned DNA sequences is a
fundamental problem in computational biology. Over the past
few years, several algorithms have been developed for this

∗To whom correspondence should be addressed at 4566 Scott Avenue,
Campus Box 8232, St. Louis, MO 63110, USA.

purpose, including Gibbs sampler (Lawrence et al., 1993),
Consensus (Stormo and Hartzell, 1989; Hertz and Stormo,
1999), MEME (Bailey and Elkan, 1994, 1995), ANN-Spec
(Workman and Stormo, 2000), AlignACE (Hughes et al.,
2000), Projection (Buhler and Tompa, 2002), MITRA (Eskin
and Pevzner, 2002), and FootPrinter (Blanchette and Tompa,
2002; Blanchette et al., 2002). These algorithms can be placed
in two main categories. The first is a ‘single species, multiple
genes’ approach. When genes of a single species share a com-
mon regulatory mechanism, the task of finding their regulatory
motifs can be abstracted to a ‘planted motif problem’ (Pevzner
and Sze, 2000), i.e. finding one or more degenerate motifs
embedded in otherwise unrelated random sequences. To solve
this problem, algorithms usually define an objective func-
tion to measure the difference between a representation of the
motif and the background and then find a representation that
maximizes the function score through local search. Promoter
sequences of co-regulated genes (identified by microarray
profiling or chromatin immunoprecipitation) are often sub-
jected to such algorithms. The second approach can be called
‘single gene, multiple species’, or phylogenetic footprinting.
It relies on conservation of regulatory mechanisms across
species. Background sequences are not regarded as random
but as orthologous sequences linked by a phylogenetic tree.
Motifs are found as unusually well conserved substrings by
comparative genomic analysis.

While these algorithms are useful for understanding regu-
latory networks, they have limitations. For the planted motif
problem, current algorithms usually perform well in find-
ing motifs with strong conservation. When the degeneracy
is high [such as 30% mismatches within a motif, a typical
(14,4) problem as described in Pevzner and Sze (2000)], they
often fail. Additional algorithms have been developed to solve
these more difficult problems, but their performance usually
drops significantly on long background sequences (Buhler and
Tompa, 2002). Statistical analysis of current motif finding
algorithms suggests that their performance is influenced by
the distribution of mutations within a motif and the spuri-
ous occurrences of random motifs in the background, which
may pose a theoretical limitation for this type of algorithm
(Workman and Stormo, 2000; Buhler and Tompa, 2002; Sze
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et al., 2002). Phylogenetic footprinting, by contrast, ignores
experimental evidence of gene co-regulation and relies on spe-
cies selection. Species need to be chosen at an appropriate
evolutionary distance that maintains the regulatory mechan-
isms and motifs without excessive background conservation.

The rapid accumulation of genomic sequences from mul-
tiple organisms and the mounting evidence from microarray
gene profiles make it possible to combine knowledge of co-
regulation among different genes with conservation among
orthologous genes to improve motif finding. Regulatory
motifs frequently reside in evolutionarily conserved regions.
For example, Wasserman et al. (2000) found that 98%
of known skeletal-muscle-specific transcription factor (TF)
binding sites are confined to 19% of human sequences that are
most conserved in the orthologous rodent sequences. Cliften
et al. (2001) sequenced six Saccharomyces species and
showed that many TF binding sites are conserved across spe-
cies and align well in conserved blocks, although the blocks
are often much longer than the binding sites. Aside from taking
all the promoter regions of multiple genomes into a single set
on which motifs are searched (Gelfand et al., 2000; McGuire
et al., 2000), two methods have proven effective when one
or more reference genomes are available. One is to align
orthologous sequences and identify conserved regions, which
are then subjected to conventional motif finders (Wasserman
et al., 2000). This reduces the search space to the range
where conventional motif finders perform well. The other
approach begins by finding many motifs in one species, then
confirming their existence in reference species. False posit-
ives are eliminated because a motif is accepted only when it
occurs in multiple species (GuhaThakurta et al., 2002; Cliften
et al., 2003). However, no improvement has been made to
the motif finding algorithm per se, and those methods do
not take optimal advantage of both types of data. A recent
approach developed for motif finding in multiple yeast species
does utilize both types of information together (Kamvysselis
et al., 2003). They start with an exhaustive enumeration of
conserved words, which is quite different from our approach.

In this paper, we present a new algorithm called Phylo-
Con (Phylogenetic-Consensus) that takes into account both
conservation among orthologous genes and co-regulation of
genes within a species. The key idea of PhyloCon is to com-
pare aligned sequence profiles from orthologous genes, rather
than unaligned sequences. In brief, we usually know a few
genes that share a regulatory mechanism and can obtain one
or several orthologous sequences for each promoter. Phylo-
Con first locally aligns orthologous sequences. Alignments of
conserved regions, including many suboptimal alignments,
are converted to sequence profiles. Then, PhyloCon com-
pares profiles generated from different genes. It identifies
the common sections between two profiles and merges them
into a new profile for subsequent comparison. It essentially
samples all the possible sections of all profiles and iden-
tifies the commonly shared sections, which are reported

as motifs (Fig. 1). This idea is similar to the one behind
Pietrokovski’s LAMA search tool (Pietrokovski, 1996). He
showed that aligning protein multiple-alignments increases
sensitivity in searching for conserved regions. LAMA uses the
Pearson correlation coefficient to score similarities between
alignments, while we propose a novel, fully probabilistic scor-
ing scheme that incorporates thermodynamics of protein and
DNA binding.

This approach has several advantages. PhyloCon does not
consider a single instance of a motif as a string of letters.
Instead, it sees any position of such an instance as a prob-
abilistic distribution over all possible nucleotides. Random
mutations that could disrupt the significance of any copy of
the motif are much less devastating to a probabilistic profile.
Spurious random profiles are much less likely than spurious
random motifs. Thus PhyloCon has a low false positive rate
and is very tolerant of background sequence length. Extended
background genomic conservation beyond the motif helps not
only to reduce search space, but also to correctly align con-
served motifs (Fig. 1). By saving suboptimal alignments and
comparing all of them, PhyloCon reduces its false negative
rate. Finally, the statistics we use to compare profiles often
precisely locate the boundaries of common sections; therefore
PhyloCon does not need the length of the motif a priori.

ALGORITHM
We now present three components of the PhyloCon algorithm:
initial profile generation, profile comparison, and a greedy
approach to combine common regions in different profiles.
Figure 1A shows a diagram of the PhyloCon algorithm, and
Figure 1B shows an example of finding LEU3 sites in three
groups of genes from four yeast species.

Initial profile generation
We generate initial multiple sequence alignments using
the previously described Wconsensus program (Hertz and
Stormo, 1999). Wconsensus is a variant of the Consensus
program, and was designed to find multiple sequence align-
ments without prior knowledge of the alignment length. It
does so by maximizing the crude information content, defined
as the total information content subtracting two biases: the
information content expected from the aligned sequences, and
some multiple of the standard deviation of the information
content expected from prior letter distribution. Wconsensus
was chosen because, unlike other alignment tools such as
BLAST (Altschul et al., 1990) and CLUSTALW (Thompson
et al., 1994), it gives many ungapped suboptimal alignments.
If the real motifs are correctly positioned in any of these
alignments, they will emerge during subsequent profile com-
parisons. However, any other local alignment tool could be
used at this step with proper modifications.

Initial multiple sequence alignments generated by Wcon-
sensus are transformed into profiles, or position specific
scoring matrices. Each column is a vector of four elements,
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A
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Alignment of profiles

Alignment of conserved regions

A  . . 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . .
C  . . 0 1 1 2 4 2 4 4 4 0 0 0 0 0 4 0 0 0 4 4 0 0 4 0 0 0 0 . .
G  . . 1 0 0 0 0 0 0 0 0 4 4 0 0 4 0 4 4 4 0 0 3 0 0 4 0 0 0 . .
T  . . 3 3 3 2 0 2 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1 4 0 0 4 4 4 . .

A  . . 0 0 4 2 0 0 0 0 0 0 0 0 4 4 0 0 0 1 0 0 0 3 1 0 0 3 4 . .
C  . . 0 2 0 1 0 0 0 4 4 0 0 0 0 0 4 0 0 1 4 1 0 1 0 0 1 0 0 . .
G  . . 0 0 0 0 4 4 0 0 0 4 4 0 0 0 0 4 4 0 0 2 0 0 3 1 3 1 0 . .
T  . . 4 2 0 1 0 0 4 0 0 0 0 4 0 0 0 0 0 2 0 1 4 0 0 3 0 0 0 . .

A  . . 0 2 1 1 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 1 2 3 0 0 1 1 . .
C  . . 3 0 1 1 4 0 0 4 4 0 0 0 0 4 4 0 0 4 0 0 0 0 1 1 0 3 2 . .
G  . . 1 1 2 0 0 0 4 0 0 4 4 0 0 0 0 4 4 0 0 0 3 2 0 0 1 0 1 . .
T  . . 0 1 0 2 0 3 0 0 0 0 0 4 0 0 0 0 0 0 4 4 0 0 0 3 3 0 0 . .

YGL125W

YOR108W

YMR108W

Result of profile comparison

S. cerevisiae GAAAAAATAACAGCGACTTTTCTCCCGGTAGCGGGCCGTCGTTTAGTCATTCTATCCCTC
S. mikatae   AAAACATAACAGCGAATTTTCCTCCCGGTAGCGGGCCTTCGTTTAGTCATTCTCTCTCTT
S. bayanus   AAAAAATAACAGCGACTTTTCCCCCCGGTAGCGGGCCGTCGTTTAGTCATTCTCTCTCCC
S. kudriavzevii GAAAAAAAACAACGGCGGCCTCCCCCGGTAGCGGGCCGTCGTTTAGTCATTCTCTCTCTC

***** **** **   *** * *************************************

YGL125W LEU3

S. cerevisiae GCCATCATGGTCCGGTAACGGTCGTAGTGAATGACTCATATTTTTCCATCTCTTT
S. mikatae      GCCATCAAGGTCCGGTAACGGTCGTAGTGAATGACTCACATTTTCTTCGTTATTC
S. bayanus   ACCATTACGGTCCGGTAACGGACTTAGTGAATGATTCATCTTTTCTTCTTTTTTC
S. kudriavzevii GTCGTTAAGGTCCGGTAACGGCCCTCAGCGAATGATTCATAATTTCATTTTTTTC

***** * ************* * ********** ***  ****    *** ***

YOR108W

S. cerevisiae AACGCCTAGCCGCCGGAGCCTGCCGGTACCGGCTTGGCTTCAGTTGCTGATCTCGG
S. mikatae      CACAATGACACATACCTAACAGCCGGTACCGGCTTGAATGCCGCCGTTGGCTTCGG
S. bayanus ATCTTCTAGTCACCGCAGTCTGCCGGTACCGGCTTGAATTCCGCCGTTGATCCTGG
S. kudriavzevii CACATCTCTAGTCCGCGCTCTGCCGGTACCGGCTTAGACTAGCCACGAATCTCGGC

**  ***  * ****   *****************  *** ** * **     **

YMR108W

LEU3

LEU3

Fig. 1. How PhyloCon works. (A) A diagram of how PhyloCon organizes and processes data. Sequences are grouped based on orthology.
Many initial profiles are generated for conserved regions. Comparison of profiles from different orthologous groups reveals common motifs.
(B) Alignments of orthologous sequences of four yeast species show high conservation in the 5′UTR of three genes. Asterisks indicate
positions where at least three out of four letters are identical. Conservation extends beyond the true motifs (LEU3), making it difficult to
identify the motif by simply examining the phylogenetic relationship. However, the motif emerges after comparing profiles from different
orthologous groups.
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representing either counts or observed frequencies of different
nucleotides at a position in the alignment. Each profile repres-
ents a conserved region in the initial orthologous sequences.
A conserved region can be represented by more than one
profile based on suboptimal alignments.

Profile comparison
A profile is treated as a sequence of columns, so the align-
ment between profiles is analogous to the alignment between
sequences. Assuming position independence and a suitable
scoring scheme, the score of an alignment between two pro-
files is the sum of the scores from comparing corresponding
columns. Since the binding site profiles are ungapped, they
can be found by a simple algorithm that identifies the high
scoring pairs (HSPs) along the diagonals of an alignment
matrix. Therefore, the problem converts to comparing two
columns.

We developed a new statistic called ‘Average Log Like-
lihood Ratio’ (ALLR) to compare two columns in different
profiles. Given two probability distributions, the likelihood
ratio (LR) is a standard statistic to measure the probability
that the observed data belongs to one distribution versus the
other. A column of a profile can be denoted as a distribution
vector fb = {fA, fC, fG, fT}, which represents the estimation
of base frequencies at this position; nb = {nA, nC, nG, nT}
denotes the observed base count at this position; pb =
{pA, pC, pG, pT} denotes background base frequencies. Then,
LR = ∏

b=A..T(fb/pb)
nb measures the likelihood that the

observed base counts are from fb rather than the background.
Since fb is a maximum likelihood estimation from nb, LR
actually measures how different fb is from the background.
Log likelihood ratio (LLR) is usually used instead of LR:
LLR = ∑

b=A..T nb ln(fb/pb). In practice, fb is estimated
from nb plus some pseudocounts to reduce small sample
biases.

Now we consider two columns i and j . Each column has a
base count vector nbi (or nbj ), and a base frequency vector fbi

(or fbj ) estimated from observed counts plus some pseudo-
counts. If these two columns are similar, the data observed
for column j should fit the base distribution estimated for
column i, and vice versa. Therefore,

∑
b=A..T nbj ln(fbi/pb)

measures the likelihood of the observed data for column j

being generated by the distribution estimated for column i.
Similarly, we can perform a LLR test with observed data from
column i and the estimated distribution for column j . The
ALLR is given by the weighted sum of these two LLRs:

ALLR =
∑

b=A..T nbj ln(fbi/pb) + ∑
b=A..T nbi ln(fbj /pb)

∑
b=A..T nbi + nbj

(1)

ALLR can be used to distinguish probability distributions
from each other, as well as from the background. It meas-
ures the joint probability of observing the data generated
by one distribution given the LR of the other distribution

over the background distribution (derivation not shown). It is
important to note that the expected value of ALLR is negative
(substituting pb for nbi and nbj in formula (1) gives negat-
ive value). Therefore, as in the Smith–Waterman algorithm
(Smith and Waterman, 1981), the highest scoring local align-
ment is obtained by setting all negative scoring column pairs
to zero and tracking back from the highest scoring column
pair to the first positive pair. This procedure usually returns
the correct motif end points without setting the length a priori.

ALLR is closely related to the information content used
in the original Consensus algorithm and is also related to
the thermodynamic properties of the protein/DNA binding
system. For a given position i in a DNA binding site, the
information content Ii of the sequence alignment at this
position is Ii = −∑

b=A..T fbiH(b, i), where H(b, i) =
−ln(fbi/pb), representing the relative entropy of base b at
position i. H(b, i) is a maximum probability estimate for the
binding energy contribution of base b at position i, and Ii is
the average binding energy of all known sites contributed by
position i (Berg and von Hippel, 1987; Stormo and Fields,
1998; Hertz and Stormo, 1999; Stormo, 2000). If we let ni

and nj denote the total base count at position i and j , formula
(1) can be written as

ALLR = −nj

∑
b=A..T fbjH(b, i) − ni

∑
b=A..T fbiH(b, j)

ni + nj

(2)

Positions i and j are in two different collections of binding
sites. This formula is a measurement of the average bind-
ing energy of two different proteins binding to each other’s
functional sites. Only when fbi and fbj are similar is the
expected binding energy negative, making the condition ther-
modynamically favorable. This can be interpreted to mean
that the proteins accept each other’s sites or that their sites
are equivalent. When fbi and fbj are disimilar, the energy
estimation will be positive on average, or thermodynamically
unfavorable and the proteins reject each other’s sites.

Given this scoring statistic and the assumption of position
independence, the score of aligning local regions of two pro-
files is simply the sum of comparison scores of position pairs.
A dynamic programming algorithm is implemented to identify
high similarity regions using the ALLR statistic.

Profile merging
PhyloCon uses a greedy algorithm to combine profile compar-
ison results. The following is a general description of how the
alignment algorithm proceeds. Input sequences are grouped
based on orthology. Let N be the number of groups, each
containing a few orthologous sequences.

Step 1. Create multiple sequence alignments for each
orthologous group using Wconsensus (Hertz and Stormo,
1999). Save a user-defined number of suboptimal align-
ments. Convert multiple sequence alignments to profiles.
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Profiles generated at Step 1 each contain sequences from one
orthologous group.

Step 2. Pairwise compare all profiles to profiles from other
orthologous groups using ALLR statistic. Save and sort some
number of HSPs that exceed a threshold ALLR score. Merge
profile components of a HSP into a new profile by simply sum-
ming them together, trimming off the sections not contained in
the HSP. New profiles generated at Step 2 contain sequences
from two groups. They are ranked by their corresponding
ALLR scores.

Step 3. Compare each new profile saved from Step 2 to pro-
files from Step 1 that it does not already contain. Save HSPs
and create new profiles, up to a user-defined number. New
profiles generated at Step 3 contain sequences from three
groups.

Step N. Compare profiles from previous cycles that do not
share a common orthologous group and contain N ortholog-
ous groups if merged. Save HSPs and create new profiles.
New profiles generated at Step N contain sequences from N

groups, and sorted by corresponding ALLR scores.

Each profile corresponds to a multiple sequence align-
ment. Whenever the alignments representing two profiles are
identical, only one profile is saved. Top scoring profiles gener-
ated are reported as common motifs shared by sequences in all
orthologous groups summarized by such profiles. If samples
are corrupted (with only a fraction of sequences containing
sites), correct results can be easily identified in profiles gen-
erated in early cycles. The program offers default values for
all user defined parameters, such as the number of profiles to
be saved at each cycle.

RESULTS

Scoring statistics
At least three properties of the scoring statistic make it an ideal
objective function for profile comparison: (1) It is additive.
The similarity score between two aligned profiles is simply
the sum of the scores resulting from comparing each position
pair. (2) The expected value is less than zero unless two dis-
tributions being compared are sufficiently similar (Fig. 2A),
facilitating detection of the end points of an alignment. (3)
Scores of HSPs generated in profile comparisons appear to
follow an extreme value distribution (Fig. 2B). An HSP with
a score higher than that expected from the background rep-
resents a common region shared by two profiles. For aligned
profiles, this statistic gives a probabilistic estimation of their
similarity; for unaligned profiles, it allows fast and accur-
ate identification of local similarity between them with any
standard sequence alignment algorithm.

Two other scoring methods have been used for the purpose
of comparing two profiles. One is to use Pearson correla-
tion coefficient as a similarity score between two profiles
(Pietrokovski, 1996). The values of this statistic are between

−1 and 1 and the expected value is 0 (Fig. 2A). Some constant
factor (such as 0.5) should be subtracted from the values in
order to make the expected value below zero. Alternatively,
one can take advantage of nucleotide substitution scores and
develop a ‘Sum of all pairs’ method (Thompson et al., 1994).
To align two columns is essentially equivalent to substitut-
ing all nucleotides in one column with all nucleotides in the
other column. The total score is the sum of all pairwise sub-
stitution scores weighted by frequencies of all possible pairs.
Such a statistic should have a negative expected value and
specific substitution scoring matrices can be used for specific
purposes. We plotted in Figure 2A the value distribution of
all three statistics. We enumerated all possible columns from
alignments of 10 DNA sequences and calculated scores of all
pairwise comparisons. These scores were binned and a histo-
gram was generated for each statistic. We also implemented all
three statistics in PhyloCon and briefly compared the perform-
ance using simulated data. ALLR is clearly the best among
the three, and the correlation coefficient based program has
the least efficacy (see below).

Simulated data
We generated synthetic data based on a star topology model.
A consensus motif was mutated and planted in a number
of random sequences representing co-regulated genes in a
species. For each sequence, some orthologous sequences
were created to provide background homology of varying
length around the planted motif. Key parameters include
motif length, sequence length, number of co-regulated groups,
orthologous sequences per group, background identity, and
percentage of mismatches allowed between any instance of
the motif and the consensus. By adjusting these parameters,
we generated motif finding problems of varying complexity.
To evaluate PhyloCon’s performance, we compared it with
several established programs, including Consensus, Wcon-
sensus, Gibbs Sampler (Version 1.01.009) and Projection
(Projection Genomics Toolkit version 0.42pre2). All pro-
grams except PhyloCon and Wconsensus were given the
precise length of the planted motif. Projection was also given
the number of mutations allowed in each motif as required by
the program. Input sequences are organized into co-regulated
groups for PhyloCon, while for the other programs they are
simply pooled together. Following Pevzner and Sze (2000),
we used the performance coefficient |K∩P |/|K∪P | to evalu-
ate the performance. K is the set of positions in known motifs
in the data set, and P is the set of predicted positions. Sens-
itivity is defined as |K ∩ P |/K , and specificity is defined as
|K ∩ P |/P .

Figure 3A illustrates results from experiments using five
orthologous groups, each with four sequences of 600 nt.
Planted motifs range from 8 to 20 nt in length with 60–
90% identity, corresponding to a 40–10% mismatch rate. A
30% mismatch rate on average corresponds to a difficulty
level of (14,4) to (15,5) problems (Pevzner and Sze, 2000).
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Fig. 2. (A) Distribution of the values of three statistics. To get these distributions, we enumerated all possible columns from alignment of
10 DNA sequences and calculated all pairwise comparison scores based on the three different statistics. Then we binned the scores based on
their values and created a histogram for each statistic. Solid line: ALLR statistic, expected to be less than zero on average. Dotted line: Pearson
correlation coefficient, values are between −1 and 1 and centered around 0. Dashed line: sum of all pairs, match score of 5 and mismatch
score of −4 are used (BLASTN default scoring matrix). (B) Run time distribution of HSP scores. To get these distributions, we created two
synthetic data sets, one with a motif of length 14 planted, the other with no motif planted. The motif percentage identity is 70%, and the
background identity is 50%. With the program run as described, all scores of identified HSPs were recorded. These scores were binned and a
histogram was generated for each case. Solid line: with planted motif. Dashed line: no planted motif. Both curves appear to fit extreme value
distribution. A planted motif results in a much larger tail on the curve. HSPs in this tail usually correspond to identification of the planted
motif.

Background identity ranges from 25% (no background homo-
logy) to near the motif percentage identity. When motifs have
high conservation, PhyloCon performs about as well as the
original Consensus. Indeed, most conventional motif find-
ers can solve relatively easy problems with high accuracy.
When the motifs are weak, containing more mismatches,
the performance of all programs drops, but they do so to
varying degrees. Consensus’ performance coefficient drops

from 0.9 to 0.5 when the percentage of mismatches in the
motif increases from 10 to 35%, consistent with Sze et al.’s
(2002) benchmark. Gibbs Sampler and Projection perform
very similar to Consensus throughout the tested spectrum.
Without background homology, PhyloCon performs simil-
arly to Consensus, but introducing this factor provides a
significant increase in performance. For example, for a chal-
lenging problem with about 30% mismatches in the motif,
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Fig. 3. (A) Performance coefficient comparison resulting from varied percentage identity of both planted motifs and background. Length
of the planted motif is drawn from 8 to 20, and each point represents 100 independent experiments. (B) Plotting sensitivity and specificity
separately. Ninty percent of PhyloCon’s predictions achieve 80% sensitivity, and 80% of PhyloCon’s predictions achieve 80% specificity.

a 50–70% background identity makes PhyloCon 20% better
than Consensus. Many biological observations suggest that
related sequences do provide this level of background inform-
ation. Cliften et al. (2001) sequenced genomes of six yeast

species and observed about 60% identity in the non-coding
homologous regions. Human and mouse also share 50% iden-
tity in non-coding homologous regions averaging 2000 nt in
length (Shabalina et al., 2001). PhyloCon demonstrates a
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great potential to increase the accuracy of motif searching
when such biological phenomena are considered. In all these
experiments, Consensus, Gibbs Sampler and Projection were
given the motif length, while PhyloCon detected the length
by itself. Based on our definition of sensitivity and specificity,
for each prediction we know exactly what sensitivity and spe-
cificity values are. We plotted in Figure 3B sensitivity and
specificity values separately. In this case, we examined all
the predictions from the data set in which motifs have about
25–30% mismatches and backgrounds have about 50–60%
identities. For each independent run on the simulated data,
we calculated the percentage of the predictions that exceeds
a certain level of sensitivity and specificity. As shown in the
figure, about 90% of PhyloCon’s predictions achieve 80%
sensitivity, and 80% of the predictions achieve 80% spe-
cificity. PhyloCon has both good sensitivity and specificity,
indicating its ability to accurately detect the motif length.
PhyloCon nearly always outperforms the other programs by
both criteria.

Most conventional motif finders show decreased perform-
ance when a relatively weak motif is planted in a very long
sequence (Buhler and Tompa, 2002) due to the spurious occur-
rence of random motifs. However, PhyloCon is able to tolerate
long sequences. Figure 4A compares performance in relation
to background sequence length. In this scenario, there are five
groups each containing four orthologous sequences, motifs
have a 25–30% mismatch rate, and background sequences
have 50–60% identity. Sequence length ranges from 600 to
10 000 nt. While the performance of all the other tested pro-
grams drops as expected, PhyloCon yields a surprisingly good
performance coefficient of 0.8.

The initial profile generation determines how individual
motifs are positioned in the final alignment, so we examined
how many orthologous sequences are needed for the initial
alignment. Figure 4B shows the performance coefficient when
the number of orthologous sequences in each group ranges
from two to six, while the number of groups is kept at five.
Clearly, more orthologous sequences make the initial pro-
file generation more reliable, resulting in better performance.
However, even with two or three sequences in each group,
PhyloCon displays a performance coefficient of 0.7, better
than the other four programs. Therefore, PhyloCon could be
a useful tool even when there are only one or two reference
genomes available.

PhyloCon employs a greedy approach to merge profiles.
We examined how many related groups are needed to gener-
ate a good representation of the motif. Figure 4C illustrates
the performance coefficient when the number of groups ranges
from two to six, while the number of orthologous sequences in
each group is constant at four. PhyloCon is able to more accur-
ately identify motifs when additional sequences are provided.
However, even with a limited number of sequences, fewer
than four, PhyloCon still gives a performance coefficient of
about 0.7.

In another experiment we compared the performance of
PhyloCon when three different statistics (ALLR, correlation
coefficient, sum of all pairs) were implemented. In this case,
motifs are 14 bases long and have a 25–30% mismatch rate,
background sequences are 1000 bases long and have 50–60%
identity. By using ALLR statistics, PhyloCon achieved on
average a performance coefficient of above 0.8 (0.82 ± 0.03).
When Pearson correlation coefficient was used, we always
subtracted 0.5 from it to make the expected value negative,
and the performance coefficient was about 0.5 (0.51 ± 0.02).
The ‘Sum of all pairs’ method was implemented using default
BLAST scoring matrix, i.e., match score was 5 and mis-
match was −4. The performance coefficient averaged at 0.7
(0.71 ± 0.04). We concluded that the ALLR statistic is the
best choice for PhyloCon.

Biological data
We applied PhyloCon to several sets of biological data where
multiple reference genomes are available. Some of the results
are illustrated in Table 1.

We first chose to evaluate a few known bacterial transcrip-
tion factor binding sites. For example, Escherichia Coli metJ
is a repressor of all met genes except metF. Sequences of three
intergenic regions in E.coli and their orthologous sequences
in Haemophilus influenzae, Salmonella typhimurium LT2 and
Vibrio cholerae were used (K. Tan, personal communication).
PhyloCon identified the top site as AGACRTCYRGACGKCTA,
which is almost identical to the documented metJ site
(AGACGTYYAGAYGTCY) (Robison et al., 1998) except for
one extra base.

As demonstrated by simulation, PhyloCon works well even
with a limited number of genes or species. Caenorhabditis
elegans genes F44E5.5, T27E4.2 and M01B12.1 are regulated
by heat shock factor (HSF). Sequences of 2000 nt upstream
of the translation start sites of these genes and their ortho-
logs in Caenorhabditis briggsae were used to predict HSF
sites. The top prediction was CTTCTAGRAS, overlapping
with the consensus site TTCTAGAA (GuhaThakurta et al.,
2002). PhyloCon also predicted TTCTRGAASCTTCTAGAAG
in an intermediate cycle. This is a conserved two-copy repeat
of HSF sites shared by F44E5.5 and T27E4.2 but absent in
M01B12.1. This suggests that PhyloCon provides correct
predictions for corrupted samples in intermediate cycles.

We also applied PhyloCon to Wasserman’s muscle-specific
transcription factor data set (Wasserman et al., 2000). As
noted in their paper, when a Gibbs sampling approach was
applied to non-coding sequence of many kilobases around
the human genes, biologically meaningless patterns were pro-
duced. However, when PhyloCon was applied to this data set
plus orthologous mouse genome sequences (a total of more
than 100 kb), we identified CA repeats, MEF2 sites, SP1 sites,
SRF sites and MYF sites in different cycles. When using sub-
sets of genes regulated by MEF2, SRF or MYF, the correct
site was always identified as the most significant motif.
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Fig. 4. Performance coefficient comparison correlating to variation of other parameters. In all experiments, motif mismatch rate is 25–30%,
background identity is ∼50%, and length of motif is drawn from 12 to 14. In (B) and (C), length of each background sequence is 1000 nt.
(A) Performance coefficient correlating to variation of length of background sequences. (B) Performance coefficient correlating to variation
of number of species. (C) Performance coefficient correlating to variation of number of genes.

We obtained sequences of four yeast species of the sensu
stricto group (Saccharomyces cerevisiae, Saccharomyces
mikatae, Saccharomyces bayanus and Saccharomyces
kudriavzevii) (Cliften et al., 2001). Using Lee et al.’s (2002)
summary of literature evidence for known regulator–gene

interactions, we applied PhyloCon to some of the listed
groups. PhyloCon almost always identified the documented
sites. It also found additional sites that may represent novel
transcription factor binding sites or other important sequence
features. We list a few examples in Table 1. The majority of
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Table 1. Predictions of PhyloCon on biological data

Binding site Number of genes Number of species Input size (nt) PhyloCon predictions Published reference motif

metJ 3 4 2768 AGACRTCYRGACGKCTA AGACGTYYAGAYGTCYa

lexA 9 2–4 5038 TACTGTAWATRNRKACAGTA TACTGTATWTANATMCAGYa

HSF 3 2 12 000 CTTCTAGRAS TTCTRGAASCTTCTAGAAG TTCTAGAAb

MEF2 11 2 56 622 TATTTTTA TATWWWWAc

SRF 6 2 31 838 CCATAYAAGG CCWWANANGGc

MYF 10 2 37 446 GACAGCTG RRCAGCTGc

CBF1 11 4 31 726 TCACGTGAR NRTCACRTGAd

GCN4 11 4 27 451 TGACTC NARTGACTCWd

LEU3 5 4 12 600 CCGGTASCGG CCGGTACCGGd

MIG1 10 4 33 913 AAATGYGGGG KANWWWWATSYGGGGWNd

ZAP1 3 4 11 170 ACCTTGAAGGT ACCYYNAAGGTe

aRobison et al., 1998.
bGuhaThakurta et al., 2002.
cWasserman et al., 2000.
dTransFac Release 6.2—licensed—2002-07-01, © Biobase GmbH.
eLee et al., 2002.

Table 2. Comparison of PhyloCon’s prediction to other programs

Binding site PhyloCon Consensus Gibbs Sampler Projection

metJ AGACRTCYRGACGKCTA CATCYRGACGKCTAAA CRTCYAGACGKCTARA CRTCYAGACGKCTARA
lexA TACTGTAWATRNRKACAGTA ACTGKATKAATATACAGTA ACTGTATRWATAWACAGTW TACTGTATGTATATACAGT
HSF CTTCTAGRAS GAGACGCA GCAGCTSS GAGACGCA
MEF2 TATTTTTA TATTTTTA GGGGTGGG TATTTTTA
SRF CCATAYAAGG ACTAAAAAAA AGAGRAGSAGA CCATAMAAGG
MYF GACAGCTG AAATAAGG GGGGWGGG GASAGCTG
CBF1 TCACGTGAR CACGTGRSYR CACGTGRCYA CACGTGRCYA
GCN4 TGACTC GATGACTCRT TTTYTTTTTC TTTTTTTTTC
LEU3 CCGGTASCGG AGAAAMGGAM TTCTTTTTCT TCTTTTTCTY
MIG1 AAATGYGGGG AAATGCGGGG AAARRAAAAA AAARRAAAAA
ZAP1 ACCTTGAAGGT ACCYTGAAGGT CCTTGARGGTG ACCTTGARGGT

this data will be presented elsewhere (Wang and Stormo, in
preparation).

In order to see if PhyloCon represents a true improvement
over other programs when applied to biological data, we tested
Consensus, Gibbs Sampler and Projection on some of the bio-
logical data sets we gathered. In each case, the same input
sequences were given to all four programs, and the motif
length documented in published references was given to the
other three programs. The best motif found is recorded in
Table 2. The predictions of all four programs often overlap
and represent the known sites. However, in many cases where
one or all of the other three programs predicted apparently
spurious patterns, PhyloCon predicted the documented sites.
When the entire Wasserman’s muscle-specific transcription
factor data set (Wasserman et al., 2000) was provided to pro-
grams other than PhyloCon, only biologically meaningless
patterns were produced. PhyloCon clearly has advantages

over other tested programs when searching for relatively weak
motifs in relatively long background sequences when both
co-regulation and conservation data are available, in addition
to its ability to predict motif length.

CONCLUSION
Conventional motif finding algorithms take either a ‘multiple
gene, single species’ approach or a ‘single gene, multiple
species’ approach. In this paper, we have presented a ‘mul-
tiple genes, multiple species’ approach that we have termed
PhyloCon. PhyloCon integrates knowledge of co-regulation
of genes in a single species and sequence conservation across
multiple species to improve performance of motif finding. The
presented data establish that PhyloCon circumvents the prob-
lem of spurious random motifs that confounds many other
motif finders and also predicts the length of the motif with no
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prior information. We also presented a new statistic that we
call the ALLR statistic. It is an extension of the LLR statistic
and may be used as a general tool for hypothesis testing.

PhyloCon represents a first ‘multiple genes, multiple spe-
cies’ approach, and it may be further improved. For example,
the initial profile generation can be made more accurate with
any approach that explicitly takes the phylogenetic tree into
account. Instead of using a greedy approach comparing two
profiles at a time, common profile identification can be imple-
mented as a Gibbs sampling approach when the length of the
motif is predetermined. Profile comparison can also be exten-
ded to a gapped version which will aid in identification of
motifs with a flexible internal linker, as well as simultaneous
identification of multiple motifs in a region.
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