
Combining Planning Techniques for Manipulation

Using Realtime Perception

Ioan A. Şucan1 Mrinal Kalakrishnan2 Sachin Chitta3

Abstract— We present a novel combination of motion plan-
ning techniques to compute motion plans for robotic arms. We
compute plans that move the arm as close as possible to the
goal region using sampling-based planning and then switch to
a trajectory optimization technique for the last few centimeters
necessary to reach the goal region. This combination allows fast
computation and safe execution of motion plans even when
the goals are very close to objects in the environment. The
system incorporates realtime sensory inputs and correctly deals
with occlusions that can occur when robot body parts block
the sensor view of the environment. The system is tested on
a 7 degree-of-freedom robot arm with sensory input from a
tilting laser scanner that provides 3D information about the
environment.

I. INTRODUCTION

Motion planning for manipulation has gained a great deal

of attention recently [1]–[7]. Most of this work presents in-

tegrated systems intended for manipulating household items

in indoor environments, under varying levels of assumptions.

These assumptions usually relate to the way the environment

around the manipulation platform is specified. The environ-

ments are usually generated from CAD representations or

known information about the obstacles. For instance, a higher

level representation of the environment can be constructed by

identifying known types of objects in the environment using

sensed data from a camera on the ceiling [7]. While this

approach has its merits, it is limited to objects that are known

and can be identified from partial view data. Previous work

on planning with real sensor data exists as well, but mostly

for outdoor mobile platforms with no manipulators [8]–[10].

The problem of constructing the environment in realtime

from noisy sensor data while planning for robot arms has not

gained as much attention. Recent work [1] explored quick

replanning using sampling-based planners [11], [12] with an

environment generated from real laser-scanned sensor data,

in the presence of moving obstacles. However, the problem

of planning to goals that are close to or touching perceived

obstacles has not been explored in detail. This is a difficult

problem in manipulation since the planner needs to balance

the need to get to the goal while staying away from obstacles.

The problem we are dealing with is exemplified in Fig-

ure 1. Due to noise in sensor data and approximations we

are forced to make for safety reasons (adding padding to the

environment data based on the error margin in the sensor

1 I. A. Şucan is with Rice University, Houston, TX 77005
isucan@rice.edu

2 Mrinal Kalakrishnan is with University of Southern California, Los
Angeles, CA 90089 kalakris@usc.edu

3 Sachin Chitta is with Willow Garage, Inc., Menlo Park, CA 94025
sachinc@willowgarage.com

Fig. 1. Stylized representation of the configuration space of a possible
motion planning task.

specification), states that are close to objects can seem to be

in collision. We may need to move a manipulator to such

states, for instance, when we try to grasp an object. In some

cases, depending on the object we intend to grasp, we may

even accept touching of the object, so the goal state would

not only seem to be in collision, but actually be in collision.

In this paper, we present an integrated system to address

these problems in manipulation planning. Our focus is on

developing planners that can function well in cluttered indoor

environments while handling dynamic obstacles. We use a

combination of planners, based on the task to be executed.

We use fast sampling-based planners [11], [12] for non-

contact tasks, including getting close to the goal region, when

trying to grasp an object. Once close to the goal, we continue

with an optimization-based approach called CHOMP [2] to

complete the motion plan. CHOMP allows us to move to the

goal pose while minimizing contacts with the environment.

When the starting state is perceived to be in collision, CHOMP

is also used to move to a nearby state where there are no

collisions.

The system we developed is modular and implemented

using the ROS1 framework. It can take inputs from a variety

of sensing devices and output generic plans that can be

tailored to serve as input to the specific controllers for a

robotic platform. It has been interfaced to three different

planners demonstrating its versatility in using different im-

plementations of planners.

We demonstrate the application of this system on the PR2

– a service robot designed to function in human environments

1http://www.ros.org



[1]. This robot has an extensive sensor suite that provides

realtime updates about changes in the environment. We use

this information to build a realtime representation of the

world that deals with sensor noise and occlusions. Using

this representation, we are able to create and execute plans

while being aware of dynamic changes in the environment.

The contribution of this work is two-fold: (a) in combining

planners to address the problem of performing manipulation

tasks in cluttered environments using sensed data and (b)

in handling occlusion and noisy sensor data correctly. The

system correctly handles occlusions in realtime by explicitly

detecting and labeling occluded parts of the environment.

The system can also deal with noisy laser scanner data and

remove shadowing or veiling effects that are a characteristic

of such scanners, especially in indoor environments. The

system has been integrated into a wide variety of high-level

tasks, some of which are presented in Section VI.

This paper is structured as follows: in Section II we

describe in detail the intended capability of the system we

present. We then continue to present the perception and

planning pipelines employed by the system, in sections III

and IV. We present several applications of our approach

including planning for grasping and planning with a large

object grasped in the hand in Section VI. Conclusions follow

in Section VII.

Fig. 2. The PR2 Robotic Platform.

II. SYSTEM ARCHITECTURE

We aim to build a planning and execution system that is

general, robust and easy to use. This requires the design of

a flexible architecture. In particular, it is important to define

interfaces to the different components of the system that are

generic enough to deal with a wide variety of robots. There

are a minimum set of requirements that any motion planning

system for manipulation must implement. These include the

following:

1) A standard description of the robot that can be used to

build kinematic and collision models for the robot

2) Interfaces to lower-level controllers that can execute

the plans specified by the planner

3) Generic sensing interfaces that serve as virtual sensors

that are independent of the hardware implementation

of the sensors

4) Kinematic models that can return forward, inverse and

differential kinematic solutions

5) A standard interface to the current robot state specify-

ing positions of all joints in the robot

6) Interfaces to call planners with a desired goal for a

subset of joints or links on the robot

Our system implements these interfaces using the ROS

framework. A robot description provides complete kine-

matic, collision and visual information for the robot. This

information is used to build kinematic, planning and collision

models.

Since we are interested in tasks where constrained goals

may be specified for the arm, the interface for specifying

goals allows them to be specified as kinematic constraints.

These constraints can be of two types:

• Joint constraints. These constraints simply specify lower

and upper bounds for a particular joint. Having the

lower and upper bounds equal essentially specifies we

are interested in reaching a specific joint value, which

would be the case if we know the goal state exactly.

• Cartesian pose constraints. These constraints specify

limits for the pose of a particular link. The user specifies

which degrees of freedom are to be constrained (X, Y,

Z, roll, pitch, yaw) and bounds for these degrees of

freedom. Such a constraint is useful if we need to move

to a grasping pose.

Any non-empty set of constraints (there can be multiple

pose and/or joint constraints) defines a goal. If the constraints

are contradictory and the contradiction can be detected, the

code that interprets them warns the user.

In certain cases it may be useful to impose constraints on

the entire motion of the robot, at every state it passes through:

for instance, moving the arm while holding an open container

requires little variation in the roll of the end-effector link. To

allow this, the same set of constraints used for goals is used

to optionally impose constraints on the complete path.

By default, the system will not allow any contact with

the environment. When grasping however, contact with the

environment may be needed. For this reason, the user has

the option to specify regions in space (bounded by boxes,

spheres, cylinders or meshes) where contacts are allowed for

a specified set of links, up to a maximal penetration depth.

We will now present in detail the perception and motion

planning pipelines used in this system.

III. PERCEPTION PIPELINE

A perception pipeline for fast replanning was presented

in [1]. In this section, we build upon that pipeline and

define a generic framework that can deal with a wide variety

of sensors. This work is different from [1] in two critical

aspects:

1) It accounts for occlusions correctly by maintaining a

model of the environment



2) It deals with noisy sensor data, especially data from

scanning lasers, by removing noise using knowledge

of the robot model.

The perception pipeline performs the key task of creating a

representation of the world that can be used for collision

checking. We aim to create a representation that can be

updated in realtime, is easily accessible for collision check-

ing and deals correctly with occlusions. We also aim to

design the interface to the pipeline to be generic enough

to incorporate a wide variety of sensor inputs.

A. Sensor Input

The raw input received from the sensor is in the form

of a point cloud: a set of points in space that correspond

to observed objects in the environment. Most 3D sensors

provide information in this format and can be easily plugged

into our system. For our implementation on the PR2, the

system was interfaced with two different sensors: a Videre

stereo camera with projective texture and a tilting Hokuyo

laser scanner. The laser sensor is mounted on a tilting stage

and it moves up and down at a specified velocity. The

viewing angle of the sensor is 270◦. This allows the robot to

create a detailed representation of the environment in front

of it. The stereo camera can provide a denser representation

of the environment but was not used as extensively in our

implementation.

B. Processing Noisy Point Clouds

The sensor data is often noisy and needs to be processed

carefully before being incorporated into the robot’s view of

the environment. During manipulation, the arms of the robot

are frequently in the sensor field of view. The system must

then be able to distinguish sensed points that are coincident

with points on the robot itself (see Figure 3), i.e. it must be

able to infer that sensed points that are on the robot itself

are not part of the environment and therefore should not be

considered obstacles.

Such points are separated from the sensor input using a

simple approach: for each robot link that could potentially

be seen by the robot’s sensors, the system checks if any

points in the input cloud are contained in the geometric shape

corresponding to the convex hull of that link. This is a simple

test and quickly lets the system partition the sensor data into

two parts: points that are part of the environment and points

that are part of the robot itself and should not be considered

obstacles.

An additional problem, which we refer to as a shadowing

effect, is especially prevalent in laser scanner data. This

problem arises when laser scans graze very slightly the

different parts of the body of the robot. Points cast by the

edges of the arms now appear to be further away and part of

the environment. They form a virtual barrier below the arm,

on each side, and greatly constrain the motion of the arm.

Furthermore, as the arm moves, these shadow points often

appear to lie on the desired path of the arm, so execution is

halted. To remove these points, a small padding distance is

added to the collision representations of the the robot links.

If the line segment between a point in the input cloud and the

sensor origin intersects the extended collision representation,

the point is classified as a shadow point and removed.

The filtering process described above is also applied for

bodies the robot is manipulating: if the robot is holding

an object, that object must not be part of the collision

environment any more and the shadow points it casts need to

be removed. The processed point cloud with shadow points

removed can now be processed further for incorporation into

the collision environment representation of the robot.

C. Constructing a Collision Environment

The representation of the collision environment, also re-

ferred to as a collision map, consists of axis aligned cubes

where points from the input cloud are incorporated (see

Figure 4). Cubes with 1 cm sides were used in the collision

map implemented on the PR2. A cubic box is added to the

map at a particular location as soon as at least one sensor

point is found to occupy the grid cell corresponding to that

location. This process is simple and can be executed very

quickly.

A proper implementation of a collision environment with

frequent sensor updates must deal correctly with occluded

data. Replacing the original collision map with only fresh

sensor data on every sensor update implies that the map will

have no memory about obstacles that may now be occluded.

One approach to handling occlusions is to use ray-tracing to

trace out every ray coming from the sensors up to a large

distance and retain parts of the previous map that are now

found to be occluded. This can be very computationally

expensive. Since we strive to obtain a perception pipeline

that runs close to realtime, we only account for occlusions

caused by the robot itself: e.g., when the robot arm is

in front of the sensor and parts of the environment are

occluded. The simplified approach starts with the previous

world representation C (initially empty) and a new world

representation N . We first determine the set difference D

between the two views, i.e. we look for parts of C that are

not part of the new view N , i.e.,

D = C −N

These parts in D are either moving obstacles that have

changed their position or are parts that have become oc-

cluded. For every box d ∈ D, we then check whether the line

segment between d and the sensor origin intersects a body

part of the robot. If it does, the box is considered occluded

and is added to the new world view N . N now becomes the

current representation of the world that retains a memory

of the objects seen previously in the environment but now

occluded by parts of the robot. This implementation is fast

enough to satisfy our requirements for realtime implementa-

tion (it runs around 30Hz - 50Hz with approximately 10000

boxes in the environment).

The collision map is a critical input to the motion planning

and motion execution processes. In our implementation on

the PR2 robot, the environment was restricted to a box of

dimensions 2 m forward, 1.5 m on each side and 2 m upward,



Fig. 3. The robot’s world view using its laser without (left) and with (right) filtering.

Fig. 4. Example collision map in an office showing retention of occluded
data in the environment. Part of the chair is occluded by the arm (marked
in red).

with respect to the robot’s base. The box contains the entire

reachable workspace of the arm. Restricting the environment

size has a significant performance impact and helps in the

goal of updating this environment in realtime.

IV. MOTION PLANNING ALGORITHMS

To make the process of incorporating different kinds

of motion planning algorithms easier, common interface

requirements were established that all motion planning pro-

cesses need to satisfy: offer a ROS service2 for computing

a motion plan. In essence, a motion planner maintains a

copy of the collision map it received and attempts to satisfy

the requests it receives. Currently three classes of motion

planners are offered through this interface:

• Sampling-based motion planning, based on the ompl

library [13]

• Grid-search techniques (A*-like) based on the sbpl

library [14]

• Trajectory optimization techniques: CHOMP (Covariant

Hamiltonian Optimization for Motion Planning) [2]

2A ROS service is akin to a Remote Procedure Call (RPC)

The experiments presented in later sections of this paper

used the sampling-based motion planners and CHOMP.

A. Sampling-based Motion Planning

Sampling-based motion planning works by constructing an

approximation of the state space of the robot through sam-

pling and collision checking [11], [12]. This allows comput-

ing collision-free solutions very quickly. Typical computation

times for the implementation on the PR2 robot were on the

order of 100 milliseconds. Due to the randomized nature of

such algorithms, the computed solution paths are not smooth

and can look unnatural. Shortening and smoothing steps are

thus applied to these paths to get more natural looking,

smoother paths [11], [12].

The implementation of sampling-based planners for the

experiments presented in this paper used a set of tree-based

algorithms from the ompl library. The particular planners

used included the following:

• LBKPIECE, a lazy, bi-directional implementation of

KPIECE (Kinematic Motion Planning by Interior-

Exterior Cell Exploration) [1], [15]

• SBL (Single-query Bi-directional probabilistic roadmap

planner with Lazy collision checking) [16]

• KPIECE [1], [15]

• RRT (Rapidly-exploring Random Trees) [17]

When a request for planning is received, the planner to be

used is selected based on the type of request. If a goal state

can be extracted from the request, a bi-directional planner is

preferred (LBKPIECE or SBL). Otherwise, if a goal state is

not available, only single-tree planners can be used (KPIECE

or RRT). The choice of planner to be used depends on the

planner’s priority. The priority is an integer value that is

updated (increased or decreased by 1, within fixed bounds)

based on whether the planner was successful or unsuccessful

in finding a solution to the request it received. The initial

priorities enforce the order in which the planners are listed

above: LBKPIECE has highest priority and RRT has lowest

priority.



B. CHOMP

CHOMP (Covariant Hamiltonian Optimization for Motion

Planning) [2] is a trajectory optimizer that is based on co-

variant gradient descent techniques. It can be used to smooth

paths generated by sampling-based motion planners. More

importantly, it can also optimize a naı̈ve initial trajectory

that may be in collision (e.g., a straight line in configuration

space) to be collision-free. This property of CHOMP allows

it to be used as a stand-alone motion planner in a variety of

situations.

We first define a cost function over the trajectory as

a sum of smoothness cost and collision cost. Smoothness

is typically defined as a sum of squared derivatives along

the trajectory for each joint. The collision cost and its

gradient are obtained from a Signed Distance Field [2]. These

Cartesian collision cost gradients are transformed into joint

space using the Jacobian of the robot, and covariant updates

ensure that every gradient update to the trajectory is smooth.

In our implementation, CHOMP takes between 0.5 and 2
seconds to optimize a trajectory out of collision, depending

on the complexity of the problem.

Since the cost function for CHOMP includes a collision

cost, trajectories generated using this planner tend to ap-

proach an object along a path of low collision cost. Such

paths may not be optimal but often represent a good approach

direction for the end-effector to grasp the object. We exploit

this capability of CHOMP to complement sampling-based

planners. In particular, we use CHOMP as part of a two-stage

planning process where sampling-based planning is used to

quickly generate the initial path to a collision free state close

to the goal specified by the user. CHOMP is then used as a

second stage planner to complete the plan towards a goal

that could possibly be in collision.

V. MOTION EXECUTION MONITOR

Using the perception pipeline and the motion planning

services described above, motion plans can be computed

for a robot in an environment that is continuously updated

in realtime. These motion plans can then be sent to a

trajectory controller which attempts to follow them as best

as possible. In this section we describe how the interface

between perception, motion planning and control works and

we show how it is applied to the PR2 arm as an example.

The motion execution monitor is aware of two motion

planners: a long-range planner, which should be fast and

safe, but cannot always reach the goal if it is too close

to a contact point, and a short-range planner which always

moves to the desired goal. In this work, we used sampling-

based motion planning (with a preference for bi-directional

planners) for the long-range planner and CHOMP for the

short-range planner.

If the goal states are in collision, using sampling based

bi-directional planning alone may not be feasible. Ignoring

collisions up to a small depth with a sampling-based planner

will allow the planner to potentially touch the object we

are trying to grasp multiple times, thus pushing it away or

knocking it over before reaching the final state.

Using a trajectory optimization technique alone would

be computationally intensive and too slow for replanning.

Fast replanning is needed to account for a rapidly changing

environment, especially in the presence of humans.

For these reasons, we use a combination of the two

techniques. Sampling based planning is used to plan a path

to a feasible state near the goal. It is very fast and allows us

to replan quickly if needed. Once we are close to the goal,

we use CHOMP to move to the desired final state, relying on

its ability to minimize the collision cost for a path to the

goal.

Algorithm 1 details the actual workings of the motion

planning and execution system. In particular, the system

makes an attempt to satisfy the request for a motion plan

by making intelligent choices about the types and number

of planners to be used. It also uses information about the

environment to execute safe plans, i.e. collision checking is

continuously used in concert with the changing representa-

tion of the environment to ensure that the executed plans

do not collide with the environment. We now examine the

components in the system in more detail.

Algorithm 1 HANDLEREQUEST(req)

GS ← FINDSTATESINGOALREGION(req)

SORT(GS, state with fewest contacts first)

if GS 6= ∅ and ISSTATEVALID(GS[0]) then

return RUNLONGRANGE(GS[0])
else

if (v ← SEARCHVALIDNEARBY(req)) then

success← RUNLONGRANGE(v)

if success then

if GS 6= ∅ then

return RUNSHORTRANGE(GS[0])
else

return RUNSHORTRANGE(req)

end if

else

return false

end if

else

return RUNLONGRANGE(req)

end if

end if

1) Attempt to find states in goal region: The request for a

motion plan is often to reach a goal region instead of a single

goal state. If the request is simply a set of joint constraints,

it is easy to sample states in the goal region. E.g., in the

implementation on the PR2, we simply construct a state in

the “middle” of the goal region (mid-point for bounds in each

dimension). If the request constrains 6 degrees of freedom

for the end-effector, inverse kinematics can often be used to

find states in the goal region. If a valid goal state is found

(all constraints are satisfied and there are no collisions), the

long-range planner can be run to obtain a solution path. In

the case of the PR2, this is the course of action that is usually



taken when the arm is asked to move to a location that is

not very close to obstacles.

2) Finding an intermediate state: If no valid goal state

was found based on the imposed requests, we run a genetic

algorithm (GAIK [1], from ompl) to find a state that is valid,

but as close as possible to the specified goal region. If a

valid state is found, it serves as an intermediate state for the

motion plan, since it is close to the goal but not really in the

goal region. The long-range planner is used to move to this

intermediate state. If successful, the short-range planner is

then used to move to the desired grasping pose. In the case

of the PR2, this is the usual course of action taken when

attempting to grasp an object.

3) Executing the motion: Algorithm 2 details the exe-

cution of the motion plan. A request is sent to a motion

planner (long-range or short-range) and the resulting path

is forwarded to the trajectory controller. While the path

is being executed, it is checked for collision periodically,

using new environment data. If the path becomes invalid, the

controller is asked to stop the execution and a new motion

is to be computed. This setup achieves a simple version of

replanning [1].

Algorithm 2 RUNPLANNER(goal)

done = false

while not done do

done = true

path← FINDMOTIONPLAN(goal)

if ISPATHVALID(path) then

STARTEXECUTION(path)

while execution of path not complete do

if not ISPATHVALID(path) then

STOPEXECUTION(path)

done = false

break

end if

end while

end if

end while

VI. RESULTS

Our system was implemented on the PR2 platform and

has been validated by testing as part of a large set of high-

level tasks. The tasks were designed to test the system’s

ability to grasp objects in cluttered environments, manipulate

safely with large objects grasped in the gripper and deal with

constraints on the end-effector. The first task was a large

systems level task that required the robot to deliver drinks to

people in a simulated restaurant (Figure 5). The bottles were

placed on kitchen counter-tops and the robot had to grasp

and manipulate them without colliding with any part of the

environment. This task also involved a sub-task where the

robot had to manipulate a bottle without spilling its contents.

This was achieved by applying a pose constraint on the end-

effector that placed bounds on its orientation to keep the

Fig. 5. Implementing a grasping task as part of a larger system task of
serving drinks at a restaurant

Fig. 6. Manipulating a grasped object in a cluttered environment.

bottle upright. A video of this entire system-level task can

be found in [18].

A second task involved manipulating a long metal bar

held by the arm of the robot in a cluttered environment.

Here, the robot had to manipulate the metal bar through a

small opening while avoiding a cluttered environment. The

robot had a model of the arm a priori and included it in its

kinematic model to account for possible internal collisions

and external collisions with objects in the environment as

well. Figure 6 shows a series of snapshots of one such

planned motion3. Note the significant clutter and occlusion

problems that arise when the robot is carrying out this task.

Figure 7 shows the combined planner in action, moving a

3A video of this task can be found at http://www.kavrakilab.
org/willow-demos/



Fig. 7. Combining planners to carry out a manipulation task.

bottle from one position on a table to another. Small errors

in the sensed collision environment due to sensor noise can

sometimes cause the planner to perceive the initial position

of the bottle to be in collision. However, CHOMP can be

used to first plan away from the table, thus moving out of

collision. Sampling-based planning can then plan a path to

the goal position. If needed, the system again switches to

CHOMP to execute the last phase of the manipulation, i.e.,

placing the bottle back on the table3. All of these changes

in used planning techniques are not apparent to the user.

VII. CONCLUSIONS

We present a system capable of planning and replanning in

an environment that is constructed in realtime, using sensed

data. Motion planning is achieved through a combination

of techniques, taking advantage the speed of computation

of sampling-based planning and the ability of trajectory

optimization techniques to achieve contact while minimizing

collisions. This combination of planners is implemented in a

manner that is transparent to the user. The system has been

successfully used by a number of researchers as a component

in more complex tasks.

The system is general in the sense that its design is

modular and can be applied to other similar hardware plat-

forms, not only the PR2. All this code is freely available at

http://www.ros.org.

VIII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions of

everyone at Willow Garage Inc. and thank Lydia Kavraki

for providing valuable comments.

REFERENCES

[1] R. B. Rusu, I. A. Şucan, B. Gerkey, S. Chitta, M. Beetz, and L. E.
Kavraki, “Real-time perception guided motion planning for a personal
robot,” in International Conference on Intelligent Robots and Systems,
St. Louis, USA, October 2009.

[2] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
IEEE International Conference on Robotics and Automation, 12–17
May 2009, pp. 489–494.

[3] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, and J. J. Kuffner.,
“Bispace planning: Concurrent multi-space exploration,” in Robotics:

Science and Systems, Zurich, Switzerland 2008.
[4] D. Berenson, S. S. Srinivasa, D. Ferguson, A. Collet, and J. J.

Kuffner, “Manipulation planning with workspace goal regions,” in
IEEE International Conference on Robotics and Automation, May
2009.

[5] D. Katz, E. Horrell, Y. Yang, B. Burns, T. Buckley, A. Grishkan,
V. Zhylkovskyy, O. Brock, and E. Learned-Miller, “The UMass Mo-
bile Manipulator UMan: An Experimental Platform for Autonomous
Mobile Manipulation,” in IEEE Workshop on Manipulation for Human

Environments, Philadelphia, USA, August 2006.
[6] C. Borst, C. Ott, T. Wimbock, B. Brunner, F. Zacharias, B. Baeum,

U. Hillenbrand, S. Haddadin, A. Albu-Schaeffer, and G. Hirzinger, “A
humanoid upper body system for two-handed manipulation,” in IEEE

International Conference on Robotics and Automation, April 2007, pp.
2766–2767.

[7] S. Srinivasa, D. Ferguson, M. V. Weghe, R. Diankov, D. Berenson,
C. Helfrich, and H. Strasdat, “The Robotic Busboy: Steps Towards
Developing a Mobile Robotic Home Assistant,” in Intl. Conference

on Intelligent Autonomous Systems (IAS-10), July 2008.
[8] T. Ihme and U. Ruffler, Motion Planning Based on Realistic Sensor

Data for Six-Legged Robots, ser. Informatik aktuell, Autonome Mobile
Systeme, pp. 247-253. Springer Berlin/Heidelberg, 2007.

[9] P. Sermanet, R. Hadsell, M. Scoffier, U. Muller, and Y. LeCun,
“Mapping and planning under uncertainty in mobile robots with long-
range perception,” in International Conference on Intelligent Robots

and Systems, 2008, pp. 2525–2530.
[10] Y. Kuwata, G. Fiore, J. Teo, E. Frazzoli, and J. How, “Motion

planning for urban driving using RRT,” in International Conference

on Intelligent Robots and Systems, 2008, pp. 1681–1686.
[11] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard,

L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,

Algorithms, and Implementations. MIT Press, June 2005.
[12] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge

University Press, 2006, available at http://planning.cs.uiuc.edu/.
[13] “http://www.ros.org/wiki/ompl.”
[14] “http://www.ros.org/wiki/sbpl.”
[15] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning by

interior-exterior cell exploration,” in International Workshop on the

Algorithmic Foundations of Robotics, Guanajuato, Mexico, December
2008.

[16] G. Sánchez and J.-C. Latombe, “A single-query bi-directional proba-
bilistic roadmap planner with lazy collision checking,” International

Journal of Robotics Research, vol. 6, pp. 403–417, 2003.
[17] S. M. LaValle, “Rapidly-exploring random trees: A new tool for

path planning,” Computer Science Dept., Iowa State University, Tech.
Rep. 11, 1998.

[18] W. G. Inc., “Intern challenge,” http://www.willowgarage.com/blog/
2009/08/17/intern-pr2-challenge-2009, 2009.


