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Abstract

This paper describes a method of combining two approaches to modelling flexible objects.
Modal Analysis using Finite Element Methods (FEMs) generates a set of vibrational
modes for a single shape. Point Distribution Models (PDMs) generate a statistical model of
shape and shape variation from a set of example shapes. A new approach is described
which generates vibrational modes when few example shapes are available and changes
smoothly to using more statistical modes of variation when a large data set is presented.
Results are given for both synthetic and real examples. Experiments using the models for
image search show that the combined version performs better than either the PDM or
FEM models alone.

1 Introduction
This paper addresses the problem of generating shape models which can represent
image structure and be used to locate examples of such structure. Often the struc-
tures to be located can vary in shape, either because they are flexible or articulated,
or because natural variation is present. The shape models must thus be flexible to
allow for deformations of the structure. There have been many approaches to this
problem (see below) but of particular interest are Finite Element Methods (Pentland
and Sclaroff [1,2], Karaolani et al. [3], Nastar and Ayache [4]) and Point Distribution
Models (Cootes et al [6]) which have a number of complementary properties.
Finite Element Methods take a single instance of a shape and treat it as if it were
made of a flexible material. The techniques of Modal Analysis give a set of linear
deformations of the shape equivalent to the modes of vibration of the original shape.
A flexible model consisting of the original shape and these modes can be used for
image search. However, the modes are somewhat arbitrary and may not be represen-
tative of the real variations which occur in a class of shapes.
Point Distribution Models are statistical models generated from a set of example
shapes. The mean shape and a number of modes of variation can be calculated from
this set. Each mode describes one way in which the shapes in the training set tend
to vary from the mean. By analysing sets of real examples a compact description of
shape variation can be formed. Such models best represent the class of shapes of in-
terest when a large number of examples is available. However, obtaining such a set
can be difficult, and a PDM trained on a small set may not allow enough variation
to adequately span the space of plausible shapes.

The aim of this work is to develop a technique which combines the properties of both
of the above approaches. In particular the new technique must

• Give a set of 'vibrational' modes when presented with a single example shape,
• Give modes similar to a PDM when presented with a large number of shapes,
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• Give modes which combine vibrational modes and statistical modes of vari-
ation when presented with a 'moderate' number of shapes.

Such a modelling technique would be useful when more than one example of a shape
was available, but not enough to train a PDM properly. In particular, when one is
'bootstrapping' a PDM, using the existing model to locate examples in new images
which are then to be incorporated into the model, such a system is essential.
This paper describes a technique which satisfies the above criteria. We concentrate
on the formulation in 2-D, but the extension to 3-D is relatively straightforward.
Examples of models, both synthetic and real are given and we demonstrate how the
combined model can perform better during image search than either FEMs or PDMs
alone.

The work we describe here combines two of the most promising approaches to
modelling shape and shape variation. A review of other approaches is given in [6].

2 Finite Element Models
A number of authors have presented work concerning flexible shape models based
on Finite Element Methods [3,4]. We will concentrate on the work of Pentland and
Sclaroff [1,2] because they allow point-to-point correspondences to be made which
can be useful when generating training sets for PDMs.

An elastic body can be represented as a set of n nodes, mass matrix M and a stiffness
matrix K. In two dimensions these are both 2nx2n . Modal Analysis allows calcula-
tion of a set of vibrational modes by solving the generalised eigenproblem

(1)

where © = (0i 1021 • • • 10n) is a 2/z x 2n matrix of eigenvectors representing the

modes and Q
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^) a diagonal matrix of eigenvalues associated

with each eigenvector (to* is the frequency of the mode represented by <j>t.).

If x = (x\,X2, ...,xn,yi, ...,yn)
T is a vector representing the original points, then

a new shape can be generated using
x = x + *u (2)

where u is a set of parameters.

The energy of deformation in the i
th mode is proportional to a>

2
.

For the experiments below we assume that the structure can be modelled as a set
of unit masses mutually interconnected by springs with constant stiffness and rest
length equal to the distance between the points. In this case M is the identity and
the stiffness matrix K is easily calculated. The modes are then the eigenvectors of
the symmetric matrix K.

3 Point Distribution Models
Point Distribution Models are statistical models of shape and shape variation gener-
ated from sets of examples. Each example consists of a set of n labelled points.

Suppose we have m examples x* = (xn,xi2, •••,xin,yn, ...,yi^f (i = l..m) which have

been translated, rotated and scaled to overlap as much as possible (using a Procrustes
technique, see [6]).



421

We calculate the mean shape,
1 i — fn

X =
 m^

%i (3)

and the covariance about the mean

Sm - (1?«rf 1 -xx- (5)

The f eigenvectors p ; of S m corresponding to the largest t eigenvalues A; give a

set of basis vectors, or modes of variation, for a deformable model.

A new example can be calculated using

x = x + Pb (6)

where P = (p, | p 2 1 . . . | p,) and b = (bi b2 •• -b,)
T is a set of t shape parameters.

4 A New Combined Model
The Basic Idea
There is a clear analogy between (2) and (6); they are both linear models. This
suggests there may be some way to combine the two approaches. If we have just one
example shape, we cannot build a PDM and our only option is the FEM approach.
If, however, we have two examples, we can build a PDM, but it would only have a
single mode of variation, which would linearly interpolate between the two
examples. It would have no 'sensible' way of modelling any other distortion. The
Finite Element Methods can generate a whole set of modes which allow smooth de-
formation of a single shape, but it is not clear how one would take two shapes into
account.

One approach to combining FEM and PDMs is as follows. We calculate the modes
of vibration of both shapes, and use them to generate a large number of new
examples by randomly selecting model parameters u using some suitable distribu-
tion. We then train a PDM on this new large set of examples. The PDM would thus
incorporate a mixture of the modes of vibration of each original example with the
original mode of variation that interpolates between the two shapes.
Such a strategy would be applicable for any number of original example shapes.
However, we would have to reduce the magnitude of the allowed vibrational modes
as the number of examples increased to avoid incorporating spurious modes. For in-
stance, suppose one was drawing examples from a set of rectangles which all had the
same width but different heights. Given a single example one only has the vibrational
modes, which will allow both width and height to vary. Given a second example there
is some evidence to suggest that the width is fixed, and as more examples are added
our confidence in a fixed width increases. However, unless we limit the magnitude
of the vibrations allowed, each new example will have modes with varying width, and
the final model will be inappropriate.
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It would, of course, be time consuming and error-inducing to actually generate large
numbers of vibrationally deformed examples. Fortunately the effect can be achieved
with a little matrix algebra.

The Mathematics

Consider the Finite Element model based on the i th example, X;.

X = X; + <I>,U (7)

where <J>; = (<pn\(pi2\... \4>is) is a 2nxs matrix of s eigenvectors representing the

modes of vibration about X;.

Suppose we were to generate a set of examples by selecting the values for u from a

distribution with mean 0 and covariance matrix Su. The distribution of %n would

have a covariance of

*iS,*f (8)

about the original example X,-, and the distribution of x would have a covariance of

C; = *&&[ + XiXf (9)

If we allow the elements of u to be independent and normally distributed about zero

with a variance aA,, (where a is a constant and A, is as given below) then

Su = aA (10)

where A = diagQ.x,..., As) is an s x 5 diagonal matrix.

The covariance of x about the origin is

Q = a®iA<S>f + Xixf (11)

If the frequency associated with the;*'1 mode is a)j then we will choose

h = <»j
2 (12)

This gives a distribution which has large variation in the low frequency, low deforma-
tion modes, and a small variation in the high frequency, high deformation modes1

One can justify the choice of A, by considering the strain energy required to deform

the original shape X; into a new example x. The contribution to the total from the

j
t h mode is

The form of equation (12) ensures that the energy is spread equally amongst all the
modes.

The constant a controls the magnitude of the deformations, and is discussed below.

1. In simple shapes the first 3 modes can be translation and linearised rotation, and
the first 3 eigenvalues can be close to zero. In this case these first modes could be
ignored and the calculation could proceed with the remaining s-3. However, in
practice with any moderately complex shape the near zero frequencies do not ap-
pear to arise, and all the modes can be used.
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Combining Examples
To calculate the covariance about the origin of a set of examples drawn from distribu-
tions about several original shapes, we simply average the individual covariances :

' = — y q = — y (a*jA*r+***/
m *—' m

 L
~

l
y q

m *—' m
i l

S' =—y(a$A*,7) + —
m •*—' tn

substituting in from (5) gives

S' = —

where x is the mean of the original examples, and Sm is the covariance of those

examples about the mean.

The covariance about the mean, x , is then

S = S'-xx r =

We can build a model by calculating the eigenvectors and eigenvalues of this matrix,
and proceed as normal for the PDM.

When a = 0 (ie the magnitude of the vibrations is set to zero) (17) gives

S = Sm and we get exactly the result one would obtain from a PDM.

When we allow non-zero vibrations of each training example (a > 0) the eigenvec-
tors of S will include the effects of the vibrations. One effect of this is to increase
the number of non-zero eigenvectors when fewer than 2n examples are available.
lim<2n examples are presented, Sm will have at most m-\ non-zero eigenvalues
giving allowable modes of variation for a PDM. However the addition of the terms
due to the vibrations to the S matrix means it can have many more non-zero eigenva-
lues, leading to more allowable modes.

Choice of Proportion of FEM Variation to Include (a)
As the number of examples increases we wish to rely more on the statistics of the
real data and less on effects caused by the 'artificial' modes of vibration. To achieve
this we must reduce a as the number of samples m increases.
The size of a can be considered as a measure of our uncertainty about the complete-
ness of the model. Having seen a large number of examples we become more certain
that our model can deal with all examples from a class of structures by linear combi-
nations of those already seen, without recourse to other deformations. Thus in this
case a will be small. Statistically the variance of the estimate of a parameter tends

to decrease as m~
l
. A possible relationship between a and the number of training

examples is then

a = ajm (18)
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An alternative approach is to use 'bootstrap' or 'jackknife' techniques [5] to estimate
the error in our estimate of the variation in the training set. We could then choose
a to allow for this uncertainty.

5 Examples of the Method

Simple Synthetic Example

Two sets of 16 points were generated, one forming a square, the other a rectangle
with aspect ratio 0.5. Figure 1 shows the modes corresponding to the four smallest
eigenvectors of the FEM governing equation for the square - these are the modes
of vibration of the shape, O t . Figure 2 shows the first 4 modes of vibration of the
rectangle.

bl • • •
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b4

b2
•DDnaa

o

QODDD

b3_

Figure 1: Modes of vibration of a Figure 2: Modes of vibration of a

square rectangle

Figure 3 shows the modes of variation generated from the eigenvectors of the com-
bined covariance matrix (given by Eq. 17). This demonstrates that the principal mode
is now the mode which changes the aspect ratio (which would be the one and only
mode of a PDM trained on the two shapes).

A Real Example : A Face

Figures 4 and 5 show the first three modes of vibration for two examples of faces,
one with a neutral expression, the other smiling. 169 points are used to represent
the shape. In each case the variation caused by the modes is exaggerated to highlight
the form of the deformation - in practice one would apply tighter limits to the ampli-
tude of each mode. Figure 6 shows the modes of the model trained using both
examples. The first mode describes the main variations between the two examples
(the smiling) and subsequent modes combine variation from the two sets of FEM
modes.

6 Comparing Performance of Models for Locating Image
Structures
The flexible models generated by the approach described above are identical in form
to PDMs, and so can be used for image search in both the Active Shape Model (ASM)
framework [6-7] and the Genetic Algorithm approach described by Hill et at [8].
Here we compare PDMs, FEMs and the combined models when used for local opti-
misation in an ASM.
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Figure 3 : Modes of Variation of combined model trained using square

and rectangle. Notice that the mode changing the aspect ratio has been

promoted to the most significant.

Figure 4 : FEM modes for neutral face Figure 5: FEM modes for smiling
face

For an ASM we require a shape model describing the locations of landmark points,
and a set of models of the grey-levels in regions around each point. Starting from
an initial rough estimate the parameters of a model instance are iteratively refined
so that each model points moves towards a nearby location suggested by its grey-level
model. This allows fast and robust location of structures in unseen images. In the
experiments below we use a multi-resolution implementation [7]. Early iterations
are performed on a low resolution image; as the search progresses the model auto-
matically moves to higher and higher resolutions until convergence is reached.
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Figure 6: Modes of variation of model trained on above two face examples

A set of 80 labelled images of faces (8 'mugshots' of 10 different people) was split
into a training set and a test set, with 4 images of each person in each set2. Shape
models were trained by selecting sets of examples from the training set at random.
A set of grey-level models was generated by using all 40 examples in the full training
set. The performance of each shape model was tested by running an ASM on every
test image and measuring the average distance of the model points from the known
points originally labelled by hand. Each model was started with a scale of 70% of
that of the known face, and offset from the known centre by (-10,-10) (the faces have
a width of about 300 pixels). During the search the shape variation was constrained

by applying a limit of ± 2.5 fy to each shape parameter, b{, equivalent to 2.5 stan-

dard deviations from the mean.
Figure 7 shows average displacement plotted against ma (the number of training
examples x the amount of FEM variation included in the covariance matrix). When
a = 0 we have a pure PDM model. The figure shows that as a is increased the per-
formance first improves, then worsens. The best performance for a given number
of examples, m, occurs when ma ~ 0.5 . This suggests that equation 18 is appropri-
ate for choosing a , and that for the face example a^ = 0.5 . The difference between

the fit at a = 0 and the minimum value gives the potential improvement given by
adding extra FEM variation to the model. The magnitude of this improvement drops
as the number of training examples increases.
Figure 8 compares the average performance of different models training with vari-
ous numbers of examples. The value of a for the combined model was calculated

2. The images are a subset of a database of face images collected and labelled by An-
dreas Lanitis. This is to be made publicly available - contact Andreas on email
lan@wiau.mb.man.ac.uk
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using equation 18 with ax = 0.5. This clearly demonstrates that the combined mo-
dels give superior performance when trained with fewer than 16 examples. When
16 or more examples are available, the PDM is sufficiently well representative of the
full class of shapes that adding extra variability gives no further improvement.
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Figure 7 : Relationship between aver-
age fit, the number of examples used

to train the model, m, and the propor-
tion of FEM variation included, a.

7 Discussion and Conclusions

2 4 6 8 10 12' 14' 16

Number of Training Examples
Figure 8 : Relationship between

performance ofASMs and the

number of training examples for

different shape models.

Related Approaches to Combining PDMs and FEMs
Martin,Pentland & Kikinis [9] have combined FEM and PDM models in order to
classify normal and pathological shape deformations of brain structures in 3D MR
scans. Their model of variability is to add the two types of modes together :

x = x + *u + Pb (19)

They use the shape of the head to calculate the physical mode parameters (u) then
use the deformation so defined to warp the structure of interest toward the mean.
The b parameters are then simply calculated from any residual differences from the
mean, and can be used to discriminate between various pathologies. Equation 19 is
not satisfactory for our purposes because the two sets of modes are not independent
- there will be redundancy in the model. We wish to find the best single model and
use it for a one stage image search.

The New Combined Model
The approach described above allows us to combine the shape variability determined
statistically from a training set with that generated artificially by building a 'physical'
model of the objects of interest. When only a single example is available only FEM
modes are used. As more examples are added, the statistical description of the shape
variation becomes more complete, and less additional FEM variation is required.
In the limit the statistical PDM modes are sufficient to span all the variation occur-
ring in a class of shapes. Although the formulation is for FEM based models, any
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method which generates linear modes of variation from a single example could be
used.
The calculation of the FEM modes for every example in the training set can prove
time consuming. It may be sufficient just to calculate the modes of the mean of the
set, and use this to augment the PDM covariance matrix.
The combined model requires a single parameter, a , describing the amount of FEM
based variation to add to the covariance matrix. The experiments above suggest it
is reasonable to assume that the optimal value for the parameter is inversely propor-
tional to the number of training examples used. The proportionality constant will
be a function of the class of shapes modelled. Investigations are underway to deter-
mine guide-lines for choosing this constant given a single example.
The experiments described in Section 6 show that for the face example a PDM
trained on 2 or more examples performs better in ASM search than a pure FEM
based model. However, when only small numbers (< 16) of training examples are
used the model combining both PDM and FEM variation performs better than either
alone.
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