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We present an ant-based algorithm to solve multi-level capacitated lot sizing problems. We apply
a hybrid approach where we use the ant system to optimize the decomposition of the problem into
smaller subproblems. These subproblems containing only a few items and periods are solved using
CPLEX. Then the overall solution is derived by consolidating the partial solutions. This hybrid
approach provides superior results with respect to solution quality in comparison to the existing
approaches in the literature.
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1 Introduction

In this work we consider the material requirements planning (MRP) that de-
termines production planning for all items of the same product family or so
called multi-level lot-sizing decisions. Multi-level lot-sizing decisions identify
when and how much of the products and their components to produce such
that setup, production, and holding costs are minimized. Making the right
decisions in lot-sizing will affect directly the system performance and its pro-
ductivity, which is important for a manufacturing firm’s ability to remain
competitive in the market. Therefore, the development and the improvement
of solution procedures for lot-sizing problems is very important.

In our study we focus on the multi-level capacitated lot-sizing problem (ML-
CLS) which was proved to be NP-hard (Maes and McClain 1991). Therefore
we develop a hybrid algorithm where we decompose the problem into several
small MLCLS problems. The smaller problems are solved by using the exact

This research emerged from the PhD thesis by Rapeepan Pitakaso during his stay at the University
of Vienna



December 22, 2005 14:12 International Journal of Production Research IJPR-EC-31

2 Combining Population-based and Exact Methods

formulation and the decomposition is controlled by the use of Ant Colony
Optimization (ACO) - a population based metaheuristic. The ACO algorithm
is also used to determine which product is considered in which subproblem
and so the sequence of products in which the lots are determined. We use the
MAX-MIN Ant System (Stützle and Hoos 1997) to find the sequence of prod-
ucts to be planned. Afterwards we decompose the problem and each subset of
items is solved using CPLEX.

This approach works very well for medium and large-size problems. In most
cases our algorithm can improve the best solutions. Since our algorithm is
very complex, there is a little draw back for very small instances. We are able
to improve solution quality, but computational times are larger than those of
other algorithms.

Maes and McClain (1991) proposed several LP-based heuristics for this prob-
lem that are applicable only to serial systems — each item has at most one
predecessor and one successor. Tempelmeier and Helber (1994) developed a
heuristic procedure that can be applied to general systems, so that each item
can have more than one successors and predecessors, and multiple resource
constraints are allowed. Tempelmeier and Derstroff (1996) apply a Lagrangean
relaxation based heuristic which can be applied to systems with a general and
an assembly structure. In an assembly system each item may have several
predecessors, but at most one successor. Özdamar and Barbarrosoglu (2000)
decompose the global problem (MLCLS) into smaller subproblems and the
intensive search capability of the simulated annealing is incorporated into the
relaxation design. Stadler (2003) solves the MLCLS problem by reducing the
number of periods. He solves the problems on a rolling basis by adding later
periods and removing earlier ones.

Berretta and Rodrigues (2004) present a Memetic Algorithm for the prob-
lem at hand. Another bio-inspired heuristic has been proposed by Xie and
Dong (2002), they proposed a Genetic Algorithm. Kirca and Kökten (1994)
developed a heuristic algorithm for a multi-item single level lot-sizing problem
which they call item-by-item heuristic. In this algorithm at each iteration step,
a set of items that have not yet been scheduled is selected and the production
schedule over the planning horizon for this set of items is determined. Berretta
et al. (2005) describe metaheuristic methods to solve multi-level capacitated
lot-sizing problems with non-zero lead times.

Our contribution is threefold:

• We present a successful hybridization of exact and metaheuristic optimiza-
tion approaches. This is done in way that the metaheuristic controls the
problem decomposition process.

• We extended the standard MAX-MIN Ant System with ideas from Evolu-
tionary Algorithms in order to reduce the number of parameters by adapting
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them automatically.

• We provide new and efficient algorithm for the MLCLS and obtain many
new best solutions for well known test instances.

The paper is organized as follows. In Section 2 the mathematical formula-
tion of the MLCLS is given. In Section 3 the decomposition approach for the
different items and periods is presented. The ACO algorithm is described in
Section 4. Finally, the experimental framework and the computational results
are presented in Section 5. We finish the paper with general conclusions in
Section 6.

2 Mathematical formulation

The mathematical model we use in this study is taken from Stadtler (1996).
The model is as follows.

Dimensions and indices:

P number of products in the bill of material
T planning horizon
M number of resources
i item index in the bill of material
t period index
m resource index

Parameters:

Γ(i) set of immediate successors of item i

Γ−1(i) set of immediate predecessors of item i

si setup cost for item i

ci,j quantity of item i required to produce one unit of item j.
hi holding cost for item i

am,i capacity needed on resource m for one unit of item i

bm,i setup time for item i on resource m

Lm,t available capacity of resource m in period t

co
m overtime cost of resource m

G sufficiently large number
Ei,t external demand for product i in period t

Ii,0 initial inventory of item i

Decision variables:
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xi,t delivered quantity of item i at the beginning of period t.
Ii,t inventory level of item i at the end of period t.
Om,t overtime hours used on resource m in period t

yi,t binary variable indicating whether item i is produced in pe-
riod t (yi,t = 1) or not (yi,t = 0)

The problem can then be formulated as a mixed integer program:

min
P

∑

i=1

T
∑

t=1

(siyi,t + hiIi,t) +
T

∑

t=1

M
∑

m=1

co
mOm,t (1a)

subject to the set of constraints

Ii,t = Ii,t−1 + xi,t −
∑

j∈Γ(i)

ci,jxj,t − Ei,t ∀i, t (1b)

P
∑

i=1

(am,ixi,t + bm,iyi,t) ≤ Lm,t + Om,t ∀m, t (1c)

xi,t − Gyi,t ≤ 0 ∀i, t (1d)

Ii,t ≥ 0, Om,t ≥ 0, xi,t ≥ 0, yi,t ∈ {0, 1} ∀i, t (1e)

The objective function in (1a) minimizes the sum of ordering costs and
inventory holding costs for all the items over a predefined planning horizon
of length T . Therein also over-time cost are considered when capacity is not
enough to produce the dynamic demand. Equation (1b) represents the inven-
tory balance equation. The inventory level of item i in period t equals to the
sum of inventory level of i in period t − 1 plus the production quantity of
item i in period t minus the internal demand induced by the parents of item i

and the external demand. Capacity constraints (1c) ensure that the resources
required to produce the required amount of item i in period t plus the required
setup time does not exceed the available resources. Constraint (1d) captures
the fact that setup costs are considered whenever a batch is produced, with G

being the sum of the remaining demand or any other arbitrarily large number.
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For performance reasons it is better to choose G as small as possible. Finally,
the usual nonnegativity constraints are denoted in (1e).

3 Decomposition

The whole mixed-integer program (MIP) describing a capacitated multi-level
lot-sizing problem can hardly be solved exactly within a reasonable time, if
real-world problem sizes are considered. Therefore, our approach is to decom-
pose the problem in several subproblems, which are small enough to be solved
exactly. Based on the solution of the subproblems we construct a solution for
the original problem. There are two obvious possibilities for decomposition:
(i) instead of solving the problem for all periods at the same time, construct
subproblems which include only a small number of periods; (ii) split the bill
of materials in several parts and solve the problem for each part separately.
If we would use either approach (i) or (ii) for a realistic scenario with 50-100
items in the bill of materials and 20-40 number of periods, the subproblems
would be still too large to solve them fast enough, especially if the solution
of the subproblems is used in an iterative procedure. Therefore we perform a
combination of (i) and (ii) to decompose the problem. That means, we select
several items from the bill of materials and solve the problem for only a few
periods.

Before we decompose, we create a so-called lot-sizing sequence of the prod-
ucts, i.e. we number the items from 1 to P in such a way that all successors
of a certain item are in a position before that item. If item i is a successor of
item j, then i < j. So it is possible to schedule the items one after another
starting with item 1. For a general problem there are many different possibili-
ties to sequence the items. In section 4 we will explain how we can find a good
sequence using an ant-based algorithm.

To illustrate the decomposition approach, consider a small example of 6
items (already numbered from 1 to 6 according to the above rule) and 9 peri-
ods. Each subproblem consists of 3 items and 4 periods. The first subproblem
(SP1) contains items 1–3 and periods 1–4. As Figure 1 shows, only part I of
the solution of the subproblem is used for composing the final solution of the
whole problem. Similar to the principle of planning on a rolling basis, part
II is recalculated within subproblem SP2 and parts III and IV are fixed after
solving subproblems SP4 and SP5 (products 3–5 and periods 4–7). This over-
lapping is necessary for consideration of the interdependencies between the
items and periods in different subproblems.

[Figure 1 about here.]

It remains to decide, what is a useful number of items Is and number of
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periods Ts for the subproblems, and how large should the overlapping region
be. The maximal size of the subproblem is determined by the computational
time to solve it. Since the decomposition of the problem is embedded into
an iterative solution procedure (see section 4), it is necessary to keep the
computational effort for each subproblem small.

Now let us go into more detail for a single subproblem. The mixed-integer
formulation of the whole problem (1a)-(1e) cannot be transformed to the sub-
problems in a straightforward manner. The key aspect is to assign correct
capacity limits for each subproblem. If we return to our simple example de-
scribed in Figure 1, we see, that it is not clear how much of the capacity we
should use for subproblem SP1 in order to have enough capacity for subprob-
lem SP4. Since overtime is not limited, there exists always a feasible solution.
But if, for example, subproblem SP1 uses all available regular capacity, in
subproblems SP4 and SP7 we can produce only in expensive overtime and the
solution will be poor. Therefore it is necessary to use a reduced regular capacity
for each subproblem in order to reserve some of that capacity for subsequent
subproblems. Furthermore it may be the case — since a subproblem repre-
sents only a small window of the whole problem — that the demand occurring
in a certain subproblem exceeds the available capacity in that time interval,
although there would be enough capacity available in other subproblems (in
earlier periods). Therefore it is necessary to modify the MIP formulation for
the subproblems.

For assigning the right capacity to each subproblem, we have to apply 2
modifications:

(i) We have to reduce the available capacity by the amounts already scheduled
for that period in other subproblems.

(ii) We have to modify the capacity needs for production and setup of a certain
item, in order to consider the capacity needs of its predecessors.

We will use the following additional notation for describing the adaptations
for the subproblems:
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k index of the subproblem.
T k

s starting time period of subproblem k.
T k

e last time period of subproblem k.
P k

s number of first item of subproblem k.
P k

e number of last item of subproblem k.
Ak

m,i modified capacity needed for production of one unit of item
i on resource m.

Bk
m,i,t modified capacity needed for setup of production of item i

in period t on resource m.
Sk

i,t modified setup cost for item i in period t of subproblem k.

Xi,t lot size for product i in period t (already determined in pre-
vious subproblems).

Yi,t binary variable indicating whether item i is scheduled to
be produced in period t (already determined in previous
subproblems).

avCk
m,t available regular capacity of resource m in period t for sub-

problem k

The mixed-integer problem for subproblem k is then:

min

P k
e

∑

i=P k
s

T k
e

∑

t=T k
s

(

Sk
i,tyi,t + hiIi,t

)

+

T k
e

∑

t=T k
s

M
∑

m=1

co
mOm,t (2a)

subject to (each constraint must hold for all i = P k
s , . . . , P k

e , t = T k
s , . . . , T k

e ,
and m = 1, . . . , M)

Ii,t = Ii,t−1 + xi,t −
∑

j∈Γ(i)
j<P k

s

ci,jXj,t −
∑

j∈Γ(i)
j≥P k

s

ci,jxj,t − Ei,t (2b)

P k
e

∑

i=P k
s

(am,ixi,t + bm,iyi,t) ≤ Lm,t + Om,t −

P k
s −1
∑

i=1

(am,iXi,t + bm,iYi,t) (2c)

t
∑

τ=T k
s

P k
e

∑

i=P k
s

(

Ak
m,ixi,τ + Bk

m,i,τyi,τ

)

≤
t

∑

τ=T k
s

(

avCk
m,τ + Om,τ

)

(2d)
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xi,t − Gyi,t ≤ 0 (2e)

Ii,t ≥ 0, xi,t ≥ 0, Om,t ≥ 0, yi,t ∈ {0, 1} (2f)

It has been known for a long time that simple item by item decomposition
gives poor lot-sizing results if the setup costs are not modified (Blackburn
and Millen 1982). There are several modification schemes that add part of
the setup costs of predecessors to the setup costs of each item. We follow the
approach by Pitakaso et al. (2005) which is an extension of Dellaert and Jeunet
(2003). To the setup cost of an item we add a fraction of the setup costs of
all its predecessors, depending if a new setup is necessary for that predecessor
or not. For that purpose we use a binary variable T (i, j, t) which takes the
value of 1 if a lot-size of item i, delivered in period t, generates a new lot for
item j in period t, and it equals zero if there is already a positive demand for
item j in period t. This demand results from a planned lot-size for a different
successor of item j or is an external demand. In order to avoid adding the
setup cost of a single item several times, the modified setup costs are divided
by the number of immediate successors in the current subproblem. Hence, in
the objective (2a) we do not use the original setup cost, but modified ones as
follows:

Sk
i,t = si + ri

∑

j∈Γ−1(i)
j>P k

e

T (i, j, t)
Sj

|Γ(j)|
(3a)

where Sj can be calculated recursively by

Si = si +
∑

j∈Γ−1(i)

Sj

|Γ(j)|
, (3b)

and

ri = R ·

(

1 +
P − 2Φi + 1

P − 1
· u

)

(3c)

with two parameters R ∈ U [0, 0.5] and u ∈ U [−1, 1] randomly chosen ac-
cording two a uniform distribution, and Φi denoting the position of item i in
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the lot-sizing sequence. For more details on this type of cost modification see
Pitakaso et al. (2005).

The inventory balance equation (2b) is identical to (1b). Note that for items i

with i < P k
s the lots were already fixed in some previous subproblems, whereas

items j with j ≥ P k
e will be considered in later subproblems.

The capacity constraint (2c) ensures that we have to use overtime if the
production of a certain period exceeds the free capacity. The total capacity
is reduced by the amounts of resources needed to produce the items already
scheduled in previous subproblems. This reduction is represented by the last
summation term, where we sum up over all already scheduled items.

The cumulative capacity constraint (2d) should ensure that our global solu-
tion consisting of the solution of the subproblems will not use overtime if it is
not necessary. The left-hand side represents the accumulated capacity needs
for all products of the subproblem from the starting period T k

s of the subprob-
lem up to period t (t = T k

s , . . . , T k
e ). The modified capacity needs Ak

m,i and

Bk
m,i,t consider that if we schedule a certain item, we need also resource to make

the predecessors in some period before. These modified capacity needs can be
calculated recursively starting with the last item in the lot-sizing sequence.

Ak
m,i = am,i +

∑

j∈Γ−1(i)
j>P k

e

Ak
m,j , (4a)

Bk
m,i,t = bm,i +

∑

j∈Γ−1(i)
j>P k

e

T (i, j, t)
B̃m,j

|Γ(j) ∩ ∆(i)|
, (4b)

where B̃m,j is the accumulated capacity need for setup for product i on resource
m

B̃m,i = bm,i +
∑

j∈Γ−1(i)

B̃m,j . (4c)

The idea of equation (4b) is similar to the setup cost modification in (3a).
The expression |Γ(j) ∩ ∆(i)| in (4b) ensures that the setup resource needs are
divided by the number of immediate successors which are in the same group as
item i. These groups are: (i) already lot-sized items; (ii) items in the current



December 22, 2005 14:12 International Journal of Production Research IJPR-EC-31

10 Combining Population-based and Exact Methods

subproblem k; (iii) not yet scheduled items in other subproblems.

∆(i) =











{1, . . . , P k
s − 1} if i < P k

s

{P k
s , . . . , P k

e } if P k
s ≤ i ≤ P k

e

{P k
e + 1, . . . , P} if i > P k

e

(4d)

The available capacity avCk
m,t is based on the total capacity diminished by

the resources already used for other products and resources which are reserved
for items not scheduled yet.

avCk
m,t = Lm,t −

P k
s −1
∑

i=1

(

Ak
m,iXi,t + Bk

m,i,tYi,t

)

−
P

∑

i=P k
e +1

Γ(i)=∅

(

Ak
m,jEi,t + Bk

m,i,tY
E
i,t

)

(5)

where

Y E
i,t =

{

1 Ei,t > 0

0 otherwise
(5a)

The first sum in equation (5) represents the amount of resources needed for the
already scheduled items 1 to P k

s −1 including the resource that will be needed
for its predecessors which are not scheduled yet and which are not included in
the current subproblem. The second sum gives the resources needed for end-
items (and their predecessors) which are not scheduled yet and which are not
in the current subproblem. Now avCk

m,t considers all already reserved resources
and capacity needs caused by already scheduled items. But it is not necessary
and not possible to schedule the production for all predecessors in that period
t, although they are included. Therefore we use only a cumulative capacity
constraint (2d), which allows to shift the production between periods. So we
ensure that enough capacity is reserved in any of the previous periods up to
the current one.

With the above adaptations for the capacity needs and the available regular
capacity we reserve capacity for items which are scheduled later. A similar
adaption is necessary to ensure that the regular capacity is used in periods
with low demand in order to cover periods with high demand. Since the sub-
problems include only some but not all periods, it may be necessary to balance
such demands in different subproblems. For that purpose we develop a method
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for production backward shifting (cf. Berretta and Rodrigues 2004, Franca et

al. 1994, Trigeiro et al. 1989, Xie and Dong 2002). We consider only demand
shifting between subproblems of the same level, i.e. subproblems which con-
tains the same items, but different periods.

We always start with the last subproblem of the current level which contains
the last period. We take constraint (2d) and substitute the external demands
Ei,t and the internal demands

∑

j∈Γ(i) ci,jXj,t for the production quantities
and set setups Yi,t if necessary. We check the constraint for each t starting
with the first period in the subproblem. If there is no period where we have to
use overtime, then it is not necessary to shift any demands. Otherwise we shift
the demand of as many units as necessary of the last item in the subproblem
(i.e. with the highest number) to the nearest period before, that is outside
the current subproblem. If there is not enough demand that can be shifted in
order to prevent using overtime, we shift also demands for the next item in
the list. After that we analyze the previous subproblem on that level until we
reach the subproblem containing period 1, where we stop. This procedure has
to be repeated for each resource m.

So the overall procedure for solving the problem by decomposition is as
follows:

• Step 1: For each subproblem decide which items and which periods are
included. Set the current level of subproblems p to 1.

• Step 2: Perform the capacity modifications (3a)-(5a) for all subproblems of
the level p.

• Step 3: Apply the demand shifting procedure for level p and adapt the
demands for each subproblem.

• Step 4: Solve each subproblem of the current level p, starting with the first
one containing period 1 (e.g. SP1 for level 1). Fix the solution in the non-
overlapping region and use the solution (inventory levels) to solve the next
subproblem, and so on.

• Step 5: Fix the solution for the non-overlapping items of level p and calculate
the new demands for the next level. Stop if p is the last level or set p := p+1
and proceed with step 2.

4 ACO Algorithm

In Section 3 we have developed an algorithm for lot-sizing the products based
on a given sequence of products. In the next step we propose a MAX-MIN
Ant System (MMAS) algorithm developed by Stützle and Hoos (1997, 2000)
for optimizing this sequence in order to minimize the total costs.

The main idea of Ant Colony Optimization (ACO) is that a population of
artificial ants repeatedly builds and improves solutions to a given instance
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of a combinatorial optimization problem (see Colorni et al. 1992, Dorigo and
Stützle 2004). From one generation to the next a global memory is updated
that guides the construction of solutions of the successive population. The
memory update is based on the solution quality of the ants and is biased
towards the best solutions found. In the MAX-MIN Ant System only the
overall best solution found so far is allowed to update pheromone. After the
construction phase of the algorithm a local search may be applied to the
solutions of the ants. A convergence proof for the ACO algorithm can be
found in Gutjahr (2003), Stützle and Dorigo (2002).

Within the ACO algorithm an artificial memory - so called pheromone in-
formation is used. After the initialization of this joint memory the standard
ACO algorithm mainly consists of the iteration of three steps:

• Step 1: Construction of solutions by ants according to heuristic and
pheromone information

• Step 2: Application of a local search to the ants’ solutions

• Step 3: Update of the pheromone information

This metaheuristic algorithm has also been used for the uncapacitated
problem. For this problem class it outperformed all the existing approaches
(see Pitakaso et al. 2005). There we applied already ideas from Evolutionary
Algorithms to “learn” which R and u in the cost adjustment formula (3a)
should be chosen. We now extend this idea to determine how many items Is

and how many periods Ts should be put together in one subproblem.
Each ant generates a production sequence. As heuristic information ηj (also

called visibility in the ant system framework) the original setup costs sj are
used (see (6)). We tested different alternative values as heuristic information
(combinations of setup costs and holding costs) and also the use of no heuristic
information. It turned out that the best results can be reached by using the
original setup costs sj . We do not apply a local search procedure because the
calculation of the total cost through the use of the decomposition algorithm
is very time consuming. Moreover, the results in Section 5 indicate that it is
not necessary to include a local search procedure. So Step 2 does not exist
in our algorithm. The pseudo code in Figure 2 illustrates the adaptations of
the MMAS to solve the MLCLS. The Ant System for multi-level capacitated
lot-sizing problems is denoted as ASMLCLS in the sequel.

[Figure 2 about here.]

The algorithm starts with the initialization phase. In this phase the standard
initialization routines like initializing the pheromone matrix are performed.
Within this phase the values for Rb, ub, T b

s , Ib
s which provide the best solution

quality out of 20 randomly generated solutions are selected as initial values.
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After the initialization phase the construction phase is executed. In this phase,
each ant generates a sequence of items which is used afterwards to apply the
decomposition algorithm (see Section 3). After all the ants have constructed
their solution and the solution qualities are computed, the pheromone update
is applied. In the MMAS the best solution found so far by the ants is allowed
to update the artificial pheromone.

We applied the pheromone encoding scheme which provides the best results
in the uncapacitated version (see Pitakaso et al. 2005). This pheromone encod-
ing scheme was developed for scheduling problems by Stützle (1998) and was
also used by Merkle et al. (2002). In this pheromone encoding τpj denotes the
desirability of lot-sizing item j as the p-th item. This value gives information
how desirable it was to place item i on position p in the previous iterations.
This information is used in the construction step (Step 1) of the algorithm.
The pheromone information is modified in Step 3 of the algorithm.

So we consider a MLCLS with P products and initial setup costs sj . Each
ant constructs a production sequence (see Step 1). At each step in the con-
struction phase an ant decides independently which item will be lot-sized at
the current position of the sequence. The probability that an item is selected
on a particular position is determined according to the random proportional
rule (6).

pκ
pj(ℓ) probability that ant κ selects product j on position p in

iteration ℓ

τpj(ℓ) intensity of pheromone trail of product j in position p at
iteration ℓ

α parameter to regulate the influence of τpj(ℓ)
β parameter to regulate the influence of sj

Nκ
p set of selectable products in position p of ant κ based on the

bill of materials

pκ
pj(ℓ) =

{

[
P

p

o=1
τoj(ℓ)]

α[sj ]βP
l∈Nκ

p
[
P

p

o=1
τol(ℓ)]

α[sl]β
if j ∈ Nκ

p

0 otherwise
(6)

For the pheromone used in the decision rule we do not just consider the
current pheromone value of setting item j in the current position p. Rather,
we consider also all the pheromone values of setting item j in all the predecessor
positions of p. We denote the decision rule where this pheromone usage scheme
is used as summation decision rule in the following. This summation rule was
introduced by Merkle and Middendorf (1999).

As usual in MMAS, the best ant updates the pheromone, but the values are
bounded to the interval [τmin, τmax] :
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ρ ∈ [0, 1] trail persistence parameter to regulate the evaporation of τpj

∆τpj(ℓ) total increase of trail level on edge (p, j) which is controlled
by
maximum and minimum value along with the concept of
MMAS

f(sopt) global best solution value

τpj(ℓ + 1) = max
(

τmin, min
(

τmax, ρτpj(ℓ) + ∆τpj(ℓ)
)

)

. (7)

with

∆τpj(ℓ) =

{

1
f(sopt) if item j is on position p for the best ant

0 otherwise.

The pheromone bounds are taken from Stützle and Hoos (1997).
An open question is how to select R, u, Is, Ts for lot-sizing the products

and determining the costs of the sequence the ant found. We could choose
these parameters randomly. But tests have shown that a systematic search of
optimal values for R, u, Is, Ts gives better solutions (for the results concerning
R and u see Pitakaso et al. 2005).

This systematic search for good values for R, u, Ts, and Is is done as follows.
We augmented the standard MMAS with the component of selecting R, u,
Ts, and Is by using ideas of evolutionary strategies. For the first iteration we
generate randomly a set of different quadruples (R, u, Ts, Is) and select the best
one according to the objective function. For all other iterations we take the
basic parameter set (Rb, ub, I

b
s , T

b
s ) representing the best values of the previous

iteration. Each ant chooses randomly for its (R, u, Is, Ts) either this basic set
or a slightly perturbed one (see Figure 2). The best solution of each iteration
determines the new (Rb, ub, I

b
s , T

b
s ). In some pre-tests we have shown that this

procedure gives better solutions than choosing Rb, ub, Ib
s , and T b

s constant by
taking the best values from the initial phase. In a previous work (see Pitakaso
et al. 2005) it turned out that for the perturbation rate ϑ a value of ϑ = 0.05
is reasonable (see Figure 2).

5 Results

We implemented the ASMLCLS algorithm in C (Visual C 6) using CPLEX 9.0
for solving the subproblems. The tests were performed on a personal computer
Pentium 4 2.4 GHz with 1 GB RAM and Microsoft Windows 2000. On the
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bases of some test instance we determined limits for the subproblem size such
that we were able to solve it on average within 2 seconds. Table 1 shows
these limits. If we were not able to find the optimal solution for a specific
subproblem within that time, we took the best solution CPLEX found so far.
Furthermore, we generated solutions for several test instances with different
overlapping factors. It turned out that the best combination is to use 20%
overlapping for the items and 60% overlapping for the periods.

[Table 1 about here.]

In total we tested our algorithm with 4 different groups of test instances. The
first group of test instances was taken from Berretta and Rodrigues (2004).
This group consists of 160 test instances with two different product structures
(general (G) and serial (S) systems), with two different levels of setup costs
(low (L) and high (H) costs), and four different combinations of number of
items (I) and planning horizons (T). Table 2 shows the results of our algorithm
compared with the method introduced in Berretta and Rodrigues (2004) and
with CPLEX solving the whole problem at once with a time limitation of one
hour. For nearly all instances we were able to calculate the optimum, and for
the others the gap is extremely small. Our approach needs more computational
time than the method of Berretta and Rodrigues (2004)1 but on average we
are more than 50 times faster than CPLEX.

[Table 2 about here.]

The other 3 groups of test instances are from Tempelmeier and Derstroff
(1996). Group 2 consists of 600 test instances with 10 items, 4 periods, and
3 resources. There are instances with general systems (G) and instances with
assembly systems (A) and two different ways of assigning the resources. In
the non-cyclic case (NC), for each production level just 1 resource is needed,
whereas in the cyclic case (C) several resources are needed within the same pro-
duction level. Furthermore the test instances differ in the demand patterns.
Table 3 shows a similar picture than before. With ASMLCLS it is possible
to find nearly all optimal solutions and the gap for the remaining ones is
very small. In Özdamar and Barbarosoglu (2000) another approach integrat-
ing Lagrangian relaxation and Simulated Annealing was applied to these test
instances. They report an overall mean deviation of 4.21% with an average
calculation time of 8.54 seconds. Tempelmeier and Derstroff did their test in
1996 on a computer which is about 1000 times slower than the computer we

1The results of Berretta and Rodrigues (2004) were evaluated on a Sun UltraSPARC 60. Since the
computational speed of this machine is not included in the paper of Dongarra (2005), we used the
similar Sun UltraSPARC 80 for comparison. Hence, the computer we used is approximately 5.7 times
faster.



December 22, 2005 14:12 International Journal of Production Research IJPR-EC-31

16 Combining Population-based and Exact Methods

are using (according to Dongarra 2005). This means their method is extremly
fast, but they reported in the paper that it was not possible to improve the
results significantly if they would have done more iterations.

[Table 3 about here.]

Group 3 of the test instances consists of 600 different problems with 40 items,
16 periods, and 6 resources. Again, there is a cyclic and a non-cyclic resource
assignment and different demand patterns. Table 4 shows that ASMLCLS is
able to beat the method of Tempelmeier and Derstroff (1996) in 86% of the
instances.

[Table 4 about here.]

Group 4 includes 150 instances with 100 items spread over 10 levels, 16
periods, and 10 resources all with a general product structure. There are 5
different levels of the capacity utilization (1-5) and again cyclic and non-cyclic
instances. We compare our results with those of Tempelmeier and Derstroff
(1996) and Stadtler (2003). For these large test instances the method of Tem-
pelmeier and Derstroff is extremely fast, but has very low solution quality.
The method of Stadtler is very complex consuming a lot more computational
time, but the results from Tempelmeier and Derstroff (1996) were improved
by more than 5%. In Table 5 we present two different results for our algorithm.
First, we use 20 minutes run time which correspond to the computation time
of Stadtler (2003). We adapted the computational times according to the fac-
tors given in Dongarra (2005). Second we allowed to run the algorithm for 30
minutes, and in more than 90% of the test instances ASMLCLS could reach
or improve the best solutions.

[Table 5 about here.]

As a last test we investigated if the difference between ASMLCLS and the
approach of Tempelmeier and Derstroff (1996) is statistically significant. Fur-
thermore we checked if each of our solution steps improves the solution quality.
For that purpose we selected 50 random test instances from group 3 and com-
pared the solution quality given in Tempelmeier and Derstroff (1996) with the
following solution methods:

Decomp: Apply the decomposition method with a random lot-sizing se-
quence (considering the preference rule), and a randomly chosen subprob-
lem size and randomly chosen R and u. We do not apply the demand
shifting procedure.
Decomp-Ants: The same as before, but we use the ant algorithm to get
a lot-sizing sequence.
Decomp-Ants-Evo: Now the ants also search for the best subproblem
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size and the best R and u.
ASMLCLS: The full algorithm including the demand shifting procedure.

We solved the 50 test instances with all variants using the same computational
time. We applied the Wilcoxon signed rank test for paired data with 1% thresh-
old. Each step of our algorithm improves the solution quality significantly and
all variations are significantly better than the algorithm of Tempelmeier and
Derstroff (1996). Furthermore, the complete algorithm (ASMLCLS) is also
significantly better than the algorithm by Stadtler (2003).

6 Conclusions

A hybrid approach combining a MMAS, Evolutionary Strategies, and exact
solvers for mixed-integer problems has been proposed to solve multi-level ca-
pacitated lot-sizing problems. This mixture allows to improve the solution
quality for standard test instances. Because of the complex structure of the
algorithm, the computational overhead for small problems increases the time
necessary to gain a good solution. Nevertheless, it is possible to reach a high
solution quality. For large problems the effects of the overhead are reduced,
and ASMLCLS is able to outperform the best algorithms. Due to its construc-
tion, the algorithm shows its best performance for problems with the following
properties:

• General or assembly systems allow more freedom for the ants part to select
between different sequences.

• If no overtime is necessary, the shifting demand procedure is faster and the
decomposition methods gives better results.

• For large problems the computational overhead of the algorithm has a lower
impact on the overall calculation time.
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Figures

Figure 1. Scheme of subproblems with overlapping of one period and one product. After solving
subproblem 1 (SP1), only part I is taken for the final solution, the other parts are recalculated
within other subproblems due to the overlapping. SP1-SP3 form the first decomposition level
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Procedure ASMLCLS

/* Initialization phase */
Generate initial Rb,ub, T b

s
, and Ib

s

(select best solution out of 20 randomly constructed ones)
Initialize pheromone information
while (termination condition not met) do
for each ant do
/* Construction phase (Step 1)*/
Construct the production sequence according to the decision rule (6).
/* Adaptation of R and u values for each ant */
Choose R randomly out of the set {Rb(1 − ϑ), Rb, Rb(1 + ϑ)}
Choose u randomly from {max{−1, ub(1 − ϑ)}, ub,min{1, ub(1 + ϑ)}}
Calculate ri according to equation (3c)
Choose Is randomly out of the set {Ib

s
− 1, Ib

s
, Ib

s
+ 1}

Choose Ts randomly out of the set {T b
s
− 1, T b

s
, T b

s
+ 1}

(within the boundaries of table 1)
Perform the decomposition method of Section 3 to evaluate the sequence

end
/* Pheromone update phase (Step 3) */
Update the pheromone matrix according to (7), update Rb, ub, T b

s
, Ib

s

end

Figure 2. Pseudo code of ASMLCLS
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Tables

Table 1. The maximal subproblem size which allows to get a solution within 2 seconds. Is indicates the

number of items included in the subproblem and Ts is number of periods for that subproblem.

Is 1 2 3 4 5 6 7 8 9 10 11 12
Ts 15 13 10 9 8 6 5 5 4 3 3 2
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Table 2. Comparison of the results for the test instances from Berretta and Rodrigues (2004). Column

(B&R) contains the results of Berretta and Rodrigues (2004); column CPLEX refers to CPLEX results

within 1 hour computation time; column ASMLCLS contains our results. For problems marked with *

there is no optimal solution available, but the last column shows the result of CPLEX solved within a

tolerance of 1%. MAPD indicates the mean absolute percentage deviation of the method in per cent to this

optimal (or nearly optimal) solution.

Problem B&R CPLEX (3600s) ASMLCLS (Optimal)
MAPD sec. MAPD sec. MAPD sec. Cost Cost

G-L-3I-6T 0 1.45 0 8.71 0 10.4 4502.02 4502.02
G-L-3I-12T* 0.1 4.98 0.032 2753.09 0 13.5 9383.62 9383.62
G-L-6I-6T 0 4.02 0 0.03 0 21.1 12140.11 12140.11
G-L-10I-6T* -0.1 18.16 0 46.26 0.0027 24.2 18461.73 18461.26
G-H-3I-6T 0.1 1.27 0 763.61 0 10.8 9149.52 9149.52
G-H-3I-12T* 0.3 3.79 0.76 3600.00 0.0057 13.5 16726.87 16725.71
G-H-6I-6T 0.3 2.64 0 0.36 0 25.5 23148.57 23148.57
G-H-10I-6T* 0.4 8.06 0 1702.08 0.0027 24.3 31750.07 31749.18
S-L-3I-6T 0.1 0.84 0 6.85 0 10.4 3390.35 3390.35
S-L-3I-12T* 0.2 2.77 0.18 1826.49 0 13.4 7218.09 7218.09
S-L-6I-6T 0.1 2.07 0 6.27 0 23.0 7524.13 7534.13
S-L-10I-6T* 0.1 6.02 0 1600.39 0 23.7 12793.65 12793.65
S-H-3I-6T 0.6 0.85 0 3.85 0 11.0 7525.16 7525.16
S-H-3I-12T* 0.4 2.27 0.19 2668.18 0.0062 13.5 13569.57 13568.84
S-H-6I-6T 0.4 1.63 0 7.61 0 25.4 17424.97 17424.97
S-H-10I-6T* 0.1 3.76 0 1476.69 0 24.6 25953.86 25953.86
Mean 0.2 4.04 0.0726 1029.41 0.0011 18.0 13792.02 13791.81
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Table 3. For group 2 of the test instances from Tempelmeier and Derstroff (1996) we compare in this

table our results (ASMLCLS) with those of Tempelmeier and Derstroff (1996) (T&D) and Berretta and

Rodrigues (2004) (B&R). MAPD indicates the mean deviation of the method in per cent to the optimal

solution. % is the percentage of optimal solutions found.

Problem T&D B&R ASMLCLS Optimal
MAPD % sec. MAPD % sec. MAPD % sec. Cost Cost

G-NC 2.0 46 0.2 91 30.3 0.005 93.3 28.03 11163.9 11163.5
G-C 1.8 41 0.4 83 30.2 0.016 89.3 28.01 11334.6 11332.8
A-NC 0.7 62 0.4 83 30.3 0.006 92.0 27.50 10803.0 10802.5
A-C 0.7 62 0.1 96 29.6 0.002 96.7 27.25 10347.2 10347.1
Mean 1.3 53 1.45 0.3 89 30.1 0.007 92.8 27.54 10912.2 10911.5
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Table 4. For group 3 of the test instances from Tempelmeier and Derstroff (1996) we compare in this

table our results (ASMLCLS) with those of Tempelmeier and Derstroff (1996) (T&D). MAPD indicates

the mean deviation of the method in per cent to the best solution. % is the percentage of best solutions

found. The last column shows the best solutions available.
Problem T&D ASMLCLS Minimal

MAPD % min. Cost MAPD % min. Cost cost
G-NC 0.924 30.7 382706 0.049 84.7 10.8 380666 380512
G-C 0.865 29.3 395075 0.053 88.7 10.6 393329 393208
A-NC 2.324 25.3 47134 0.092 82.6 9.5 46081 46047
A-C 2.106 20.0 45700 0.056 88.0 9.4 44650 44634
Mean 1.555 26.3 1.2 217654 0.063 86.0 10.1 216181 216100
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Table 5. For group 4 of the test instances from Tempelmeier and Derstroff (1996), Stadtler (2003) we com-

pare in this table the results of Tempelmeier and Derstroff (1996) (T&D), Stadtler (2003) (Stadtler), and

our results with 20 (ASMLCLS-20) and 30 minutes (ASMLCLS-30) computational time. MAPD indicates

the mean deviation of the method in per cent to the best solution. % is the percentage of best solutions

found. The last column shows the best solutions available.
Problem T&D Stadtler Minimal

MAPD % Cost MAPD % Cost cost
NC-1 2.65 33 364186 0.33 46.67 354709 353401
NC-2 6.75 0 1864407 0.63 20.00 1756314 1745334
NC-3 8.10 0 4035240 0.49 20.00 3750212 3731518
NC-4 5.52 0 2565054 0.68 26.67 2446366 2428613
NC-5 12.24 0 1838861 0.55 26.67 1648295 1639276
C-1 6.51 0 388112 0.08 40.00 359723 359432
C-2 8.70 0 2056183 1.47 13.33 1920455 1892262
C-3 7.84 0 4550056 1.24 0.00 4265387 4211022
C-4 9.91 0 2830900 2.70 6.67 2643123 2573430
C-5 10.14 0 1914168 2.40 6.67 1778768 1736597
Mean 7.83 3 2240717 1.06 20.67 2092335 2067089

Problem ASMLCLS-20 ASMLCLS-30 Minimal
MAPD % Cost MAPD % Cost cost

NC-1 0.28 53.33 354546 0.00 100.00 353401 353401
NC-2 0.67 6.67 1756868 0.02 86.67 1745710 1745334
NC-3 0.41 40.00 3747005 0.00 86.67 3731525 3731518
NC-4 0.33 46.67 2437987 0.14 93.33 2431617 2428613
NC-5 0.32 20.00 1644492 0.18 73.33 1642021 1639276
C-1 0.01 46.67 359473 0.00 93.33 359441 359432
C-2 0.25 40.00 1897090 0.01 93.33 1892534 1892262
C-3 0.66 0.00 4238226 0.00 100.00 4211022 4211022
C-4 0.96 13.33 2597734 0.001 93.33 2573459 2573430
C-5 0.52 40.00 1745506 0.00 100.00 1736597 1736597
Mean 0.44 30.67 2077893 0.04 92.00 2067733 2067089




