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Combining Probability Distributions:
A Critique and an Annotated Bibliography

Christian Genest and James V. Zidek

Abstract. This paper addresses the problem of aggregating a number of
expert opinions which have been expressed in some numerical form in order
to reflect individual uncertainty vis-a-vis a quantity of interest. The primary
focus is consensus belief formation and expert use, although some relevant
aspects of group decision making are also reviewed. A taxonomy of solutions
is presented which serves as the framework for a survey of recent theoretical
developments in the area. A number of current research directions are
mentioned and an extensive, current annotated bibliography is included.
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1. INTRODUCTION

The objective of this paper is to provide an overview
and an extensive, annotated bibliography on the nor-
mative aspects of the formation of an aggregate opin-
ion in the context of group interaction, consensus
belief emergence, or managerial expert use. In any of
these contexts, the word “opinion” will refer to an
arbitrary collection of numerical statements express-
ing an individual’s degrees of belief about the world.
Encompassed by this definition are such things as
prior, vague prior, posterior, structural, or fiducial
distributions, as well as odds ratios, finitely additive
probability measures, and belief functions. Prefer-
ence-based opinions are not admitted, however, as
they would be in the treatment of the group decision
problem.

Philosophical concerns partly explain the interest
in the problem of combining opinions. The frequency
theory of statistics and its attendant concept of re-
peated sampling reflect and make operational the
notion of objectivity which is enshrined in the scien-
tific method. Strictly speaking, an experiment is never
repeatable; there are only experiments which are
deemed to be governed by the same probabilities. To
rescue the ideal of objectivity, therefore, it is necessary
to call upon the law of large numbers to show how
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interexperiment variations will “average out” in the
long run. Nevertheless, there are circumstances in
which the interpretation of frequencies is stretched to
the limits of plausibility. For example, the probability
of failure of a structure like a nuclear or hydroelec-
trical power-generating facility presents greater diffi-
culty of interpretation than the probability of a head
in the toss of a newly minted coin. Moreover, the
frequency theory fails to deal adequately with increas-
ingly common practical problems in which data is
sparse, unavailable, or subject to nonsampling errors.
Retrospective studies, for example, often present se-
rious difficulties in this respect.

These difficulties have led to the vigorous develop-
ment of the Bayesian theory. Ignoring practical prob-
lems of implementation which are the object of current
research, the Bayesian program would seem to be
entirely satisfactory as a normative theory for the
individual. However, groups of individuals are left

* stranded; no concept equivalent to the classical notion
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of objectivity is available to them.

Weerahandi and Zidek (1981, 1983) propose such a
concept. Their idea is related to what Dawid (1982a)
defines and calls “intersubjectivity.” According to this
definition, the opinion or conclusion reached by an
individual from the results of an experiment would be
called “objective” or perhaps “intersubjective,” if the
same conclusion were reached by a succession of in-
dividuals faced with the same results. But just as the
classical notion of objectivity is challenged by inevi-
table variations in the results of repeated experiments,
so intersubjectivity needs to contend with variations
in the conclusions derived by the succession of indi-
viduals viewing the evidence. This calls for an ana-
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logue of the law of averages, that is, a method of
“averaging” the possibly diverging opinions of a group
of analysts and a limit theory for the long run.

Apart from the philosophical considerations out-
lined above, there are obvious practical reasons for
wanting to merge opinions. When faced with a com-
plex decision problem, a decision maker who has
sought the advice of a group of experts might want to
incorporate their opinions into his/her own. The “jury
problem” of Savage (1954) exemplifies a problem of
an entirely different sort in which a committee or
parliament needs to summarize the final, possibly
conflicting opinions of its members “at the end of the
day.” More informally, the group might simply consist
of a number of individuals separated in time or space
and whose opinions are already on record.

Of critical importance is whether the group must
agree to the resulting aggregate opinion as an expres-
sion of consensus. If so, this becomes a particular type
of joint decision problem, one which has not yet been
treated in the statistical literature. At the outset, the
large variety of situations encompassed by the aggre-
gation problem seems to rule out the existence of a
uniquely “rational” way of reaching a consensus, al-
though notable claims to the contrary have been made
by Lehrer (1975, 1976, 1983). In any case, it seems
fair to say that the consensus question is at the origin
of a large proportion ‘of the research described in this
article. We will not even attempt to survey the liter-
ature on group decision making per se despite its even
greater practical importance than (and obvious con-
nection with) the opinion pooling problem.

Before opinions can be combined, they must be
elicited and expressed in some quantitative form. As
there are fundamental difficulties with the represen-
tation and elicitation of the opinions of a single indi-
vidual, it should be anticipated that a theory describ-
ing the behavior of a group of individuals of necessity
will inherit these same difficulties. In fact, the form
in which the group’s opinions are expressed influences,
to some extent, the selection of a pooling method,
since it would be natural to express the consensus
judgment in the same form as the originals. For that
réason, our survey would be incomplete without at
least' some mention of the issues at stake when mod-
eling uncertainty. This is the object of Section 2, which
concentrates on the case of one individual and points
out the controversies which seem most relevant to the
general case. This enables us at the same time to
introduce the necessary terminology and notation.
Then, in Sections 3, 4, and 5, we describe the plethora
of methods which have been proposed for combining
opinions, using the way in which these opinions have
been expressed as a somewhat arbitrary, but conven-
ient thread for exposition. As everywhere else in the

literature, it will be assumed that all the subjects have
expressed their judgments in a common form.

In Section 3, we present a number of formulas which
may be used to summarize a set of opinions which
have been encoded as subjective probability measures,
densities, or mass functions. Each formula is derived
from rather weak and qualitative assumptions about
what properties a pooling operator should have. In
each case, different sets of assumptions are explored
and these often yield different formulas, but the sub-
jective distributions themselves are always taken as
the primitive objects of study, the aim being to deter-
mine an acceptable summary of these objects.

The domain and objectives of the methods which
are presented in Section 4 are different from those of
Section 3. Here, opinions are still represented by
subjective probability distributions, but the focus of
study is the background information which led to the
formation of those opinions. The goal is the accumu-
lation of the knowledge which is jointly held by the
individuals in the group. So whereas in Section 3 (and
in the assumptions stated therein) there is no explicit
concern for the nature of the information which led
each of the group members to their individual opinion,
this becomes a matter of fundamental importance in
Section 4. Moreover, the relative quality of the re-
spective background experiences of the individuals is
now an issue, as is the degree of interdependence of
the information these backgrounds provide. As a re-
sult, difficulties in judging and interpreting the elicited
opinions can then be addressed more adequately.

In Section 5, we survey the few solution concepts
which have been proposed in cases where the opinions
provided by a group are not expressed directly in terms
of probability. As this article is being written, this
topic is in the early stages of its development, but
future research efforts are likely to go in that direction.
For completeness, a brief survey of the literature on
the modelization of behavioral group consensus for-
mation through feedback and interaction is included

.in Section 6.

This survey complements those of Winkler (1968),
Pill (1971), Beach (1975), Hogarth (1975), Weera-
handi and Zidek (1981), and French (1985). It is based
in part on lectures given by Zidek in May of 1983 at
the University of London, on the invitation of its
Board of Studies for Statistics.

2. QUANTIFYING DEGREES OF BELIEF

Most of the solutions to the aggregation problem
require that each individual’s opinion be encoded as a
subjective probability distribution. Because of its fun-
damental importance, we will begin this section with
a review of the multiple aspects of this concept and
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an indication of the controversies which surround its
existence. If © denotes a collection of mutually exclu-
sive statements about the world, exactly one of which
is true, a probability measure P assigns a number
0 < P(E) < 1 to each possible subset E of 0, according
to the degree to which this subset is believed to contain
the fixed, but unobserved realization § € 0. Generally,
P is constructed in such a way that

21) P(Q Ei) - 3 P(E)

when the E/s are mutually disjoint subsets of 8. When
O is infinite, condition (2.1) is usually referred to as
countable additivity and may only hold on a restricted
class of subsets E; of 0. This class of subsets, hence-
forth denoted by Z, is called the o-field of events of
interest on .

If there exists a convenient reference measure p on
O (such as Lebesgue measure “dx” on the real line),
then P can be expressed as a probability density
function p with respect to u. In that case, P(E) =
[ep(8) du(9) and [op(0) du(f) = 1. Moreover, if O is
discrete, i.e., at most countable, no generality is lost
in assuming that u is the counting measure which
assigns value 1 to each singleton {#} in ©. The litera-
ture then refers to p as a probability mass function.

Whether they are expressed as probability mea-
sures, densities, or mass functions, subjective proba-
bility distributions are widely employed in both theory
and practice. Just how such a distribution can be
chosen to capture the structure of an individual’s
beliefs is another matter however. This question has
been investigated by Savage (1954), de Finetti (1970),
Fine (1973), French (1982), and Lindley (1982), to
name but a few. To them, the existence of probabilities
is the ineluctable expression of coherent beliefs, which
in turn are reducible to rational preference. Moreover,
they insist that their normative theories of preference
are weak, and that they accommodate all but self-
defeating desires. Yet, even in the relatively simple
case where © contains 5 points, Kraft, Pratt, and
Seidenberg (1959) have been able to show that com-
parability, transitivity, and additivity of a preference
relation on the subsets of ® may not be sufficient to
guarantee the existence of a strictly agreeing proba-
bility measure. Moreover, many philosophers have
argued, especially in view of the probability amalga-
mation question (e.g., Baird, 1985), that probability
distributions do not adequately summarize a person’s
or a group’s information.

Leaving existence questions aside, it is also possible
to challenge the meaning of a probability statement,
even something as simple as “P(E) = %.” It is not
clear, for instance, whether P(E) can be regarded as
a measurement, or even whether one subject’s proba-

bilities have any meaning for another person (de Fi-
netti, 1970). Admitting that they don’t, how could we
then hope to compare, let alone combine the opinions
of several people? On the other hand, assuming that
P(E) can be interpreted as a measurement, it will not
necessarily be calibrated (Dawid, 1982b; Morris, 1977,
1983; Schervish, 1983) and how best to elicit it remains
unclear, despite recent attempts by Kadane et al.
(1980) and Chaloner and Duncan (1983), among oth-
ers. Finally, common observation and experimental
studies (Winkler, 1967; Tversky and Kahneman, 1974;
Slovic, Fischoff, and Lichtenstein, 1977) tend to con-
firm that even if an individual has a good knowledge
of the relative likelihood of the various possible states
of nature, it cannot generally be expected that he/she
will also master the calculus of probabilities and en-
code his/her opinion accordingly. This problem has
recently been studied by Lindley, Tversky, and Brown
(1979) and some of their techniques have bearing on
the Bayesian approach to pooling which will be dis-
cussed in Section 4. Savage (1971) reviews some other
major difficulties encountered in the experimental
elicitation of preferences and opinion. Those include
“motivational bias” in the formulation of an individual
distribution (Benson and Nichols, 1982), as well as
difficulties in assessing the likelihood of rare events.
Some of the aforementioned controversies have
been thought to derive from the definition of a subjec-
tive probability distribution. Thus, finite additivity,
rather than countable additivity as in (2.1), has been
advocated (de Finetti, 1970), although there are indi-
cations that this may be too strong as well (Fishburn,
1983). Insofar as combining opinions is concerned,
however, the distinction between finitely and counta-
bly additive probability measures will not be impor-
tant in our paper, because all criteria considered to
this day for aggregating the latter will work just as
well with the former. On the other hand, an individ-
ual’s total probability is usually taken to be 1 on the
assumption that this may be done without loss of

- generality. But, says Fine (1973, p. 66),

... nothing necessitates this choice; it is a
mere convention. The problem with conven-
tions is that we may loose sight of their
arbitrary origin. The unit normalization and
nonnegativity conventions begin to appear as
substantive properties . ..”

Thus there is no particular reason why a number of
individuals should use the same scale for their proba-
bilities, and assuming that they do is not necessarily
unconsequential. For example, different members of a
group may well wish to have different scales when the
parameter set 0 is not exhaustive or logically complete,
or when their levels of expertise vary widely. It should
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be remembered that all probabilities are conditional
and that it may not be possible for an individual to
articulate all the elements in his/her conditioning set
even if he/she is permitted to enter into dialogue with
the rest of the group. This comparability issue, which
does not arise in conventional one-person decision
analysis, would seem to be analogous to the well
known and unresolved problem of comparing utilities
in social-welfare economics.

Other alternatives to probability distributions
might include betting odds or “ratio judgments”
(Smith, 1961; Aczél and Saaty, 1983), belief functions
(Shafer, 1976), or perhaps vague priors and posteriors
p(0) for which [¢p(#) du(8) = . A number of papers
which exploit these forms of opinions are reviewed in
Section 5. However, it should be kept in mind that
use of these concepts might lead to controversy, as
illustrated by Stone (1976) in the case of uniform
priors. In our annotated bibliography, we have indi-
cated whether an author has assumed that degrees of
belief were expressed as discrete probabilities (i.e.,
when 0 is discrete), probability measures (0 infinite),
probability density functions (with respect to some
reference measure u), cumulative distribution func-
tions, or simply as odds or log odds.

3. COMBINING SUBJECTIVE PROBABILITY
DISTRIBUTIONS

Suppose given n subjective probability measures P;,
---, P,, and suppose that a summary of the P/s is
required. There turns out to be a significant difference
in the mathematical treatment of cases where the
underlying set of events = on © contains more than
four or contains exactly four sets, i.e., 2 = {J, E, E°,
0}. In the former case, 0 is said to be tertiary (Wagner,
1982), and since this situation is more general, we will
restrict ourselves to this case in the present section.

If 2 is a o-field and if Py, ---, P, are expressed as
probability measures on Z, the linear opinion pool

"7Pn)=2wiPi

=1

(3.1) TPy, -

with non-negative weights w; such that Yiw;=1
was proposed by Stone (1961) and is attributed to
Laplace by Bacharach (1979). This formula would
seem natural because T'(P,, - - -, P,) is then a proba-
bility measure on Z. Moreover, McConway (1981) and
Wagner (1982) have shown independently that a prob-
ability measure T'(P;, ..., P,) is necessarily of the
form (3.1) if

(32) TPy, -+, P)(A) = F[P1(4), ---, P.(4)]

for some arbitrary function F:[0, 1]" — [0, 1] and every
event A of interest in 2.

Condition (3.2) above is called the strong setwise
function property (SSFP) by McConway (1981),
“strong label neutrality” by Wagner (1982), and “con-
text-free assumption” by Bordley and Wolff (1981). It
is similar to an independence of irrelevant alternatives
hypothesis commonly postulated by decision theorists
(e.g., Bacharach, 1975), but it has consequences whose
implications may be considered too strong. For in-
stance, it follows immediately from (3.2) that

3.3 Pi(A)=-.-=P,(4)=0
= T(PI’ Sty Pn)(A) = 09

because F(0, ---, 0) = T(Py, ---, P} (@) = 0 by
definition of a probability measure. This assumption,
referred to as the zero preservation property (ZPP), is
one of a general class of axioms which would require
the consensus distribution to embrace any aspect of
the subjects’ personal opinions that are already the
object of an (implicit) agreement between them.
Genest and Wagner (1984) have pointed out the du-
bious nature of such requirements in cases where the
group is reporting to an external decision maker, but
preservation axioms sometimes entail serious difficul-
ties even without reference to a third party.

Laddaga (1977), for instance, favors the independ-
ence preservation property (IPP), according to which
one should have

(3.4) T(Py, ---, P.)(A N B)

. =T(Py, ---, P)A)T(Py, ---, P,)(B)
whenever P;(A N B) = P;(A)P;(B) for some A and B
inZ,i=1, -.-, n. As he points out, however, linear

opinion pools cannot satisfy (3.4) unless they are
dictatorial, i.e., unless w; = 1 for some ¢ and 0 for all
others. This result, which was proved formally by
Lehrer and Wagner (1983), is called an “impossibility
theorem” due to the unsatisfactory nature of dictato-
rial aggregation methods. This result is in fact closely
related to an earlier finding of Dalkey (1972, 1975),

‘who observed that dictatorships alone could accom-

modate condition (3.2) when it is also required to hold
for conditional probabilities, viz.

TPy, -+, P.)(A|B)=F[P:(A|B), ---, P.(A| B)]..

The severity of the above conditionality inconsis-
tency is uncertain. McConway (1981) and Genest
(1984c¢), who both discuss its impact, argue that the
same expert weights w;, ---, w, need not be used
before and after the occurrence of B is revealed. This
leads McConway to resurrect a Bayesian revision of
the weights which had been developed in somewhat
different contexts by Madansky (1964) and Roberts
(1965). In the presence of additional data for which
there is a commonly agreed likelihood, however, Raiffa
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(1968, Section 8.11) demonstrates in a special case
how this procedure might entice the subjects to delay
disclosing their opinions until after the data is re-
ported, so as to increase the relative weight of their
respective distribution in the pool. This problem has
led Madansky (1964, 1978) to the notion of externally
Bayesian groups which we will discuss shortly.
Basing their analysis on Bayesian considerations,
Bordley and Wolff (1981) have attempted to explain
the ill effects of independence preservation by sug-
gesting that condition (3.2) be enlarged to allow the
function F to depend on the identity of the set A, viz.

T(Ph Y Pn)(A) = FA[PI(A), M Pn(A)L
AEZ.

McConway (1981), who calls (3.5) the weak setwise
function property (WSFP), shows that it is equivalent
to a marginalization property (MP) according to which
the pooling procedure should commute with the proc-
ess of reducing the size of the o-field Z to a sub-o-
field, say =Z* C Z. His mathematical formulation of
MP, which involves a potentially infinite family of
pooling procedures, can be stated somewhat more
simply in terms of only one combination method by
requiring that

T(Pl, ¢

(3.5)

i) Pn)(A)

(3.6)
=T(P112%, ---, [Pn] Z*D(A)

for all events A € Z* whenever [P;| Z*] is a Cara- A

théodory extension of P;| Z* to Z.

Surprisingly, perhaps, pooling formulas which obey
(3.6) can be characterized completely, and their form
does not depart greatly from (3.1). In fact, Aczél, Ng,
and Wagner (1984), and Genest (1984c) in greater
generality, have proven that if T has the MP, there
must exist a probability measure P, and weights
wy, - - -, W, € [—1, 1] such that

(3-7) T(Pl’ ""Pn) = 2 wiPi7
=0

where the weights add up to one and must satisfy
,other consistency conditions to insure that (3.7) is a
probability measure. An operator of this form may be
called a generalized linear opinion pool, since putting
wo = 0 in (3.7) reduces it to (3.1). In fact, the only
operators of the form (3.7) which satisfy the ZPP are
also regular linear opinion pools, as remarked by
McConway (1981). The possibility of negative weights
is interesting, however, since generalized linear pools
could vary inversely with the P;s or could even ignore
all the P;’s! Unfortunately, Genest (1984c) has estab-
lished that only dictatorships and a very restricted
class of imposed consensus functions will verify both
the MP and the IPP. In cases where 2 and 0 are
countable and @ contains at least five points, Genest

and Wagner (1984) have recently derived an even
stronger result to the effect that no pooling operator
of the form

FO[PI(a)’ tt 0y Pn(a)]
2 Fn[Pl(n)’ ] Pn(n)]

n€E

o Fo[Pl(a), ] Pn(a)]

T(PI, ¢
(3.8)

) P,)@) =

except dictatorships can have the IPP. In an attempt
to find independence-preserving formulas, Wagner
(1984) has weakened the IPP by requiring that the
probabilities P;(A) and P;(B) in line (3.4) lie strictly
between 0 and 1, but that too has been unsuccessful.
Thus the problem of finding reasonable pooling meth-
ods which have that property remains open. Further-
more, no definite indications can be given concerning
the choice or interpretation of the weights or the
arbitrary measure Py in (3.7), despite meritorious con-
sideration of the question of weight assessment by
Roberts (1965), Winkler (1968), and Raiffa (1968).

Returning to condition (3.5) for a moment, the
dependence of F upon the identity of the event A in =
might conduce the mistaken belief that the marginal-
ization property admits the possibility of pooling op-
erators with variable “expert weights.” Bordley and
Wolff (1981), for instance, argue that a pooling oper-
ator of the form

(39) T(Py, ---, P)A) = 3 wi(A)Pi(A), A €
(=1

=

could be constructed with variable weights w;(A) de-
pending on the event A. Since (3.9) has the WSFP,
however, it must be of the form (3.7) and hence
wi{A)=w;,1=1, ---, n. French (1985) views this lack
of flexibility of the generalized linear opinion pool as
a flaw, arguing intuitively that subjects trained in
different fields of expertise may be “more expert” at
forecasting events belonging to certain sub-os-fields of
2 than others. In fact, McConway (1981) states that
the MP might appear counter-intuitive in situations
where 0 is a product parameter space and the measures
Py, ..., P, are product measures on this space. For
this reason, operators of the form (3.8) might be
considered a reasonable alternative to (3.5) or (3.6). It
might be, for instance, that this class of aggregation
methods admits formulas with #-variable weights.
Alas, we are not aware of any axiomatic justification
leading to (3.8), and it is not clear how one could even
define this class in cases where @ is uncountable and
the opinions must be expressed as probability mea-
sures on 2.

When a mutually agreeable reference measure p
exists on O, people’s opinions are sometimes expressed
as probability density functions with respect to u
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rather than by probability measures. The linear opin-
ion pool (3.7) has an obvious counterpart in terms of
densities, viz.

(3.10)

n

© Pu) = X wip;,

=0

T(py, --

where p; can be described technically as the Radon-
Nikodym derivative of P; with respect to u, 1 =i =<n,
and p, is an arbitrary density. The required axiomatic
support for the use of (3.10) is given in Genest (1983)
in the case where wy = 0, but the more general case
remains to be treated. Another obvious difficulty as-
soclated with the density version of the linear opinion
pool is that it is typically multimodal, so that no clear-
cut choice for a jointly preferred action emerges in
decision making situations. In addition, formulas (3.7)
and (3.10) depend critically on the assumption that
every individual has expressed his/her opinion using
the same 0-1 probability scale. So, for example, vague
priors cannot be accommodated. Finally, a number of
experimental studies (e.g., Staél von Holstein, 1970;
Winkler, 1971) have pointed to the fact that linear
pools are relatively insensitive to the choice of expert
weights, although that could be considered either ad-
vantageous or disadvantageous.

Many of the above difficulties associated with the
use of (3.7) or (3.10) are overcome by the logarithmic
* opinion pool which Bacharach (1972) attributes to
Peter Hammond. This method of pooling applies to
densities, say pi, - - -, pn» and gives

(3.11) T(py, ---,pa) =11 p?"’/f I1 pi* du,
=1 i=1

where w,, -- -, w, are weights such that the integral
in the denominator of (3.11) is finite. In this section,
we will confine our discussion to the case where
Y%, w; = 1. As we will see in the following section,
however, formulas analogous to (3.11) but with unre-
stricted weights can be derived within the Bayesian
framework. As pointed out by Winkler (1968), the
logarithmic opinion pool also has a natural-conjugate
interpretation. Unlike the linear opinion pool, it is
typically unimodal and less dispersed. Thus it is more
likely to indicate consensual values when decisions
must be made, and in that respect, it may be consid-
ered more than a simple representation of the diverse
opinions of the members of the group. Moreover,
(3.11) is invariant under rescaling of individual de-
grees of belief. Thus, if T(p,, -- -, p,) were input into
a formal decision analysis, it would preserve an im-
portant credo of uniBayesian decision theory accord-
ing to which the optimal decision should not depend
upon the choice of scale for the utility function or
prior probability distribution (Weerahandi and Zidek,
1981; 1983). In addition, it should be noted that when
the parameter space O is finite and a 0-1 utility

function is adopted in the formal analysis to which we
just referred, equation (3.11) is equivalent to the Nash
(1950) product. '

In our opinion, the most compelling reason for using
a logarithmic opinion pool is that it is externally
Bayesian, prior to posterior coherent, or that it has
the data independence property, in the terminologies
of Madansky (1964, 1978), Weerahandi and Zidek
(1978), and McConway (1978), respectively. This
means that finding the consensus distribution com-
mutes with the process of revising distributions using
a commonly agreed likelihood. Thus, to be externally
Bayesian T'(p,, - - -, p,) must satisfy

T[ Ip, o P ]
flpl d/.L, ’ f lpn dﬂ

_ lT(pl, ..
[IT(py, --

where [:0 — (0, ®) is an arbitrary likelihood function
and the equality in (3.12) may be required to hold only
p almost everywhere on 0. The plausibility of this
axiom derives from the latent objective behind pooling
priors: if T(pi1, ---, p,) does in fact represent the
beliefs of all the members of the group, the order in
which the pooling and the updating are done should
be immaterial. To this extent, the behavior of the
group could be perceived as that of a single Bayesian.
On the other hand, external Bayesianity would make
much less sense if the responsibility of the pooling is
that of an external decision maker, since the arrival
of new data might change his/her evaluation of
the relative expertise of the subjects who were con-
sulted. Other elements will be added to this debate in
Section 4.

Genest (1984b) has shown that (3.11) is the only
externally Bayesian formula which satisfies

(3'13) T(pl; ct Ty pn)(o) o« F[pl(o)’ ct pn(a)]’

where, as in (3.8), the symbol « is interpreted to mean

(3.12)
"3 pn)

7pn) dﬂ’

- “proportional up to a constant independent of 6.”

In particular, it follows that (3.10) is not externally
Bayesian unless it reduces to a dictatorship (Genest,
1984a). Genest (1984b) interprets condition (3.13) as
a version of the “likelihood principle” for pooling
operators, arguing, much in the same spirit as Ber-
nardo (1979), that outcomes not observed should play
no role in the determination of the consensus at a
particular point 6. However, a better case for looking
at formulas of this form derives from the complexity
of the most general solution, which was recently ob-
tained by Genest, McConway, and Schervish (1986).
Here, the class of all externally Bayesian aggregation
methods is characterized without any regularity con-
ditions on the space 0, but the general solution is seen
to require the specification of a consensual density for
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an infinite number of opinion vectors, each of which
must be selected by the axiom of choice! The work of
Genest, McConway, and Schervish (1986) brings
about an interesting extension of (3.11), however,
when condition (3.13) is relaxed to allow the function
F to change with 6. The result is a generalized loga-
rithmic opinion pool,

(3.14) T(py, -+, pn) =& gﬁu,-/fg gﬁu,. ds,

where g is some essentially bounded function on ©.
This formula may be viewed as the logarithmic ana-
logue of (3.7) in which g plays the role of Py, although
Genest, McConway, and Schervish (1986) caution
their readers against this interpretation and suggest
regarding g as a likelihood instead. In (3.7), (3.11), and
(3.14), it should be pointed out that the weights are
demonstrably non-negative unless the underlying
o-field on O is essentially finite.

Despite its advantages, the logarithmic opinion pool
suffers from the same problem as its linear counter-
part in that it clearly lacks a normative basis for
choosing the pooling weights, except perhaps when
the resulting formula could also be derived using the
Bayesian techniques which are discussed in the follow-
ing section. Whatever scheme is elected for assigning
the weights in (3.11) or (3.14), however, zeros will
constitute vetos and unduly great emphasis will tend
to be placed on the opinions of single individuals. For
an analogy, think of the familiar situation faced in a
uniBayesian analysis where the supports of the like-
lihood and prior functions are disjoint.

4. THE SUPRA BAYESIAN APPROACH

If an individual’s probability distribution is the
expression of that person’s subjective beliefs, it is
nevertheless based on whatever “objective” prior ex-
perience the individual has had with the problem at
hand. Indeed, experts who have been trained in the
same specialty will typically share a fair amount of
information. Their current opinions may differ be-
cause they do not share all the same evidence or
perhaps because they do not interpret common data
in the same way. However, none of the pooling for-
mulas which we have presented above takes explicit
account of this important feature of the subjects’
judgments. “Expert” weights do allow for some dis-
crimination on that basis, but only in vague, somewhat
ill defined ways.

The absence of a group leader or perhaps an external
decision maker may be one practical reason for avoid-
ing the issue of opinion dependence. One might argue,
justly we think, that a group of individuals who have
conflicting beliefs are unlikely to reach an agreement
on the amount of overlap existing between their opin-

ions. In some cases, however, there does exist a deci-
sion maker to whom the panel is reporting. In other
circumstances, such as a “jury problem” for instance,
there may also be enough affinity in the group to
justify the assumption of a fictitious decision maker
representing the “synthetic personality” of the group
(Hogarth, 1975, p. 282). Keeney and Raiffa (1976) call
this fictitious being the “supra Bayesian.” It is thus
the seemingly impossible task of this supra Bayesian
decision maker to evaluate the individuals, their prior
information sets, the interdependence of these infor-
mation sets, the experts’ “calibration” or honesty, etc.

It was recognized very early (Winkler, 1968; Morris,
1974, 1977) that if such an altruistic supra Bayesian
exists, the pooling process itself is not a problem.
Indeed, once this decision maker has determined his/
her prior p and the appropriate likelihood I(py, - - -,
P.| 0) for the experts’ opinions, he/she can then treat
the stated opinions of the group as data and update
his/her prior via Bayes’ theorem:

T(pl; ) pn)(e)

=p@|p1, -5 Pn) « POy, -+, Pnl0).

Here, the pooling operator is simply Bayes’ rule and
the decision maker’s posterior distribution is the “con-
sensus.” The problem, of course, is that if the supra
Bayesian is only virtual, the delicate choice of an
appropriate likelihood would fall on the group. Worse,
the choice of the decision maker’s prior distribution
itself would have to be the object of a consensus! Note
also that the obvious solution which consists of using
an “uninformative prior” is not entirely satisfactory
nor free from controversies (Seidenfeld, 1979).

Lindley (1985) admits the need for a pooling method
in situations of the type described in the last para-
graph. He argues that there is no “normative theory”
available for group decision making as there is for
single decision makers. So he concludes that the in-
troduction of the supra Bayesian

“...1is not merely an artifice but essential, at
least at the present stage of development.
Any other approach has an element of ad-
hockery about it because it does not derive
from the inherent logic of the Bayesian
paradigm.”

This judgment seems unduly severe. Whatever the
merits of the “Bayesian paradigm,” groups would not
appoint a supra Bayesian merely to achieve a “nor-
mative method,” in Lindley’s terminology. Rather, a
truly normative theory would prescribe how a group
ought to behave if its members agree upon certain
basic, qualitative conditions which we may call “ax-
ioms.” The methods proposed in Section 3 are based
on such axioms, and just because they do not flow
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from the “inherent logic of the Bayesian paradigm”
does not make them non-normative. They too are
logical consequences albeit of different axioms than
those which yield Bayesianity in the case of a single
decision maker. Acceptance of the axioms compels the
use of the derived formula, and we suspect that the
axioms discussed ih Section 3 might be less contro-
versial than the appointment by the group of a supra
Bayesian.

The supra Bayesian approach is nevertheless valu-
able because it provides a way of understanding the
axioms on which aggregating formulas like the linear
opinion pool rest. However qualitative these axioms
may seem, they embrace ideas which are difficult to
grasp. The marginalization property and external
Bayesianity, for instance, both have appealing glosses,
but they do lead to two markedly different pooling
recipes. On the other hand, the seemingly innocuous
condition that a pooling formula preserve indepen-
dence (condition (3.4)) implies dictatorships. Thus, it
appears that these conditions have a sharp and un-
expected bite, even if choosing among them seems
difficult. This is why, in our opinion, a supra Bayesian
analysis of these properties is worthwhile and insight-
ful.

The technical foundations for a Bayesian analysis
of the problem of aggregating opinions are laid down
by Morris (1974, 1977) and built upon by French
(1980, 1981), Winkler (1981), Lindley (1983, 1985),
Agnew (1985), and Clemen and Winkler (1985). The
practical problem addressed by these authors is that
of formulating a consensus model which is mathemat-
ically tractable while accounting for expert depend-
ence and maintaining a reasonably broad domain of
applicability.

The case of a finite ® = {8,, - - -, 6,,} is analyzed by
Lindley (1985), who assumes a joint multivariate nor-
mal distribution for the quantities g;; = log|p:(6;)],
1 =<i=n;1=j= m. He achieves additional simplicity
with assumptions about expectations and conditional
expectations. His results subsume those of French
(1980, 1981) for the case m = 2, in which the difference
between the decision maker’s prior and posterior log
* odds is seen to be a linear function of § = (g1, — qus,
v+, @m1 — (Qn2), the vector of the experts’ log odds.
Explicitly, if E[Q | 6;] = u; and if = denotes the covar-
iance matrix of @ given #;, i = 1, 2, then

log[T(ply tt s pn)(al)/T(pl, ] pn)(02)]
(4.1} = log [p(6:1)/p(62)]
+ [p1 — w]E7Q — (u1 + p2)/2].

Taking antilogarithms on both sides of (4.1) gives
(essentially) the logarithmic opinion pool (3.11)
equipped with weights proportional to the independ-
ent “information content” of each assessment (Freel-

ing, 1981). French’s formula, which was inspired by
earlier work of Lindley, Tversky, and Brown (1979),
is thus a special case of (5.6). It can be seen readily
that (4.1) does not have the MP and is not externally
Bayesian except in cases which Lindley (1985) iden-
tifies. This leads him to reject both external Bayesian-
ity and the marginalization property as “essentially
adhockeries.” On this point, French (1985) remarks
that this model obeys a variation of the externally
Bayesian criterion in which the known value of the
log likelihood of the data is “filtered out of the experts’
posterior beliefs.”

Winkler (1981) and Lindley (1983) tackle the more
complicated case where O is infinite, a continuum
possibly. Both authors suppose that the experts’ opin-
ions can be represented by a vector of numbers, such
as the mean and standard deviation of the individuals’
prior distributions, and their results overlap. To rep-
resent the decision maker’s likelihood, Lindley (1983)
uses a multivariate normal distribution which, condi-
tional upon the true value of 8 and knowledge of the
experts’ stated standard deviations o;, has mean
a; + 3,0 and variance v?¢%,i=1, - -+, n. The param-
eters o;, 8; and v; introduced here allow for bias or
miscalibration of the group’s opinions, and Lindley
discusses how uncertainty about their value could be
incorporated by specifying a hierarchical prior. When
data is available on the experts’ past performance,
however, estimation of these parameters could proceed
along lines similar to those proposed by Morris (1977)
for the assessment of his calibration functions, al-
though Clemen (1986) argues that Morris’ “joint cal-
ibration” adjustment is equivalent to assessing a com-
plicated likelihood for the experts’ opinions in all cases
but those in which the decision maker has no prior
information.

Assuming the above model and the use of an im-
proper diffuse prior, Lindley (1983) shows that the
decision maker’s subjective posterior is a normal dis-
tribution whose mean p* is a weighted sum of the
experts’ means, viz.

(4.2) p* =) wip,

itas

13

where w; = Y}y E9/0 Sy &9, E7 = (£Y) and, as
before, the off-diagonal entries of the covariance ma-
trix Z must be specified by the decision maker. Wink-
ler (1981), who also derives this result from slightly
different premises, observes that (4.2) is not necessar-
ily a convex combination of the experts’ means, since
the weights can sometimes be negative. In this con-
text, Clemen and Winkler (1985) analyze the impact
of dependence on the precision and value of the infor-
mation supplied by the experts. They show that de-
pendent sources of information are generally equiva-
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lent to a much smaller number of independent sources,
and that the decision maker’s posterior distribution
can be quite sensitive (as measured by its variance,
say) to the degree of dependence among the experts.
Of late, Agnew (1985) has also considered an extension
of Winkler’s work tq situations in which the experts
provide assessments about more than one random
variable.

It should be emphasized that the Winkler-Lindley
model requires as inputs the covariances between sub-
jects. If these parameters are not known, they suggest
the use of an inverted Wishart distribution, except
perhaps in cases where the experts are deemed to be
independent given 6. This assumption leads to a ¢
distribution for the consensus (or a product of t dis-
tributions in the independence case). Lindley (1983)
contrasts the use of normal versus ¢ distributions and
finds the latter “more in accord with intuition,” al-
though he sees problems with the use of inverted
Wishart densities. The subjective assessment of cor-
relation coefficients is studied by Gokhale and Press
(1982) and their role in probability reconciliation is
further discussed by Freeling (1981).

Genest and Schervish (1985) attempt to derive
Bayesian pooling operators, which do not require the
elicitation of a complete likelihood function for the
experts’ judgments. Their analysis, which is carried
out in the case of a single uncertain event E, starts
from the assumption that the decision maker has a
prior probability p for E, and that he/she is willing or
capable of specifying some moments of his/her mar-
ginal distribution F for (p:, ---, p»), the vector of
experts’ probabilities for the occurrence of E. Genest
and Schervish then look for those pooling formulas
T(p,, - - -, P») which yield a posterior probability that
is guaranteed to be consistent with the unelicited F,
in the sense that a joint distribution for E and
(p1, - -+, P») Which is compatible with F can always
be found such that T(pi, ---, p.) is the posterior
probability of E given p and the experts’ opinions.

When only the first moment (p1, -+, ua) of F is
specified by the supra Bayesian, the only procedures
which survive this test are of the form

43) T(py, ---,p) =p+ ;1 wi(pi — i)

with possibly negative weights w; representing the
coefficients of (multiple) linear regression between 1g,
the indicator random variable of the event E, and the
p’s. When p; = -+« = p, =p, itis worthwhile to note
that equations (4.3) and (3.7) agree, although the
choice of weights in (4.3) obeys different restrictions.
The linear opinion pool, therefore, does correspond to
an application of Bayes’ theorem in certain circum-
stances delineated by Genest and Schervish (1985).

In the same paper, Genest and Schervish apply their
approach to the situation in which a decision maker
is also willing to assume that the subjects are condi-
tionally independent given E (and given E°). Interest-
ingly, the result is a kind of logarithmic pool with
possibly negative weights, viz.

(4.4) T(p1, ---, pn) = A/( A + B),

where

A=p ™ [l [p + wip:i — w)]

i=1

and
B=(1-p'™ I_Il [1—p— wilp; — wl.

When all the u/’s equal p, (4.4) becomes a special case
of (4.1), the formula derived by French (1980, 1981)
using normality and justified axiomatically by Bordley
(1982) via the theory of conjoint measurement.
Clearly, formula (4.4) is not externally Bayesian. In
fact, when p; > u; for each 1 < i < n and the weights
are positive, it exhibits the same “group polarization”
phenomenon described and analyzed by Bordley
(1982, 1983a). Bordley’s contribution will be discussed
in greater detail in the following section.

Because the approach of Genest and Schervish
(1985) provides a Bayesian answer while requiring a
minimum of a priori assessments, it would seem well
suited for helping groups to arrive at a consensus. It
is certainly easier to conceive of circumstances when
a panel of experts would agree on the first few mo-
ments rather than on an entire predictive distribution
modeling the dependence of their information sets.
The group might then combine its opinions using (4.3)
or (4.4), say, and the resulting consensus could be
perceived by all of them as being coherent because of
its Bayesian origin. Nevertheless, the problem of se-

. lecting the supra Bayesian’s prior would remain, and

the approach is still limited to those cases where the
only source of uncertainty is a single event. Extensions
of this model would be of considerable interest.

5. OTHER POOLING RECIPES

So far, our discussion has focused primarily on
pooling operators acting on a set of probability mea-
sures or probability density functions. In this section,
we will examine situations where the subjects in the
group have expressed their beliefs in the form of odds,
log odds, cumulative distribution functions, or perhaps
improper probability density functions. Since proba-
bility measures can be encoded as a sequence of odds
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or log odds when the space 0 is countable, there is a
certain amount of arbitrariness in the choice of papers
which are reviewed here.

Ratcliff (1979) and Thomas and Ross (1980) con-
sider procedures for combining a number of continu-
ous distribution functions F,, ---, F, on IR. Their
basic method, called Vincentization, consists of aver-
aging the « per cent quantiles of the experts’ distri-
butions in order to construct the « per cent quantile
of the consensus, 0 < « < 1. Thus if ¢; is the a per
cent quantile of F;, i.e.,, Fi(¢;) = a, the consensual
distribution F would be defined by setting F~'(a) =
Yo, wiq;. As demonstrated by Thomas and Ross
(1980), the main advantage of this approach is that
Vincentization is closed under location scale families,
i.e., when the F;’s are of the form F(t) = ®[(t — \)/v],
where ) is a centering parameter and v represents the
scale. Thus, if the subjects’ distributions were normal,
Cauchy, exponential, or logistic, the same would be
true of the Vincent consensus. In fact, the parameters
of the group distribution would then be arithmetic
averages of its members’ \/s and v;’s, much as in

Winkler’s (1981) formula (4.2). More generally,

Thomas and Ross give conditions under which the
two parameters of the experts’ distributions could be
combined using other kinds of averages, e.g., geometric
or harmonic means. A clear disadvantage of this entire
approach, however, is that its use is currently re-
stricted to continuous distribution functions and real
valued parameter spaces ©. Moreover, it is not obvious
how the method could be adapted to handle more
general spaces.

In cases where the number of alternatives in O is
finite, Smith (1961) has suggested that an obvious
measure of belief could be obtained by testing at what
odds a subject is prepared to bet between two compet-
ing alternatives. This has led Aczél and Saaty (1983)
to use odds ratios py, - - -, pr. > 0 as the starting point
of their analysis. They assume, quite generally, that
the influence of each individual opinion on the con-
sensual odds ratio T(p., - - -, p») can be separated in
such a way that

(65.1) T(py, -~ Pa) = f(P1) & -+ O f(pn),

where f is a real valued function and < is some
unspecified operation on IR, which is both continuous
and associative. In particular, ¢ could be ordinary
addition or multiplication. Aczél and Saaty then look
for those pooling formulas of the form (5.1) which
preserve unanimity, ie., T(p, ---, p) = p for all
p > 0, and obey the reciprocal property

%y pn)r’

(6.2) T(pi, ---, pn) = T(ps, --

where r = —1. The result is a class of quasilogarithmic

pools

(53) T(pl’ .. .,pn) = exP[‘p_l{i lﬁﬂog[p,])}:'

i=1 n

where y is an arbitrary continuous, strictly monotonic
odd function. By imposing a certain homogeneity re-
quirement, viz.

(5'4) T(kpla ] kpn) = kT(p19 . ')pn)’ k > O’

Aczél and Saaty (1983) then succeed in reducing (5.3)
to a non-normalized geometric average of the p/’s. In
these formulas, each expert is assigned an equal weight
of 1/n, because (5.1) does not permit treating the
subjects’ opinions asymmetrically. Aczél (1984) has
attended to this issue by allowing the function f in
(5.1) to be different for each group member, and the
expected generalization of (5.3) ensues with unequal
weights adding up to one. In the same vein, Aczél and
Alsina (1984) have obtained extended forms of (5.3),
notably by assuming that (5.2) holds for two arbitrary
values r;, and r, such that log( | r,|)/log( | rs|) is irra-
tional. As far as we can see, the latter requirement is
nothing more than a convenient regularity condition.
Thus, until a justification is offered, the work of Aczél
and Alsina (1984) should be regarded as a purely
mathematical exercise.

The analysis of Bordley (1982), founded on the
theory of additive conjoint measurement, shares some
common features with those papers described just
above. Here too the discussion focuses on the amal-
gamation of personal odds, and it is also assumed that
the subjects’ odds estimates for an event E versus its
complement can be “separated,” in the sense that if a
number of individuals give the same probability as-
sessments in two different situations, their opinions
can be ignored insofar as determining which one of
the two situations the group (or the decision maker)
prefers. Under certain regularity conditions, this leads
to the formula

A (5.5) T(pla ° "pn) = \0[:%1 gi(Pi)],

in which ¢ is once again continuous and monotonic
while the g;’s are undetermined continuous functions.
Requiring that (5.5) obey the law of odds (and thus
(5.2) with r = —1) and an axiom called the weak
likelihood ratio axiom which amounts to (5.4), Bordley
then demonstrates that the consensual odds must be
proportional to a weighted geometric average of the
experts’ odds p;, viz.

(5.6) T(p1, -+ ) « Il P¥"
=0

where, once again, the weights are subject only to the
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constraint Y% w; = 1. Here, pp might also be inter-
preted as the decision maker’s prior odds, because this
is exactly the formula derived by French (1980, 1981)
when (4.1) is expressed in terms of probabilities. As
pointed out by French (1985), however, the p, in (5.6)
is not elicited from the decision maker before the
subjects are consulted; rather, it is a by-product of
Bordley’s procedure which is determined only after
collecting the advice of the group. Thus, Bordley’s
formula is not quite Bayesian in spirit, but it might
be better adapted to situations discussed before where
the decision maker is only virtual. Worthy of further
consideration here would be the elucidation of the
hidden relationships which must exist between the
axiomatic approaches leading to (5.3) and (5.5), as
well as the connection there is between (5.4) and
external Bayesianity.

In 1959, Eisenberg and Gale presented an ingenious
scheme for combining discrete probability distribu-
tions which also involves betting, but in a different
way. In their model, each individual is endowed with
a fixed budget, which he/she is then required to bet
on the various elements of ® in such a way as to
maximize his/her subjective expectation. The consen-
sus probabilities on © are then determined by the same
principles which produce track odds or “track proba-
bilities” for pari-mutuel in horse race betting. Norvig
(1967) has even developed a dynamic mechanism for
reaching this consensus. As noted by Eisenberg and
Gale (1959), however, their pari-mutuel method may
sometimes enable a member of the group to dictate
the consensus odds. For this reason, this approach has
never enjoyed much popularity.

Following an idea of Shafer (1976), Walley (1981,
1982) elaborates a personalistic theory of lower and
upper probabilities by which degrees of belief may be
bracketed (see also Walley and Fine, 1982). In his
treatment, which includes a solution to the problem
of aggregating opinions, the lower probability, P/(E) of
E is defined to be the supremum of prices an individual
would be willing to pay to receive a lottery ticket
bearing the indicator function of E. The corresponding
. upper probability is defined by P,(E) = 1 — P,(E°).
These “probabilities” need not be additive and
P(E) = P,(E) need not hold either. The focus of
Walley’s theory is the “opinion” M (P,), the set of all
finitely additive probability measures « such that
P/(E) < w(E) for all events E. His aggregated opin-
ions, M, depend on which of 15 criteria are deemed to
apply and include, for example, M = N, M; where
M; is the opinion of subject i, 1 < i < n. In the special
case where the M/’s and M are all singletons, the linear
opinion pool obtains under a version of the unanimity
preservation criterion.

Walley argues that the conventional decision para-
digm requires an unduly precise specification of indi-

vidual opinion, inasmuch as a single additive proba-
bility function must be specified. In contrast, theories
like his admit a whole range of such probability func-
tions, e.g., all measures P such that P,(E) < P(E) <
P,(E) for events E. This benefit is conferred on the
group, the diversity of opinions being represented in
M. However, the jury remains out on the theory of
Walley (1981, 1982). Similar theories like that of
Smith (1961) have not enjoyed much success, so the
value of Walley’s method of combining opinions is in
some doubt. In particular, it is unclear how the class
M could be used “at the end of the day.” A standard
error is given without a point estimate, as it were.

West (1984) studies the aggregation problem in the
context of a simple decision making situation involv-
ing an event, E, assessed individual probabilities
Pi, -+, pn for E, and utilities U,, ---, U,. The
ith individual faces a gamble X; which pays him/her
A,i=1,...,n,or 0 according as E occurs or not.
Subject i’s certainty equivalent is thus S;: U;(S;) =
p;U;(A;) if U;(0) is taken to be 0 without loss of
generality. Hence, the group is indifferent between X
and S, the vector of X;’s and S/’s, respectively.

Assuming the existence of a jointly accepted group
utility function U for which 0 < U(S) = UX) <
U(A), West (1984) shows that there exists a number
0 < p < 1 such that pU(A) = U(S). If it is also
assumed that U can be expressed as a function of the
Uy's, it follows that p = [[%, p¥ and that U must be
proportional to J]%; U¥. West calls p the group belief
and emphasizes that ¢ = [][ %, (1 — p;)™ is the group
belief in E¢, so that p + ¢ < 1.

West does not take his analysis to support the
logarithmic opinion pool. He views it as an argument
that group belief cannot be probability. However, let
us emphasize that West’s analysis is based on the
restrictive assumption that the group utility U is
expressed as a function of the subjects’ U;’s. Further-
more, West’s model calls implicitly for each individu-
al’s reward to be determined according to their own
utility function, rather than according to the group’s
agreed utility. We suspect, therefore, that these as-
sumptions are the source of West’s conclusions, and
we would argue that his result should be recast as an
impossibility theorem. Despite the potential limita-
tion of his model, however, West’s analysis illustrates
very clearly a point which is becoming increasingly
better understood in group decision theory, namely
that a group of Bayesians cannot always be fully
Bayesian even when its members would want it to be.

In some respects, the work of Genest, Weerahandi,
and Zidek (1984) goes even further than West’s. Here,
the space © is allowed to be an arbitrary carrier set
such as the space of available decision rules, subject
possibly to some feasibility requirement. Alterna-
tively, ® might index a set of sampling densities. As a
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means of quantifying the relative degree of support
for various elements of 0, these authors then define
what they call P functions as everywhere positive
functions b:0 — (0, ) on 0. For example, b(#) could
be the observed significance level when 6 is the null
hypothesis that the true state of nature is 8. If ©
is a set of decision rules, then b(8) could represent
u(d) — uy, the expected gain in utility when the
decision rule 6 is used and § is required to be Nash-
feasible (Nash, 1950) so as to make b(48) strictly posi-
tive. In other applications, b could be a likelihood
function, the density of a diffuse prior, the density of
a proper (discrete or continuous) prior, or posterior
distribution.

Given n P functions, say by, - - -, b,, Genest, Weer-
ahandi, and Zidek (1984) define the relative propen-
sity profile of a point # versus another point » in 0 to

be
RP(bI, . "bn;a’ 7]) = [bl(a)/bl(n)’ . abn(a)/bn(n)]

They then look for P function pooling operators which
are relative propensity consistent (RPC), i.e., such that

T(by, -, b.)(0)/T(by, - -+, bp)(n)
2 T, -+, a)0%)/T(cr, -+, €a)(0™)
whenever
RP(b,, ---, bn; 0, 1) = RP(cy, -, Cn; 0%, 1™).

This axiom introduces a kind of scale invariance which
is akin to, but stronger than the homogeneity property
(5.4) postulated by Aczél and Saaty (1983). If the
number of points in the carrier set 0 is at least three,
so that © is a tertiary space, it then follows that T
must be of the form

(57) T(bla Tty bn)(a) = C(bl’ ] bn)g(a) I—Il bi'”'9

where the w/’s are non-negative constants and g is an
unspecified P function. Like (3.14), this is a logarith-
mic opinion pool with non-negative weights, but the
very large domain on which it is defined and the
intuitive appeal of the RPC requirément make it pos-
sible to apply this result to a variety of unusual types
of opinions. Special cases of (5.7) yield, for example,
Fisher’s celebrated formula for combining significance
levels, the product of Nash (1950) for determining an
equilibrium in multiperson bargaining problems, as
well as the usual rule for combining independent like-
lihoods. Here again, however, the theory does not
prescribe what may meaningfully be pooled. It does
not rule out, for instance, the possibility of amalga-
mating “completely dependent” likelihoods (e.g., pro-
duced by French’s 1980 “ultimate yes-man”), even
though other considerations suggest that this is un-

wise. In this sense, therefore, the whole theory remains
“user-dependent.”

6. GROUP INTERACTION MODELS

In the previous three sections, we reviewed a num-
ber of normative methods for amalgamating opinions
which could be used either when the decision maker
is a third person who is consulting a group of experts
(Bayesian methods, Section 4) or when the third per-
son is simply the “synthetic personality of the group”
(Sections 3 and 5). In both cases, it was implicitly
assumed that the group was in a state of “dialectical
equilibrium,” i.e., a state in which no subsequent dis-
cussion among the group members would produce any
further change in their opinions. Thus, a pooling
formula was used to combine the individual judg-
ments, so that the resulting opinion could be entered
into a conventional uniBayesian analysis by the deci-
sion maker or what Hogarth (1975) calls the “syn-
thetic personality of the group.” It should be empha-
sized, however, that this synthetic opinion need not
be the object of a consensus among the members of
the group. In this section, we will briefly survey a
number of models in which individuals are allowed to
interact with or without feedback, and through dia-
logue, attempt to reach a consensus.

Dialogue with unrestricted feedback or “group reas-
sessment” (Winkler, 1968) is natural and easy if the
individuals are able to communicate with each other.
(Recall that this will not necessarily be the case,
however; the opinions might have been recorded at
different times and places.) Its chief merit, the free
exchange of information, may result in a reduction in
the range of views. Furthermore, the group may well
be synergetic and generate, through its dialogue, rel-
evant new insights that could change their opinions
in a dramatic way. But on the negative side, this same
interaction may induce conformity, i.e., a degree of
agreement beyond that which would be commensurate
with the amount of information that is exchanged.

" Moreover, unrestricted dialogue permits strategic ma-

nipulation, bluffing, intimidating tactics, and threats
to be employed. Thus, to be effective, the interacting
group needs a strong director. A Bayesian model de-
scribing “group polarization” effects in expert dia-
logues has recently been discussed by Bordley (1983a).

The Delphi technique and its variants (Pill, 1971,
and references therein) exemplify methods of dialogue
with feedback restrictions. In this setup, open discus-
sion is not permitted. The feedback, which may or
may not be anonymous, consists in summary statistics
such as group means or quantiles when, for example,
the task is that of point estimation. Each individual
then reassesses his/her distribution and the process is
repeated until, hopefully, the different opinions con-
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verge toward a common, consensual distribution. This
approach can be inexpensive since the individuals
need not communicate directly and social pressure is
reduced. As pointed out by Winkler (1968), however,
it is difficult to limit the feedback to a few summary
statistics unless the opinions are known to belong to
a specific family of distributions. For this reason, it
would seem advisable to use the individual distribu-
tions themselves as the feedback.

Attempts have been made to formalize group shar-
ing of distributions using iterative schemes. In one
particular model, which was proposed independently
by DeGroot (1974) and Lehrer (1976), it is assumed
that after k iterations, the ith individual’s distribution
Py equals Y2y wqjPiie-1), where the wg; = 0 are
fixed weights such that Y%, wg; = 1. In matrix
notation, we have P, = WP,_, = W*P, forallk =1, a
model in which feedback is not anonymous. If the ith
row of W* converges to (my, ---, m,) as k tends to
infinity, “consensus” is said to have been reached, and
Y, P is the group’s distribution. Berger (1981)
establishes conditions for the required convergence to
take place, and Forrest (1985) discusses the assess-
ment of zero weights in this framework.

In a more general model, W* is replaced by W, - .-
W, and the W;s themselves are to be arrived at by a
dialogue (Chatterjee, 1975; Chatterjee and Seneta,
1977; Wagner, 1978, 1980). Recently, Cohen, Hajnal,
and Newman (1983) have investigated the case where
the choice of the matrices W; is dictated by a proba-
bility distribution. Lehrer and Wagner (1981), who
have devoted a book to this model, make the contro-
versial claim that under certain circumstances, it pro-
vides the unique rational way of combining the opin-
ions of experts into a consensus. They argue that even
though the experts disagree, they may be rationally
committed to this type of consensus. This position
has been attacked rather fiercely by Baird (1985), Levi
(1985), Schmitt (1985), as well as Loewer and Laddaga
(1985). Replies to these criticisms about the philo-

sophical implications of the DeGroot-Lehrer model on

the “theory of consensus” are offered by Lehrer (1983,
1985) and Wagner (1985). Nurmi (1985) also criticized
the method of weighted averaging as a social choice
mechanism.

Other iterative-interaction models which have been
proposed and analyzed include those of Aumann
(1976), Bacharach (1979), and Geanakoplos and
Polemarchakis (1982). Press (1978, 1980) offers a
more statistical solution to this problem.

7. CONCLUDING REMARKS

In this paper, we have reviewed a host of normative
methods for combining the quantitative judgments of
several individuals. Our main purpose has been to

identify the issues to be addressed and to examine
under a critical light the framework within which
different solution concepts have been proposed to
date. Along the way, we also tried to raise a number
of technical points which demand future attention. In
this final section, we would like to offer brief com-
ments of a more general nature on the problem of
opinion synthesis.

Perhaps the first point to note is that expressing
opinions as probability measures seems to lead in-
variably to arithmetic averaging, while geometric
means almost always emerge when odds ratios or
densities are used. It may be, therefore, that the form
in which the subjects’ opinions are expressed plays an
unsuspected role in group consensus formation. In
view of the difficulties exposed in Section 2 regarding
the elicitation and codification of human judgments,
this issue deserves our most serious consideration. Is
it possible to formulate axioms which would lead to
the same consensual opinion irrespective of the form
in which the subjects’ judgments were encoded? If not,
which sorts of opinions should we priviledge? To be
useful, an answer to the latter question should be
substantiated by the conclusions of experimental re-
search in cognitive psychology (Hogarth, 1975).

Another (obvious?) lesson which we learn from this
entire exercise is that the appropriateness of the so-
lution depends in good part on the problem which it
addresses. There is a world of difference between the
epistemological consensus sought by philosophers like
Lehrer and the operational consensus of group decision
theorists. In the first case, the “group” could be all of
humanity or the scientific community, and the de-
monstrable existence of a rational consensus might
have profound consequences on the philosophy of
science or the whole of human perception. In the
second case, consensus of opinion is merely a means
of reaching a decision which maximizes the actors’
utilities. Agreement now is a matter of convenience
only and implies no commitment whatsoever for the
future.

Ideally, well directed group interaction with unre-
stricted feedback would be the best approach to opin-
ion aggregation in the context of decision making.
Bargaining theory (Weerahandi and Zidek, 1983) may
offer a viable alternative, but the problem mentioned
in the introduction of finding an intersubjective equiv-
alent to the classical notion of objectivity remains.
The averaging methods which have been described in
Sections 3 to 6 of this paper attempt to address this
issue, although their success is at best mitigated. A
serious obstacle to their implementation is the arbi-
trariness of the pooling weights, the existence of which
is implied by the axiomatic approach. These constants
are analogous to the parameters commonly found in
physical models and, like physical constants, they
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would have to be fitted to the particular context in
which a formula is being applied. However, the theory
lacks ‘a basis on which to carry out such a fit, save for
the case described in Section 4 where the pooling
formulas have a Bayesian interpretation and their
parameters derive from a supra Bayesian’s assessment
of the subjects’ opinions. Only when this problem is
resolved can an appropriate analogue of the law of
averages be formulated.

When the group is reporting to an external decision
maker, the Bayesian paradigm does seem to be the
only acceptable method for accumulating the infor-
mation that lies behind the consultants’ conflicting
advice. The main concerns, here, are similar to those
of the classical Bayesian theory, and the literature has
only begun to address them. How can the decision
maker elicit his/her own opinion? Can the experts’
judgments be taken at face value, or must they be
“calibrated?” How is one to assess the dependence
between information sources? These and other re-
search directions in group decision making are given
by Winkler (1982).
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ANNOTATED BIBLIOGRAPHY

The bibliography contains 92 entries and was up to date at the
time of submission. It is intended only as a guide to the vast
theoretical literature on the problem of pooling opinions. In partic-
ular, we cannot claim that it is comprehensive or entirely impartial,
although every effort has been made to include all relevant contri-
butions. For references to the literature on the psychological aspects
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of group probability assessments, the Delphi method, and the use-
fulness of expert assessments in applied research, the reader should
consult Hogarth (1975, 1977), Pill (1971), and Beach (1975), re-
spectively.

Wherever possible, each article in the following list has been
classified according to the approach which it adopts, as well as the
sort of opinions that it considers. Papers marked with an * include
a review of the literature and/or an extensive bibliography.

Approach Adopted

AT: Axiomatic treatment (especially with regard to group consen-
sus belief formation)

BU: Bayesian updating of opinion (in the presence of a decision
maker)

CI: Consensus reached iteratively (group interaction)

DM: Decision making aspects are stressed (e.g., considerations of
utilities are included)

RC: Concerned with the reconciliation of probability assessments
(involves only one individual)

UB: Use of bargaining theory to reach a joint decision

Expression of Opinions

C: Cumulative distribution functions
D: Probability density functions

L: Odds ratios or log odds

M: Probability measures

P: Discrete probabilities

The abbreviation AL is used when a paper is concerned with the
somewhat different problem of “allocation of resources.” For a
description, see Aczél and Wagner (1981).

AcziL J. (1984). On weighted synthesis of judgements. Aequat.
Math. 27 288-307.

AT; L Although the author provides some new evidence in
favor of the logarithmic opinion pool in cases where the expert
judgments are expressed in the form of odds, this paper should
be viewed primarily as a contribution to the theory of functional
equations. Aczél’s joint results with Saaty (1983) and Alsina
(1984) are generalized to the case where experts are not treated
symmetrically. An extra hypothesis is added which guarantees
that the aggregating function is locally sensitive to each of the
individual opinions. The potential readers must expect math-
ematical hurdles such as cancellative semigroups.

AczEL, J. and ALSINA, C. (1984). Characterizations of some classes
of quasilinear functions with applications to triangular norms
and to synthesizing judgements. Methods Oper. Res. 48 3-22.

AT; L The functional equations solved here are motivated by
and generalize those which were studied in Aczél and Saaty
(1983). However, this article says very little about the pooling
problem per se. .

AcziL, J., KANNAPPAN, P. L., NG, C. T. and WAGNER, C. G. (1981).
Functional equations and inequalities in rational group decision
making. General Inequalities 3: Proceedings of the Third Inter-
national Conference on General Inequalities, Oberwolfach.

AT; AL, P Reformulation of the results exposed in two pre-
vious papers by Aczél and Wagner (1980, 1981), but with
resolution of the case in which only two resources are to be
allocated. This corresponds to the situation faced when the
underlying probability space is not tertiary.

AczEL, J., NG, C. T. and WAGNER, C. G. (1984). Aggregation
theorems for allocation problems. SIAM J. Alg. Disc. Meth. 5
1-8.

AT; AL, P This fourth collaborative paper between Aczél and
Wagner drops the “consensus of rejection” hypothesis (the

ZPP, condition (3.3)). This leads to a generalized linear opinion
pool of the form (3.7) for allocation problems. See also Genest
(1984c). !

AczEL, J. and SaATy, T. L. (1983). Pr_ocedures for synthesizing
ratio judgements. J. Math. Psych. 27 93-102.

AT; L By assuming that the influence of each individual
opinion can be “separated” (condition (5.1)) and that the ex-
perts can be treated symmetrically, the authors characterize a
large class of aggregating functions for odds ratios (line (5.3)).
All the formulas they present obey the reciprocal property
flxy, «-+, xa) ' = f(1/%1, - - -, 1/x,) and preserve unanimity.
When an additional homogeneity requirement is imposed, the
symmetric geometric mean emerges as the unique solution.

AczEkL, J. and WAGNER, C. G. (1980). A characterization of weighted
arithmetic means. SIAM J. Alg. Disc. Meth. 1 259-260.

AT; AL, P Axiomatic derivation of weighted arithmetic means
within the context of group allocation of resources. When the
“resource” is a probability mass, the authors’ so-called k-allo-
cation property amounts to saying that pooling probability
distributions must yield a probability distribution. The other
axioms used are equivalent to the SSFP and the ZPP, i.e.,
conditions (3.2) and (3.3).

AczEkL, J. and WAGNER, C. G. (1981). Rational group decision
making generalized: the case of several unknown functions.
C. R. Math. Rep. Acad. Sci. Can. 3 139-142.

AT; AL, P Sequel to the above paper in which the same result
is derived under a weaker assumption that reduces to the
WSFP, condition (3.5), when probability distributions are
pooled.

AGNEW, C. E. (1985). Multiple probability assessments by depen-
dent experts. J. Amer. Statist. Assoc. 80 343-347.

BU; D The Bayesian updating model of Winkler (1968) is
extended to account for situations in which the experts are
providing assessments about several random variables. When
assessment errors have a multivariate normal density, the
posterior distribution depends only on a weighted average of
the experts’ stated means. Special cases of interest are those in
which the individual’s distributions are dependent but the
random variables are not, and vice versa.

AUMANN, R. J. (1976). Agreeing to disagree. Ann. Statist. 4 1236—
1239.

BU; P Formalizes the idea of common knowledge and uses this
definition to prove a theorem asserting that if two people have
the same prior, and if their posteriors for an event are common
knowledge, then these posteriors are equal. “Might be consid-
ered a theoretical foundation for the reconciliation of subjective
probabilities” (p. 1238). See also Geanakoplos and Polemar-
chakis (1982), as well as Shafer (1983).

BACHARACH, M. (1972)*. Scientific Disagreement. Unpublished
manuscript, Christ Church, Oxford.

AT, CI, DM; D This penetrating essay articulates some of the
philosophical and psychological assumptions underlying the
theory of consensus, whether it be concerned with probabilities
or with utilities. After criticizing past proposals for the resolu-
tion of difference of opinion, the author sets up a general model
describing the structure of individual beliefs and their interplay
within a group. An iterative method of “Bayesian dialogue”
(¢f. also Bacharach, 1979) ensues and questions of convergence
are examined. It is shown, among other things, that the con-
sensus is a logarithmic opinion pool with equal weights when
disagreement between the experts is uniquely attributable to
different observations.
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BACHARACH, M. (1975). Group decisions in the face of differences

of opinion. Manag. Sci. 22 182-191.

AT, DM; D Obtains two characterizations of the linear opinion
pool by imposing conditions on the group preference relation.
Among these conditions, the most important are Pareto opti-
mality and an independence of irrelevant alternatives hypoth-
esis. An impossibility.theorem akin to that of Zeckhauser (1968)
is also derived.

BACHARACH, M. (1979). Normal Bayesian dialogues. J. Amer. Sta-

tist. Assoc. 74 837-846.

BU, CI; P A study of the interaction of opinions which are
differing because, and only because, their defenders have made
different observations. Formulates the concept of a “Bayesian
dialogue” at each stage of which one or more features of the
individual distributions are shared and incorporated into the
opinion of each group member. Under normality, it is shown
that the parts of the subjects’ distributions that are iteratively
revealed converge to a consensus that embodies all private
information, and the rate of convergence is obtained.

BaAIRrD, D. (1985). Lehrer-Wagner consensual probabilities do not

adequately summarize the available information. Synthese 62
47-62.

CL; P A critique of Lehrer and Wagner (1981). As the title
indicates, the author argues that a single probability distribu-
tion cannot adequately summarize the information available to
the members of a group. He suggests the use of nonprobabilistic
reports of consensus, which could include a measure of disper-
sion in addition to the usual average. On this point, see also
Loewer and Laddaga (1985).

BERGER, R. L. (1981). A necessary and sufficient condition for

reaching a consensus using DeGroot’s method. J. Amer. Statist.
Assoc. 76 415-418.

CI; C Points out that the convergence conditions given in the
paper of DeGroot (1974) can be weakened when the prior
opinions of the group are already given and it is asked whether
the DeGroot-Lehrer iterative process will yield a consensus for
this particular set of priors. A convenient computational short-
cut is also provided.

BorDLEY, R. F. (1982). A ;nultiplicative formula for aggregating

probability assessments. Manag. Sci. 28 1137-1148.

AT; L Derives a version of the logarithmic opinion pool using
axioms from the theory of additive conjoint measurement. It is
assumed that the decision maker has an intuitive weak ordering
on the set of expert odds ratios, and that a “noninteraction”
property similar to (5.1) holds. The problem of determining the
weights is given some attention.

BORDLEY, R. F. (1983a). A Bayesian model of group polarization.

’

Org. Behav. Hum. Perform. 32 262-274.

AT; L The author’s 1982 version of the logarithmic opinion
pool is offered once again as a model for how individual atti-
tudes tend to become more polarized as a result of group
discussion. This is what is sometimes referred to as the risky
(or cautious) shift phenomenon. Similar to the discussion in
Section 4 of the earlier paper, but with a different focus.

BORDLEY, R. F. (1983b)*. Bayesian Group Decision Theory. Confer-

ence on Information Pooling and Group Decision Making,
Irvine, CA, March 1983.

This review paper focuses on two different aspects of group
decision making: aggregation of individual opinions and aggre-
gation of individual preferences. As demonstrated by the au-
thor, the two must be kept separate in order to preserve the
group maximum expected utility criterion. A parallel is drawn

in the event case between the pooling recipe of Bordley (1982)
and the product formula which results from the Bayesian
approach developed by Morris (1974, 1977); Probability amal-
gamation is also briefly considered as a problem of parameter
estimation. (The section devoted to the separate but related
issue of determining a group utility function is very informative;
it should definitely be read for the valuable insights it provides.)

BORDLEY, R. F. and WoLFF, R. W. (1981). On the aggregation of
individual probability estimates. Manag. Sci. 27 959-964.

AT; P Offers a critical review of Norman Dalkey’s work on
aggregating opinions. The authors argue, among other things,
against what they term the “context-free assumption” (e.g., the
SSFP property) according to which the group estimate of an
event’s probability is a function only of the estimates of that
event provided by the individuals.

CHATTERJEE, S. (1975). Reaching a consensus; some limit theorems.
Proc. Int. Statist. Inst. 159-164.

CI; C Considers a generalization of the DeGroot-Lehrer model
in which the individuals can change their weights at each
iteration. Opinions here can be the value of an unknown
parameter (such as in forecasting) as well as probability distri-
butions. See also the paper just below and Wagner (1978).

CHATTERJEE, S. and SENETA E. (1977). Towards consensus: some
convergence theorems on repeated averaging. J. Appl. Prob. 14
89-97.

CI; C Extends and makes rigorous the results of Chatterjee
(1975). The problem of the tendency to consensus is connected
with the ergodicity problem for backward product of stochastic
matrices.

CLEMEN, R. T. (1984). Modeling Dependent Information: a Bayesian
Approach. Ph.D. dissertation, Indiana University.

CLEMEN, R. T. (1986). Calibration and the aggregation of probabil-
ities. Manag. Sci. 32 in press.

BU; D A criticism of the multiplicative formula developed by
Morris (1977, 1983). The author demonstrates that the notion
of “joint calibration” on which the formula rests is equivalent
to independence between the decision maker’s opinion and
those of the experts. Thus it is argued that what Morris calls
joint calibration is equivalent to, and no easier to carry out
than the direct assessment of a likelihood for the experts’
probabilities, conditionally upon the decision maker’s own prior
information. For further comments on Morris’ definition of
calibration, see Schervish (1983).

CLEMEN, R. T. and WINKLER, R. L. (1985). Limits for the precision
and value of information from dependent sources. Oper. Res.
33 427-442.

BU, DM; D Investigates the way in which the presence of
dependence in the model of Winkler (1981) impacts the decision
maker’s posterior distribution. It is seen that dependence
among experts severely reduces the amount of information the
decision maker receives, as measured by the variance of his/
her posterior. The authors develop the notion that a number of
dependent experts can be considered equivalent, in an infor-
mation content sense, to a generally smaller number of inde-
pendent experts. The expected value of information from de-
pendent sources is also studied.

COHEN, J. E., HAJNAL, J. and NEWMAN C. M. (1983). Approaching
consensus can be delicate when positions harden. Unpublished
manuscript.

CI; C This high pitched mathematical paper gives examples in

which the ergodic behavior of a nonstationary product of ran-
dom non-negative matrices depends discontinuously on a con-



130

C. GENEST AND J. V. ZIDEK

tinuous parameter. The examples are interpreted in terms of
the DeGroot-Lehrer iterative model of consensus. At each
stage, random weights are assigned by all the experts to them-
selves and their peers. When these weights fall between certain
lower and upper bounds, the authors show how a very small
change in the weighting process can mean a difference between
moving toward a conrsensus with probability 1, or remaining in
dissension with probability 1.

DALKEY, N. C. (1972). An impossibility theorem for group proba-

bility functions. P-4862, The Rand Corporation, Santa Monica,
CA.

AT:; P This paper’s main result is stated with a sketch of proof
in Dalkey (1975).

DALKEY, N. C. (1975). Toward a theory of group estimation. In The

Delphi Method: Techniques and Applications. (LINSTONE, H.
A. and TUROFF, M., eds). Addison-Wesley, Reading, MA.

AT; P In the first part of this essay, Professor Dalkey attempts
to define a number of desirable features of expert opinions:
honesty, accuracy, definiteness, realism, certainty and freedom
from bias. Assuming that expert judgments are “the best infor-
mation available,” the author then proceeds to describe three
approaches to aggregation. Two versions of the logarithmic
opinion pool are thus obtained, one (each weight equals 1/n)
by analogy to the “theory of errors,” and the other (each weight
equals 1) by an application of Bayes’ theorem to an expression
measuring the degree of dependence among the experts. In the
final section, entitled “The Axiomatic Approach,” the author’s
1972 impossibility theorem is sketched and commented upon.

DaLkEY, N. C. (1977). Group decision theory. Technical Report

No. 7749, School of Engineering and Applied Science, Univer-
sity of California, Los Angeles, CA.

DE FINETTI, B. (1954). Media di decisioni e media di opinioni. Bull.

Inst. Int. Statist. 34 144-157.

DM; P Using a simple hypothesis problem, a theorem of Wald
on Bayes decision rules (Ann. Math. Statist. 10 299-326, 1939)
is interpreted in the context of group decision making. It is
seen that if all the members of a group share the same utilities,
there must exist a decision based on an “average opinion”
which all the individuals will prefer to an “average decision”
based on those which each individual would found upon their
own judgement. Compare with Stone (1961).

DEGRoOT, M. H. (1974). Reaching a consensus. J. Amer. Statist.

Assoc. 69 118-121.

CI; C Exploits the theory of Markov chains to determine under
which circumstances a consensus will be reached iteratively
when each member of a group updates his/her opinion using a
linear opinion pool with fixed, non-negative weights. See Lehrer
(1976) for an independent consideration of this model, and
Berger (1981) for weaker convergence conditions which can be
used when only one set of prior opinions is considered.

DICcKEY, J. M. and FREEMAN, P. (1975). Population-distributed

personal probabilities. J. Amer. Statist. Assoc. 70 362-364.

CI; P Uses the Dirichlet distribution as a model for studying
the variability of personal probabilities under coherent trans-
formations induced by a common likelihood. A tendency to
consensus is seen to result from the availability of increasing
amounts of data.

EISENBERG, E. and GALE, D. (1959). Consensus of subjective prob-

abilities: the pari-mutuel method. Ann. Math. Statist. 30
165-168.

AT; P Suggests the pari-mutuel betting method as a principle
for combining opinions. Assuming that each “bettor” has a

fixed budget and a fixed private opinion, the authors show the
existence and uniqueness of equilibrium tétalisator odds. An
example shows the existence of individual opinions which allow
their holders to dictate the equilibrium. odds.

FISCHER, G. W. (1981). When oracles fail—A comparison of four

procedures for aggregating subjective probability forecasts. Org.
Behav. Hum. Perform. 28 96-110.

Experimental comparison of an arithmetic average of probabil-
ity forecasts with the Delphi procedure, face-to-face discussion,
and another procedure called “estimate-talk-estimate.”

FORREST, P. (1985). The Lehrer/Wagner theory of consensus and

the zero weight problem. Synthese 62 75-78.

A short critique of Lehrer’s suggestion (cf. Lehrer and Wagner,
1981, p. 20) that a zero weight should be assigned to a person’s
opinion whenever a merely random selection would be preferred
to that person’s guidance.

FREELING, A. N. S. (1981). Reconciliation of multiple probability

assessments. Org. Behav. Hum. Perform. 28 395-414.

RC; L Summarizes and discusses the method of reconciliation
proposed by Lindley, Tversky, and Brown (1979) in view of its
practicability. In certain circumstances, this method is seen to
be equivalent to a logarithmic opinion pool, with possibly
negative weights. The author goes on to suggest, without being
specific, that the approach could be adapted to yield the same
formula in the context of group probability assessments.

FRENCH, S. (1980). Updating of belief in the light of someone else’s

opinion. J. R. Statist. Soc. Ser. A 143 43-48.

BU; P Some of the difficulties associated with updating one’s
beliefs using a correlated opinion are described. The model of
Lindley, Tversky, and Brown (1979) is modified accordingly.
The resulting prescription is formula (4.1), a logarithmic opin-
ion pool completely equipped with interpretable coefficients.

FRENCH, S. (1981)*. Consensus of opinion. Eur. J. Oper. Res. 7

332-340.

This review paper vindicates the use of a strictly Bayesian
approach to expert resolution. Criticisms of the linear and
logarithmic opinion pools are offered in the light of the author’s
1980 normal model for modifying individual beliefs using Bayes’
rule. Conditions are derived under which successive iterations
of this model will provide each member of the group with a
final opinion, but the procedure demonstrably falls short of
creating a consensus.

FRENCH, S. (1985)*. Group consensus probability distributions: a

critical survey. In Bayesian Statistics 2 (BERNARDO, J. M., ET
AL., eds). North Holland, Amsterdam, 183-201.

BU, DM; P, MA This paper distinguishes between three
versions of the expert problem and reviews a number of related
issues and principles, including marginalization, external Baye-
sianity and calibration. In the first part, the author argues in
favor of the Bayesian paradigm for situations in which a
decision maker collects the opinions of a number of individuals.
After giving some consideration to the axiomatic approaches of
Bordley (1982) and Morris (1983), French shows how his own
Bayesian model (1980, 1981) obeys a variation of the externally
Bayesian criterion in which the known value of the likelihood
for the data is filtered out of the experts’ posterior beliefs. In
the second part, French puts under close scrutiny the vast
literature on group decision-making per se. He stresses the role
played by the concepts of honesty (¢f. Dalkey, 1975) and cali-
bration (cf. Schervish, 1983) in iterative methods of consensus.
Finally, a brief mention is made of the expert problem which
French dubs the “text-book” problem.
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GEANAKOPLOS, J. D. and POLEMARCHAKIS, H. M. (1982). We can’t

disagree forever. J. Econ. Theory 28 192-200.

CI; P Extends the result of Aumann (1976) to show that if two
agents simply communicate their posterior beliefs back and
forth, then they will be led to make revisions that converge, in
finitely many steps, to a common, equilibrium posterior. Shafer
(1983) provides a natural setting for these theorems.

GENEST, C. (1983). Towards a consensus of opinion. Ph.D. disser-

tation, University of British Columbia.

GENEST, C. (1984a). A conflict between two axioms for combining

subjective distributions. J. R. Statist. Soc. Ser. B 46 403-405.

AT; D This note points out that an externally Bayesian group
must concentrate all its power in the hands of a single person
if consensus is to be determined using a function which depends
only locally on the individual probability densities. A suggestion
aimed at resolving this conflict was subsequently investigated
by Genest (1984b).

GENEST, C. (1984b). A characterization theorem for externally

Bayesian groups. Ann. Statist. 12 1100-1105.

AT; D Determines conditions under which an externally Baye-
sian group must use a logarithmic opinion pool. The main
condition states that the consensual density at each point
should be proportional to a function of the individual densities
at that point, i.e., condition (3.13). A discussion of the impli-
cations of this result is included. A suggestion regarding a
possible extension of the theorem was picked up in Genest,
McConway, and Schervish (1986).

GENEST, C. (1984c). Pooling operators with the marginalization

property. Can. J. Statist. 12 153-163.

AT; M The marginalization property of McConway (1981)
(without zero preservation) is shown to imply a consensus
which is a weighted average of the subjects’ opinions plus an
arbitrary, imposed component. The weights can be negative
and must satisfy certain consistency inequalities. The result is
then used to extend a theorem of Wagner (1984) that the only
pooling procedures which preserve independence are dictatorial
in nature. It is argued that independence preservation is not a
reasonable requirement to impose on consensus-finding pro-
cedures.

GENEST, C., McConway, K. J. and SCHERVISH, M. J. (1986).

h

Characterization of externally Bayesian pooling operators.
Ann. Statist. 14 in press.

AT; P, D Basically, this is an extension of the result contained
in Genest (1984b). Externally Bayesian pooling operators are
characterized without resorting to any regularity condition
whatsoever. A condition is given under which the generalized
linear opinion pool (3.14) emerges.

GENEST, C. and SCHERVISH, M. J. (1985). Modeling expert judg-

ments for Bayesian updating. Ann. Statist. 13 1198-1212.

BU, AT; P The authors examine how a decision maker could
go about using the Bayesian paradigm to incorporate expert
opinions into his/her own, even though he/she might be incap-
able or reluctant to assess completely his/her beliefs about the
value of their judgments. In certain cases, the result is a linear
opinion pool with possibly negative weights. In others, such as
when the experts are deemed to be conditionally independent,
the log-type formula (4.4) emerges. Discussion.

GENEST, C. and WAGNER, C. G. (1984). Further evidence against

independence preservation in expert judgement synthesis.

Technical Report No. 84-10, Department of Statistics and
Actuarial Science, University of Waterloo.

AT; P Extends previous impossibility theorems on indepen-
dence preservation (¢f. Wagner, 1984) to large classes of nor-
malized pooling operators which include the logarithmic opin-
ion pool. An independence preserving formula is also derived
when the underlying space contains exactly four points. A short
plaidoyer against preservation axioms in general concludes the
paper. See also Genest (1984c).

GENEST, C., WEERAHANDI, S. and ZIDEK, J. V. (1984). Aggregating

opinions through logarithmic pooling. Theory and Decision 17
61-70.

AT Contains results on the synthesis of opinions quantified as
arbitrary positive functions on a carrier set. The authors prove
that positing a single, often intuitively reasonable axiom of
aggregation (which preserves the ordering of certain ratios)
restricts the acceptable methods of pooling to a class of more
or less geometric means given by (5.7). A logarithmic opinion
pool with variable weights is also derived in the finite case
using a variation of the concept of external Bayesianity.

HoGARTH, R. M. (1975)*. Cognitive processes and the assessment

of subjective probability distributions (with discussion). J.
Amer. Statist. Assoc. T0 271-294.

Excellent survey of some recent findings in the psychology of
judgment and their implications for the assessment of subjec-
tive distributions. Section 3.5 reviews the theoretical develop-
ments in group probability assessments and supplies a number
of references to relevant experimental work. The main empir-
ical results are summarized and commented upon.

HoOGARTH, R. M. (1977)*. Methods for aggregating opinions. In

Decision Making and Change in Human Affairs (JUNGERMANN,
H. and DEeZeEeuw, G., eds). D. Reidel Publishing Co.,
Dordrecht, Holland.

Reviews models and methods for aggregating opinions in the
form of point estimates as well as probability distributions.
Well worth reading for its consideration of relevant literature
in social psychology, even though Section 3 on group probability
assessments is largely repetitive of the author’s 1975 paper.

LADDAGA, R. (1977). Lehrer and the consensus proposal. Synthese

36 473-471.

AT; P Criticism of the linear opinion pool founded on the
observation that it does not generally preserve the indepen-
dence of events, condition (3.4), even though such independence
may have been agreed to by all the individuals. On this point,
refer to Lehrer and Wagner (1983), Genest (1984c), or Genest
and Wagner (1984). The suggestion is made that probability
statements be decomposed into their most elementary parts
before attempting to reconcile divergence of opinions.

LEHRER, K. (1976). When rational disagreement is impossible. Nois

10 327-332.

CI; P A philosopher’s independent consideration of the model
described by DeGroot (1974), with some discussion of its un-
derlying assumptions.

LEHRER, K. (1983). Rationality as weighted averaging. Synthese 57

283-295.

Philosophical essay defending weighted averaging as the only
rational representation of the “totality of information” pos-
sessed by an individual or a group of individuals. The mathe-
matical justification behind this assertion is basically Theorem
7 of Wagner (1982), i.e., the derivation of the linear opinion
pool based on condition (3.2).
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LEHRER, K. (1985). Consensus and the ideal observer. Synthese 62

109-120.

Lehrer’s rejoinder, the last item in an issue of Synthese which
is completely devoted to his consensus method and the book
he wrote on this topic in collaboration with Carl Wagner (1981).

LEHRER, K. and WAGNER, C. G. (1981)*. Rational Consensus in

Science and Society. D. Reidel Publishing Co., Dordrecht, Hol-
land.

The collected works of these two authors on the consensus
problem. The first part, written by Lehrer, discusses the phil-
osophical implications and the applications of an elementary
mathematical model of consensus (an iterative procedure based
on the linear opinion pool which was also formulated by
DeGroot, 1974). In the second, shorter part, Wagner develops
the foundations of the so-called extended model, in which
different weights are allowed at each stage. New here is the
noniterative argument on behalf of employing as consensual
weights the elements of a fixed-point weight vector. Chapter 6
of the book contains a characterization of the linear opinion
pool which can also be found in Wagner (1982).

LEHRER, K. and WAGNER, C. G. (1983). Probability amalgamation

and the independence issue: a reply to Laddaga. Synthese 55
339-346.

AT; P Offers a rigorous proof that linear opinion pools do not
preserve independence. Argues that independence preserving
pooling operators are undesirable on the grounds that indepen-
dence of events is frequently fortuitous and not associated with
“prior theoretical commitment” on the part of the assessor.
Compare with Genest (1984c) and Genest and Wagner (1984).

Levy, 1. (1985). Consensus as shared agreement and outcome of

inquiry. Synthese 62 3-11.

In this paper, Levi attempts to define two types of consensus,
whence the title. He argues that whether preservation axioms
are sensible or not depends largely on which one of his two
types of consensus is being sought. As he notes, however,
“according to strict Bayesian dogma . .. there can be no ana-
logue in contexts of probability judgment of the two senses of
consensus [ identify. . . ” This article will probably be difficult
to read if your training lies largely in the mathematical sciences.

LINDLEY, D. V. (1983). Reconciliation of probability distributions.

Oper. Res. 31 866-880.

BU; D This paper overlaps with that of Winkler (1981). It
aims to show how a decision maker can update his/her opinion
of an uncertain quantity after several subjects revealed their
mean and standard deviation of their distributions for this
quantity. To do this, the decision maker’s beliefs about the
experts are assumed to be normally distributed, but no assump-
tion is made about the experts’ opinions themselves. When the
parameters are estimated, the resulting opinion is a ¢ distribu-
tion. The advantages of this procedure are illustrated and the
role of the information provided by the standard deviations is
clarified.

C. GENEST AND J. V. ZIDEK

scale. Implementation of this method is discussed when there
is symmetry within the set of events of interest.

LINDLEY, D. V., TVERSKY, A. and BROWN, R. V. (1979). On the

reconciliation of probability assessments (with discussion).
J. R. Statist. Soc. Ser. A 142 146-180.

RC, BU; P This paper is mainly concerned with the problem
of how to reconcile probability assessments that are incoherent
or mutually inconsistent. As noted by several discussants and
the authors themselves, however, the methods introduced here
could easily be applied to opinion pooling. This is discussed in
greater detail by French (1980, 1981) and Freeling (1981).

LOEWER, B. and LADDAGA, R. (1985). Destroying the consensus.

Synthese 62 79-95.

CI, BU; P Another attack on the “rationality” of reaching a
consensus iteratively using weighted averages. Bayes’ theorem
is promoted as an alternative, more sensible rule for updating
one’s opinion and it is argued that there is no reason to iterate
that procedure. On this point, see Geanakoplos and Polemar-
chakis (1982). Since the DeGroot-Lehrer method produces a
probability distribution which may conflict with whatever con-
sensus already exists (e.g., failure to preserve independence as
noted by Laddaga, 1977), it is suggested that “consensus”
should be represented by a set of probability assignments rather
than by a single one. (This suggestion is also made by Baird,
1985.)

MADANSKY, A. (1964). Externally Bayesian groups. RM-4141-PR,

The Rand Corporation, Santa Monica, CA.
Revised and expanded in 1978; ¢f. below.

MADANSKY, A. (1978). Externally Bayesian groups. Unpublished

manuscript, University of Chicago.

AT, DM; D It is argued that if the members of a group share
a common likelihood function, compounding their posteriors
should yield the same result obtained by first aggregating the
priors and then applying Bayes’ rule. This is condition (3.12)
in our text. A number of group decision rules are then examined
and pooling formulas which have this property are called “ex-
ternally Bayesian.” Madansky also determines the manner in
which the weights in the linear pool must be updated in order
to achieve external Bayesianity. Compare with Roberts (1965).

McConway, K. J. (1978). The combination of experts’ opinions in

probability assessment: some theoretical considerations. Ph.D.
dissertation, University College London.

McConway, K. J. (1981). Marginalization and linear opinion pools.

J. Amer. Statist. Assoc. 76 410-414.

AT; M The zero preservation property, condition (3.3), and
the assumption that finding the consensus commutes with
marginalization of the individual distributions, condition (3.6),
together imply that the consensus must be found using a linear
opinion pool. The result is discussed in the light of the cele-
brated impossibility theorem of Dalkey (1972).

Moreris, P. A. (1971). Bayesian expert resolution. Ph.D. disserta-
tion, Stanford University.
MOoRRis, P. A. (1974). Decision analysis expert use. Manag. Sci. 20

LINDLEY, D. V. (1985). Reconciliation of discrete probability distri-
butions. In Bayesian Statistics 2 (BERNARDO, J. M., ET AL.,

eds). North Holland, Amsterdam, 375-390.

BU; P Contends that the only available normative approach
to consensus requires reduction to a single decision maker to
produce the probabilities. In particular, the marginalization
property, condition (3.6), and external Bayesianity, condition
(3.12), are looked upon as mere “adhockeries.” Instead, a nor-
mal model is offered as a consequence of which the expert
opinions should be averaged linearly, but on the logarithmic

1233-1241.

BU; D, P Formulates a theory of expert use which is entirely
consistent with the Bayesian philosophy. Here, each expert
probability distribution is treated as a random variable whose
value is to be revealed to the decision maker. To obtain the
consensus distribution, this decision maker must then proceed
to introspect a likelihood function representing his/her assess-
ment of the different experts’ knowledge and combine their
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opinions with his/her own using Bayes’ rule. Some examples
illustrate the mechanics of the theory.

MoReis, P. A. (1977). Combining expert judgments: a Bayesian

approach. Manag. Sci. 23 679-693.

BU; D Sequel to the 1974 paper in which a pooling formula of
a multiplicative nature is derived in the case of the location-
scale family. The idea-of calibration is introduced and a method
for subjectively calibrating an expert is also presented. Some
fictitious examples illustrate the results. Morris’ definition of
“joint calibration” has been criticized by Schervish (1983) and
Clemen (1986).

Moreris, P. A. (1983). An axiomatic approach to expert resolution.

Manag. Sci. 29 24-32.

AT, BU; P, D An axiomatic approach to combining expert
judgments which supports the use of a multiplicative formula
derived by the author in his 1977 paper. The central require-
ment is similar in spirit to the concept of external Bayesianity
due to Madansky (1964, 1978). According to Schervish (1983),
however, Morris’ system of axioms would appear to be incon-
sistent.

MoskowiTz, H. and BAJGIER, S. M. (1978). Validity of the

DeGroot model for achieving consensus in panel and Delphi
groups. Unpublished manuscript, Purdue University.

CI An empirical evaluation of the predictive, descriptive, and
normative values of the DeGroot-Lehrer model of consensus in
panel discussions and Delphi groups. The results presented
suggest that individuals revise their judgments using linear
opinion pools, although the weights used changed significantly
over the first few iterations. The distributions produced by the
model tended to be more highly dispersed than the actual
reassessed distributions. “Given the human tendency to be
overconfident and a need to avoid surprises, a DeGroot model
seems like a reasonable rule” (p. 18).

NoRvigG, T. (1967). Consensus of subjective probabilities: a conver-

gence theorem. Ann. Math. Statist. 38 221-225.

CI; P This sequel to the Eisenberg and Gale (1959) paper
proposes a dynamic model for reaching a pari-mutuel type of
consensus.

NurmMi, H. (1985). Some properties of the Lehrer-Wagner method
for reaching rational consensus. Synthese 62 13-24.

CI, DM; P Examines some properties of the DeGroot-Lehrer
method of consensus from a decision making point of view.
When th® weight matrix is fixed, the method is shown to be
monotonic in preferences, and although it leads to Pareto
optimal decisions, the author shows that it does not satisfy the
so-called Condorcet winner and loser criteria. If von Neumann-
Morgenstern utilities are used, the model is also seen to violate
a weak axiom of revealed preference and is path dependent as
a social choice selection mechanism.

RAIFFA, H. (1968). Decision Analysis: Introductory Lectures on

Choices under Uncertainty. Addison-Wesley, Reading, MA.

DM; P Part II of Chapter 8 is devoted to group decision making.
Section 11 provides a nice summary of the work of Madansky
(1964), illustrating what can happen when a probability aggre-
gation method fails to commute with the process of updating
probabilities upon arrival of new, jointly perceived information.
In Sections 12 and 13, paradoxes are described where a number
of experts who might share a common utility function agree on
the choice of an action which is not optimal with respect to
their reconciled feelings. A result due to Zeckhauser (1968) is
stated (cf. also Bacharach, 1975) and the issue of independence
preservation is briefly raised.

RATCLIFF, R. (1979). Group reaction time distributions and an

analysis of distribution statistics. Psych. Bull. 86 446-461.

AT; C This article resurrects a pooling procedure named “Vin-
cent averaging” after the biologist S. B. Vincent who introduced
it at the beginning of the century (Vincent, 1912). Translated
into the language of opinion aggregation, Vincent’s original
idea was to generate a group opinion about some real valued
quantity by taking an arithmetic average of the quantiles across
distributions. Ratcliff points out that the Vincentized average
of n exponential, logistic, or Weibull distributions belongs to
the same family. This is not true of the gamma distribution,
however. Vincentization was studied in greater detail by
Thomas and Ross (1980).

SAVAGE, L. J. (1971). Elicitation of personal probabilities and

expectations. J. Amer. Statist. Assoc. 66 783-801.

Section 10 of this paper provides some useful “armchair” com-
ments on the problem of consulting experts.

ScHERVISH, M. J. (1983). Combining expert judgments. Technical

Report No. 294, Department of Statistics, Carnegie-Mellon
University.

BU; D The approach to expert use developed by Morris (1977,
1983) is examined under a critical light. In particular, the
system of axioms proposed by Morris (1983) in support of the
linear opinion pool is seen to be flawed. Important discussion
of the concept of calibration in connection with the treatment
of expert probability assessments. See also Clemen (1986).

SCHMITT, F. F. (1985). Consensus, respect, and weighted averaging.

Synthese 62 25-46.

CI, AT; P Focuses on the work of Lehrer and Wagner (1981).
Their iterative method for reaching a consensus using linear
opinion pools is criticized on philosophical grounds. It is argued,
in a nonmathematical way, that although the average of a
number of expert judgments may form an adequate summary
of their opinions, the group members who want to update their
beliefs in the light of the others’ are “rationally committed” not
to average.

STAEL VON HOLSTEIN, C-A. S. (1970). Assessment and evaluation

of subjective probability. Economics Research Institute at the
Stockholm School of Economics.

AT; D Chapter 6 of this book reviews the various approaches
to the aggregation problem which were available as of 1970.
Problems associated with the choice of weights in the linear
pool are addressed and new weighting rules based on the
assessors’ past performance are offered. Some results obtained
using these weighting schemes are discussed in Sections 10.7
and 11.8, where the number of experts to be included in a
prediction group is also examined.

STONE, M. (1961). The opinion pool. Ann. Math. Statist. 32

1339-1342.

DM; D Repeatedly cited for the use of the term “opinion pool,”
this paper supplies conditions under which a decision based on
the linear opinion pool will yield an improvement over at least
one of the individual optimal decisions. A common utility
function is assumed and calculations are performed with re-
spect to the true, unknown distribution of the process. See also
de Finetti (1954).

THoMas, E. A. C. and Ross, B. H. (1980). On appropriate proce-

dures for combining probability distributions within the same
family. J. Math. Psych. 21 136-152.

AT; C This follow-up article on the work of Ratcliff (1979)
focuses on the Vincentization pooling procedure. The authors
show that location scale families alone are closed under this
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aggregation method. They also suggest a generalized Vincenti-
zation procedure based on the notion of quasiarithmetic mean
discussed in Hardy, Littlewood, and Pélya (1934).

Toba, M. (1956). Information-receiving behavior of man. Psych.

Rev. 63 204-212.

AT; P In a section entitled “Synthesis of Information,” the
linear opinion pool is put forward on the basis of expected
information-loss minimization.

WAGNER, C. G. (1978). Consensus through respect: a model of

rational group decision-making. Phil. Stud. 34 335-349.

CI; AL Describes the problem of “resource allocation,” which
includes aggregation of probabilities as a special case. The
major criticisms of the DeGroot-Lehrer method of reaching a
consensus are reviewed and the use of “proxy matrices” is
suggested by which individuals can change their weights at each
iterative stage. Sufficient conditions for consensus are de-
scribed which parallel those of Chatterjee (1975) and Chatterjee
and Seneta (1977).

WAGNER, C. G. (1980). The formal foundations of Lehrer’s theory

of consensus. In Profile (BoGDAN, R. J., ed). D. Reidel Publish-
ing Co., Dordrecht, Holland.

CI; AL Summarizes and assesses the DeGroot-Lehrer method
of reaching a consensus using linear opinion pools. Successive
revisions of opinion are regarded as incorporating increasingly
complex amounts of information about individual judgmental
skills. It is shown how consensus may be obtained when the
matrix of weights is ergodic but nonregular. The question of
providing some axiomatic support for weighted averaging is
also raised. The author’s own answer to this question was given
in the paper just below.

WAGNER, C. G. (1982). Allocation, Lehrer models, and the consen-

sus of probabilities. Theory and Decision 14 207-220.

AT; AL, M Axiomatic support for the linear opinion pool as a
solution to the problem of allocation of resources. When inter-
preted in a measure-theoretic context, the so-called “strong
label neutrality” axiom is equivalent to the SSFP of McConway
(1981), condition (3.2).

WAGNER, C. G. (1984). Aggregating subjective probabilities: some

limitative theorems. Notre Dame J. Formal Log. 25 233-240.

AT; P Assuming that the consensual probability assigned to
each event depends only on the probability assigned by individ-
uals to that event (WSFP), and assuming that consensual
distributions always preserve instances of independence com-
mon to all individual distributions (IPP), the author shows
that the only aggregation methods available yield a consensus
which is either dictatorial or imposed. Slightly weaker forms of
the independence preservation requirement are explored. See
also Genest and Wagner (1984).

WAGNER, C. G. (1985). On the formal properties of weighted aver-

aging as a method of aggregation. Synthese 62 97-108.

AT, CI; P Wagner’s reply to his critics, namely Baird, Levi,
Loewer and Laddaga, Nurmi, and Schmitt (all papers in
Synthese 62 1985). This article is a must if you read the latter
papers, as Wagner makes a commendable effort to delineate
the range of applicability of the so-called DeGroot-Lehrer
model. Sections 2 and 4 are particularly well written and
interesting.

WALLEY, P. (1982)*. The elicitation and aggregation of beliefs.

Statistics Research Report, University of Warwick.

AT Develops a solution to the aggregation problem when

C. GENEST AND J. V. ZIDEK

opinions are expressed not as additive probability distributions,
but rather as a range of such distributions. Different solutions
emerge depending on which of 15 axioms is adopted. The basic
underlying theory is presented by the author in an earlier
unpublished work (1981). A fragmentary, critical review of
other solutions to the pooling problem is given along with a
discussion of how opinions represented by classes of distribu-
tions might possibly be elicited.

WEERAHANDI, S. and ZIDEK, J. V. (1978). Pooling prior distribu-

tions. Report No. 78-34, Institute of Applied Mathematics and
Statistics, University of British Columbia.

AT, DM; D Contains an incorrect, but correctable derivation
of the logarithmic opinion pool based on external Bayesianity,
i.e., condition (3.12). Shows the importance of considering
randomized decision rules in the context of point estimation
and suggests a method for extending the domain of pooling
operators accordingly.

WEERAHANDI, S. and ZIDEK, J. V. (1981)*. Multi-Bayesian statis-

tical decision theory. J. R. Statist. Soc. Ser. A 144 85-93.

Surveys the problem of pooling opinions within the framework
of multiagent statistical decision theory. Shows how solution
concepts proper to bargaining theory may be adapted profitably
in this context. Presents valuable statistical applications in-
cluding hypothesis testing.

WEST, M. (1984). Bayesian aggregation. J. R. Statist. Soc. Ser. A

147 600-607.

AT, DM; P Suppose that a group of Bayesians must jointly
choose an action and that the consequence of each possible
action depends on the occurrence of a single event. Further
assume that the decision facing the group will be assessed by
reference to a group utility which depends only on the utilities

" of the individuals. By varying the gambles offered to the group,

West shows that both the group utilities and beliefs must be
derived via weighted geometric means without normalization
constants. The author does not view this as an impossibility
theorem, but rather suggests that “the group belief is not
probability in any case other than that of complete agreement”
(among the members of the group) (p. 604).

WINKLER, R. L. (1968)*. The consensus of subjective probability

distributions. Manag. Sci. 15 B61-B75.

BU; D Often quoted review paper which is a clear forerunner
of the Bayesian approach to aggregation of opinions. The so-
called natural conjugate approach is suggested in which each
expert’s opinion is deemed as “sample evidence” which is in-
corporated into a decision maker’s prior by successive applica-
tions of Bayes’ theorem. Numerical examples are included.

WINKLER, R. L. (1981). Combining probability distributions from

dependent information sources. Manag. Sci. 27 479-488.

BU; D A consensus model which allows for stochastic depend-
ence between individuals is developed. When a certain location-
invariance assumption holds, the decision maker’s posterior is
proportional to the product of his/her prior with a function of
the individuals’ “errors of estimation.” Under normality, the
model yields tractable formulas which are sensitive to the
degree of dependence between the members of the group. The
impact of dependence among the experts is further studied in
Clemen and Winkler (1985), and Agnew (1985) derives formu-
las for posterior densities of the same normal model to accom-
modate situations in which the decision maker sought infor-
mation on two or more random quantities.
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Example of an experimental study on the problem of pooling
opinions. The results of an experiment are reported in which
subjects were asked to subjectively generate a consensus distri-
bution or to choose one from a fixed number of alternatives

Comment

Glenn Shafer

This is a valuable review article. The annotated
bibliography is a useful guide to the literature on the
combination of beliefs, and the body of the article puts
us in a position to assess the accomplishments and
the direction of this literature as a whole, without
undue emphasis on the ambitions and limitations of
particular contributions.

My own view is that most of this literature is flawed
by adherence to one of more of the following fallacies:
(1) The Conditional Probability Fallacy: A Bayesian
analysis of a problem always takes evidence into ac-
count by conditioning a probability distribution on
that evidence. (2) The Fallacy of the Coherent Indi-
vidual: Formation of opinion by a group is fundamen-
tally different from formation of opinion by an indi-
vidual. (3) The Fallacy of Normalcy: Use of the Baye-
sian paradigm is normative for an individual. My
contribution to the discussion will concentrate on
these fallacies.

1. THE CONDITIONAL PROBABILITY FALLACY

My interest was engaged when I read in the intro-
duction that the problem of pooling knowledge would
be covered in Section 4. But when I turned to Section
4, I found it entitled “The Supra Bayesian Approach.”
It appears to be taken for granted in the literature
surveyed that the only Bayesian way to pool the
knowledge represented by the opinions of several dif-
ferent people is to condition a “supra Bayesian’s”
probability distribution on these opinions. This is a
special case of the conditional probability fallacy.

Like most fallacies, the conditional probability fal-
lacy survives not because of persuasive arguments in
its favor but because it so often goes unnoticed. It is
a habit of thought resulting from our familiarity with
the picture of statistical experimentation associated
with parametric inference. The evidence that appears
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determined using different linear or logarithmic opinion pools.
The weighted average methods are seen to have been most
frequently used.
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explicitly in this picture is a statistical observation,
the result of a statistical experiment. The hypothesis
(or parameter) space and the evidence (or observation)
space are specified when the experiment is set up,
before the observation is made. We are supposed to
have a joint probability distribution over the Cartesian
product of the hypothesis and evidence spaces, and
once we get the evidence (i.e., make the observation)
we are supposed to condition this probability distri-
bution on it. Often we are told to do this in a way that
uses Bayes’s theorem; we must specify the joint dis-
tribution by specifying P(H) and P(E|H) for each
element H of the hypothesis space and each element
E of the evidence space, and then we must use Bayes’s
theorem to calculate P(H | E).

In fact, a Bayesian analysis cannot take all the
evidence into account by conditioning even in the case
of a genuine statistical experiment. If the analysis is
to be convincing, there must be some evidence that is
used directly as evidence for the numbers P(H) and
P(E| H). Since this evidence is not part of E, it is not
taken into account by conditioning. This point is often
overlooked because many advocates of the Bayesian
paradigm do not want to acknowledge that the useful-
ness of Bayes’s theorem in a particular problem de-
pends on the existence and quality of the evidence for

. P(H) and P(E | H).

Our habituation to the picture of statistical experi-
mentation also has a more subtle effect. Even after we
admit that the evidence E on which we condition is
not all our evidence, we tend to assume that E has
been singled out from our other evidence by nature,
not by ourselves. It is our “new evidence,” the evidence
that we just got from our experiment, and so it is
easily distinguished from our “background informa-
tion.”

It is important to recognize that in the case of
everyday evidence, at least, it is usually not true that
E is singled out for us. We ourselves, when designing
a Bayesian analysis, must decide which part of our
evidence we will use to construct a probability distri-



