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Combining Probability Distributions From Experts in
Risk Analysis

Robert T. Clemen1,2 and Robert L. Winkler1

This paper concerns the combination of experts’ probability distributions in risk analysis,
discussing a variety of combination methods and attempting to highlight the important
conceptual and practical issues to be considered in designing a combination process in
practice. The role of experts is important because their judgments can provide valuable
information, particularly in view of the limited availability of ‘‘hard data’’ regarding many
important uncertainties in risk analysis. Because uncertainties are represented in terms of
probability distributions in probabilistic risk analysis (PRA), we consider expert information
in terms of probability distributions. The motivation for the use of multiple experts is
simply the desire to obtain as much information as possible. Combining experts’ probability
distributions summarizes the accumulated information for risk analysts and decision-makers.
Procedures for combining probability distributions are often compartmentalized as mathe-
matical aggregation methods or behavioral approaches, and we discuss both categories.
However, an overall aggregation process could involve both mathematical and behavioral
aspects, and no single process is best in all circumstances. An understanding of the pros and
cons of different methods and the key issues to consider is valuable in the design of a
combination process for a specific PRA. The output, a ‘‘combined probability distribution,’’
can ideally be viewed as representing a summary of the current state of expert opinion
regarding the uncertainty of interest.

KEY WORDS: Combining probabilities; expert judgment; probability assessment.

1. INTRODUCTION

Expert judgments can provide useful informa-
tion for forecasting, making decisions, and assessing
risks. Such judgments have been used informally for
many years. More formally, consulting several ex-
perts when considering forecasting or risk-assessment
problems has become increasingly commonplace in
the post-World War II era. Cooke (1991) reviews
many of the developments over the years as attempts
have been made to use expert judgments in various
settings. Application areas have been diverse, includ-
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ing nuclear engineering, aerospace, various types of
forecasting (economic, technological, meteorologi-
cal, and snow avalanches, to name a few), military
intelligence, seismic risk, and environmental risk
from toxic chemicals.

In this paper we consider the problem of using
multiple experts. Wu, Apostolakis, and Okrent (1990,
p. 170) state that ‘‘In PRA, an important issue related
to knowledge representation under uncertainty is the
resolution of conflicting information or opinions.’’
Although we discuss judgments of various kinds, in-
cluding forecasts, estimates, and probability assess-
ments, our primary focus is on the aggregation and
use of subjectively assessed probability distributions.
The paper does not pretend to give a comprehensive
view of the topic of group judgments; the accumu-
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lated knowledge in this field springs from many disci-
plines, including statistics, psychology, economics,
engineering, risk analysis, and decision theory. Our
intent is to highlight the key issues involved in com-
bining experts’ probability distributions and to dis-
cuss a variety of combining methods.

Because the focus in this paper is on the combi-
nation of experts’ probability distributions, we do
not discuss the process by which such probability
distributions might be elicited from individual ex-
perts. For general discussions of risk analysis, the
reader is directed to basic sources (see Merkhofer
(1987), Mosleh, Bier, & Apostolakis (1987), Bonano
et al. (1990), Keeney & von Winterfeldt (1989, 1991),
Morgan & Henrion (1990), Hora (1992), and Ot-
way & von Winterfeldt (1992)). We believe that the
elicitation protocol should be designed and con-
ducted by a risk assessment team comprising individ-
uals knowledgeable about both the substantive issues
of interest and probability elicitation.

The mathematical and behavioral approaches
we discuss in this paper assume that the experts
have ironed out differences in definitions and that
they all agree on exactly what is to be forecast or
assessed. Practicing risk analysts know that these
are strong assumptions and that much effort may
be required in order to reach such agreement.
Discussions of protocol development and use, such
as those referenced in the previous paragraph, typi-
cally emphasize the importance of familiarizing the
experts with the major issues in the problem at
hand so that the experts will have a common
understanding of the problem. Bonduelle (1987)
specifically addresses the matter of resolving defini-
tional disagreements among experts as an integral
part of the aggregation problem.

Even though reasonable experts may agree on
the definitions of relevant variables, it is, of course,
still possible for them to disagree about probabilities
for those variables. Such disagreement may arise
for a multitude of reasons, ranging from different
analytical methods to differing information sets or
different philosophical approaches. Indeed, if they
never disagreed there would be no point in con-
sulting more than one expert. Morgan and Keith
(1995, p. 468) note that the results of expert elic-
itations related to climate change ‘‘reveal a rich
diversity of expert opinion.’’ Consulting multiple
experts may be viewed as a subjective version of
increasing the sample size in an experiment. Because
subjective information is often viewed as being
‘‘softer’’ than ‘‘hard scientific data,’’ it seems particu-

larly appropriate to consult multiple experts in an
attempt to beef up the information base.

These motivations are reasonable; the funda-
mental principle that underlies the use of multiple
experts is that a set of experts can provide more
information than a single expert. Although it is
sometimes reasonable to provide a decision maker
with only the individual experts’ probability distribu-
tions, the range of which can be studied using
sensitivity analysis, it is often necessary to combine
the distributions into a single one. In many cases,
for example, a single distribution is needed for
input into a larger model; if that model requires
distributions for many variables, a full-blown sensi-
tivity analysis may not be feasible.

Combination, or aggregation, procedures are
often dichotomized into mathematical and behav-
ioral approaches, although in practice aggregation
might involve some aspects of each. Mathematical
aggregation methods consist of processes or analyti-
cal models that operate on the individual probability
distributions to produce a single ‘‘combined’’ proba-
bility distribution. For example, we might just take
the averages of probabilities from multiple experts.
Reviews of the literature on mathematical combina-
tion of probability distributions include Winkler
(1968), French (1985), Genest and Zidek (1986),
and Cooke (1991); Clemen (1989) reviews the
broader area of combining forecasts (see also Bunn,
1988). Mathematical aggregation methods range
from simple summary measures such as arithmetic
or geometric means of probabilities to procedures
based on axiomatic approaches or on various models
of the information-aggregation process requiring
inputs regarding characteristics such as the quality
of and dependence among the experts’ probabilities.

In contrast, behavioral aggregation approaches
attempt to generate agreement among the experts
by having them interact in some way. This interac-
tion may be face-to-face or may involve exchanges
of information without direct contact. Behavioral
approaches consider the quality of individual expert
judgments and dependence among such judgments
implicitly rather than explicitly. As information is
shared, it is anticipated that better arguments and
information will be more important in influencing
the group and that redundant information will
be discounted.

In Sections 2 and 3, we discuss mathematical
and behavioral methods, respectively, for combining
experts’ probability distributions. Some empirical
results regarding these approaches are presented
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in Section 4, and in Section 5 we summarize our
views on the key issues in the combination of
experts’ probability distributions in risk analysis.

2. MATHEMATICAL COMBINATION
METHODS

2.1. Axiomatic Approaches

Early work on mathematical aggregation of
probabilities focused on axiom-based aggregation
formulas. In these studies, the strategy was to postu-
late certain properties that the combined distribution
should follow and then derive the functional form of
the combined distribution. French (1985) and Genest
and Zidek (1986) provide critical reviews of this liter-
ature, and our summary here draws heavily on
these sources.

An appealing approach to the aggregation of
probability distributions is the linear opinion pool,
so named by Stone (1961), and dating back to Laplace
(Bacharach, 1979):

p(�) � �n

i�1
wipi (�), (1)

where n is the number of experts, pi(�) represents
expert i’s probability distribution for unknown �,
p(�) represents the combined probability distribu-
tion, and the weights wi are non-negative and sum to
one. For simplicity, we will use p to represent a mass
function in the discrete case and a density function
in the continuous case and will ignore minor technical
issues involving the difference between the two cases
in order to focus on the more important underlying
conceptual and practical issues. As a result, we will
often use ‘‘probabilities’’ as a shorthand for ‘‘proba-
bilities or densities’’ or ‘‘probability distributions.’’

The linear opinion pool clearly is just a weighted
linear combination of the experts’ probabilities, and
as such it is easily understood and calculated. More-
over, it satisfies a number of seemingly reasonable
axioms. For example, it satisfies the unanimity prop-
erty; if all of the experts agree on a probability, then
the combined probability must also agree. Of particu-
lar note, the linear opinion pool is the only combina-
tion scheme that satisfies the marginalization prop-
erty (MP). Suppose � is a vector of uncertain
quantities, and the decision maker is interested in
just one element of the vector, �j . According to MP,
the combined probability is the same whether one
combines the experts’ marginal distributions of �j or

combines the experts’ joint distributions of the vector
� and then calculates the marginal distribution of �j .

The weights in (1) clearly can be used to repre-
sent, in some sense, the relative quality of the differ-
ent experts. In the simplest case, the experts are
viewed as equivalent, and (1) becomes a simple arith-
metic average. If some experts are viewed as ‘‘better’’
than others (in the sense of being more precise be-
cause of better information, for example), the ‘‘bet-
ter’’ experts might be given greater weight. In some
cases it is possible for some of the weights to be
negative (Genest, 1984). The determination of the
weights is a subjective matter, and numerous inter-
pretations can be given to the weights (Genest &
McConway, 1990).

Another typical combination approach uses
multiplicative averaging and is sometimes called a
logarithmic opinion pool. In this case, the combined
probability distribution is of the form

p(�) � k �
n

i�1

pi (�)wi, (2)

where k is a normalizing constant and the weights
wi satisfy some restrictions to assure that p(�) is a
probability distribution. Typically, the weights are
restricted to sum to one. If the weights are equal (to
1/n), then the combined distribution is proportional
to the geometric mean of the individual distributions.

Formula (2) satisfies the principle of external
Bayesianity (EB). Suppose a decision maker has con-
sulted the experts, has calculated p(�), but has subse-
quently learned some new information relevant to �.
Two choices are available. One is to use the informa-
tion first to update the experts’ probability distribu-
tions pi(�) and then combine them. The other is to
use the information to update the combined p(�)
directly. A formula satisfies EB if the result is the
same in each case.

Cooke (1991) presents a generalization of the
linear and logarithmic opinion pools. This generaliza-
tion begins by taking a weighted average not of the
probability distributions, but of the probability distri-
butions raised to the rth power. He then raises this
weighted average to the 1/r power and normalizes
it. When r � 1, this is the linear opinion pool, when
r approaches zero it approaches the logarithmic opin-
ion pool, and for other values of r it gives yet other
combination rules.

Rules such as (1) or (2) may be quite reasonable,
but not necessarily because of connections with prop-
erties such as MP or EB. Difficulties with the axioms
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themselves are discussed elsewhere (French (1985)
and Genest & Zidek (1986)). Lindley (1985) gives
an example of the failure of both axioms in a straight-
forward example, with the interpretation that MP
ignores important information and EB requires that
the form of the pooling function not change. In addi-
tion, French (1985) points out that impossibility theo-
rems exist (along the lines of Arrow’s (1951) classic
work on social choice theory) whereby a combining
rule cannot satisfy simultaneously a number of seem-
ingly compelling desiderata. Moreover, despite the
work of Genest and McConway (1990) no founda-
tionally based method for determining the weights
in (1) or (2) is available.

2.2. Bayesian Approaches

French (1985), Lindley (1985), and Genest and
Zidek (1986) all conclude that for the typical risk
analysis situation, in which a group of experts must
provide information for a decision maker, a Bayesian
updating scheme is the most appropriate method.
Winkler (1968) provides a Bayesian framework for
thinking about the combination of information and
ways to assess differential weights. Building on this
framework, Morris (1974, 1977) formally establishes
a clear Bayesian paradigm for aggregating informa-
tion from experts. The notion is straightforward. If n
experts provide information g1 , . . ., gn to a decision-
maker regarding some event or quantity of interest
�, then the decision maker should use Bayes’ Theo-
rem to update a prior distribution p(�):

p* � p(� � g1 , . . ., gn) �
p(�) L(g1 , . . ., gn��)

p(g1 , . . ., gn)
, (3)

where L represents the likelihood function associated
with the experts’ information. This general principle
can be applied to the aggregation of any kind of
information, ranging from the combination of point
forecasts or estimates to the combination of individ-
ual probabilities and probability distributions. Rest-
ing on the solid ground of probability theory, includ-
ing requirements of coherence as explicated by de
Finetti (1937) and Savage (1954), Morris’s Bayesian
paradigm provides a compelling framework for con-
structing aggregation models. In the past two de-
cades, attention has shifted from the axiomatic
approach to the development of Bayesian combina-
tion models.

At the same time that it is compelling, the Bayes-
ian approach is also frustratingly difficult to apply.

The problem is the assessment of the likelihood func-
tion L(g1 , . . ., gn��). This function amounts to a
probabilistic model for the information g1 , . . ., gn,
and as such it must capture the interrelationships
among � and g1 , . . ., gn . In particular, it must account
for the precision and bias of the individual gis, and
it must also be able to model dependence among the
gis. For example, in the case of a point forecast, the
precision of gi refers to the accuracy with which expert
i forecasts � and bias is the extent to which the fore-
cast tends to fall consistently above or below �. De-
pendence involves the extent to which the forecast
errors for different experts are interrelated. For ex-
ample, if expert i overestimates �, will expert j tend
to do the same?

The notions of bias, precision, and dependence
are also crucial, but more subtle, in the case of com-
bining probability distributions. Bias, for example,
relates to the extent to which an expert can provide
calibrated probability judgments. That is, an expert
is empirically calibrated if, upon examining those
events for which the expert judged an x percent
chance of occurrence, it turns out that x percent;
actually occur. Precision relates to the ‘‘certainty’’ of
an expert; a calibrated expert who more often as-
sesses probabilities close to zero or one is more pre-
cise. In the case of assessing a probability distribution
for continuous �, a more precise expert assessment
is one that is both calibrated and at the same time
has less spread (possibly measured as variance). De-
pendence among such distributions might refer to
the tendency of the experts to report similar probabil-
ities.

Because of the difficulty of assessing an appro-
priate likelihood function ‘‘from scratch,’’ consider-
able effort has gone into the creation of ‘‘off-the-
shelf’’ models for aggregating single probabilities
(e.g., Lindley, 1985; Clemen & Winkler, 1987) and
probability distributions (Winkler, 1981; Lindley,
1983; Mendel & Sheridan, 1989). We will review a
number of these models.

2.2.1. Bayesian Combinations of Probabilities

Suppose that � is an indicator variable for a spe-
cific event, and the experts provide probabilities that
� � 1 (i.e., that the event will occur). How should
these probabilities be combined? Clemen and Win-
kler (1990) review and compare a number of different
Bayesian models that might be applied in this situa-
tion. Here we review four of these models.
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Let pi (i � 1, . . ., n) denote expert i’s stated
probability that � occurs. Expressed in terms of the
posterior odds of the occurrence of �, q* � p* /
(1 � p*), the models are as follows:
Independence:

q* �
p0

1 � p0
�

n

i�1

f1i(pi�q � 1)
f0i(pi�q � 0)

, (4)

where f1i ( f0i) represents the probability of expert i
giving probability pi conditional on the occurrence
(non-occurrence) of �, and p0 denotes the prior prob-
ability p(� � 1). This model reflects the notion that
each expert brings independent information to the
problem of assessing p*. Thus, more experts can
mean more certainty. For example, if all experts say
that the probability is 0.6, then p* will tend to be
much higher than 0.6.
Genest and Schervish:

q* �

p1�n
0 �

n

i�1

p0 � �i (pi � �i)

(1 � p0)1�n �
n

i�1

1 � [p0 � �i(pi � �i)]
, (5)

where �i is the decision maker’s marginal expected
value of pi and �i is interpreted as the coefficient of
linear regression of � on pi . This model is from Genest
and Schervish (1985) and is derived on the assump-
tion that the decision maker (or assessment team)
can assess only certain aspects of the marginal distri-
bution of expert i’s probability pi. It is similar to the
independence model, but allows for miscalibration
of the pis in a specific manner.
Bernoulli:

p* � �n

i�1
�ipi . (6)

This model, which is from Winkler (1968) and Morris
(1983), invokes the idea that each expert’s informa-
tion is equivalent to a sample from a Bernoulli pro-
cess with parameter �. The resulting p* is a convex
combination of the pis, with the coefficients interpre-
ted as being directly proportional to the amount of
information each expert has.
Normal:

q* �
p0

1 � p0
Exp [q� ��1 (M1 � M0)

� (M1 � M0)� ��1 (M1 � M0)/2], (7)

where q� � (log[p1/(1 � p1)], . . ., log[pn/(1 � pn)])
is the vector of log-odds given by the experts, a prime

denotes transposition, and the likelihood functions
for q, conditional on � � 1 and � � 0, are modeled
as normal with means M1 and M0 , respectively, and
common covariance matrix �. This model captures
dependence among the experts’ probabilities through
the multivariate-normal likelihood functions, and is
developed in French (1981) and Lindley (1985). Cle-
men and Winkler (1987) use this model in studying
meteorological forecasts.

These four models all are consistent with the
Bayesian paradigm, yet they are clearly all different.
The point is not that one or another is more appro-
priate overall, but that different models may be ap-
propriate in different situations, depending on the
nature of the situation and an appropriate description
of the experts’ probabilities. Technically, these differ-
ences give rise to different likelihood functions, which
in turn give rise to the different models.

2.2.2. Bayesian Models for Combining Probability
Distributions

Just as the models above have been developed
specifically for combining event probabilities, other
Bayesian models have been developed for combining
probability distributions for continuous �. Here we
review some of these models.

Winkler (1981) presents a model for combining
expert probability distributions that are normal. As-
sume that each expert provides a normal distribution
for � with mean �i and variance �2

i. The vector of
means � � (�1, . . ., �n) represents the experts’ esti-
mates of �. Thus, we can work in terms of a vector
of errors, 	 � (�1 � �, . . ., �n � �). These errors are
modeled as multivariate normally distributed with
mean vector (0, . . ., 0) and covariance matrix �,
regardless of the value of �. Let e� � (1, . . ., 1), a
conformable vector of ones. Assuming a noninforma-
tive prior distribution for �, the posterior distribution
for � is normal with mean �* and variance �*2, where

�* � e���1 �/e� ��1e (8a)

and

�*2 � (e� ��1e)�1. (8b)

In this model the experts’ stated variances �2
i are not

used directly (for an extension, see Lindley (1983)),
although the decision-maker may let the ith diagonal
element of � equal �2

i .
The normal model has been important in the

development of practical ways to combine expert
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judgments. The typical minimum-variance model for
combining forecasts is consistent with the normal
model (e.g., see Bates & Granger, 1969; Newbold &
Granger, 1974; Winkler & Makridakis, 1983). The
multivariate-normal likelihood embodies the avail-
able information about the qualities of the experts’
opinions, especially dependence among them. Biases
can easily be included in the model via a non-zero
mean vector for 	. Clemen and Winkler (1985) use
this normal model to show how much information is
lost owing to dependence, and they develop the idea
of equivalent independent information sources. Win-
kler and Clemen (1992) show how sensitive the poste-
rior distribution is when correlations are high, which
is the rule rather than the exception in empirical
studies. Chhibber and Apostolakis (1993) also con-
duct a sensitivity analysis and discuss the importance
of dependence in the context of the normal model.
Schmittlein, Kim, and Morrison (1990) develop pro-
cedures to decide whether to use weights based on the
covariance matrix or to use equal weights. Similarly,
Chandrasekharan, Moriarty, and Wright (1994) pro-
pose methods for investigating the stability of weights
and deciding whether to eliminate some experts from
the combination.

Although the normal model has been useful, it
has some shortcomings. In particular, one must find
a way to fit the expert judgments into the normal
framework. If the experts have provided distributions
that are unimodal and roughly symmetric, this is gen-
erally not a problem. Otherwise, some sort of trans-
formation is required. The covariance matrix � typi-
cally is estimated from data; Winkler (1981) derives
a formal Bayesian model when � is viewed as an
uncertain parameter. Assessing � subjectively is pos-
sible; Gokhale and Press (1982) and Clemen and
Reilly (1999) discuss the assessment of correlation
coefficients via a number of different probability
transformations. Finally, the posterior distribution is
always a normal distribution, and typically is a com-
promise. For example, suppose two experts give
�1 � 2, �2 � 10, and �2

1 � � 2
2 � 1. Then the posterior

distribution will be a normal distribution with mean
�* � 6 and variance (1 � 
)/2, where 
 is the correla-
tion coefficient between the two experts’ errors. Thus,
the posterior distribution puts almost all of the proba-
bility density in a region that neither of the individual
experts thought likely at all. In a situation such as
this (and assuming that the disagreement is not due
to a disagreement about variable definition!), it might
seem more reasonable to have a bimodal posterior
distribution reflecting the two experts’ opinions. Lin-

dley (1983) shows how such a bimodal distribution
can arise from a t-distribution model.

Another variant on the normal model is a Bayes-
ian hierarchical model (Lipscomb, Parmigiani, &
Hasselblad, 1998) that allows for differential random
bias on the part of the experts by assuming that each
expert’s error mean in the normal model can be
viewed as a random draw from a second-order distri-
bution on the error means. Dependence among ex-
perts’ probabilities arises through the common
second-order distribution. Hierarchical models
generally result in an effective shrinkage of individual
means to the overall mean and tend to provide robust
estimates. Because they involve another layer of un-
certainty, they can be complex, particularly when the
parameters are all viewed as unknown and requiring
prior distributions.

Mendel and Sheridan (1989) develop a Bayesian
model (also discussed in some detail in Cooke, 1991)
that allows for the aggregation of probability distribu-
tions that are not necessarily normal. Assume that
each expert always provides m fractiles of his or her
distribution. For each expert, this defines m � 1 bins
into which the actual outcome could fall. With n
experts, an (m � 1)n array represents all of the possi-
ble joint outcomes that could conceivably occur. Each
cell in this array represents the actual outcome falling
into a specific bin for expert 1, a bin for expert 2,
and so on for all n experts. Data on previous assess-
ments and outcomes provides information about the
likelihood of an outcome falling in each bin. The
model incorporates this information in a Bayesian
way, updating the distribution on the parameters rep-
resenting the probability for each bin as new informa-
tion is obtained.

When the experts provide a set of distributions
for a new variable, �, there are specific bins (at most
nm � 1) into which the actual realization of � may
fall, owing to the way the experts’ fractiles interleave.
To find the aggregated probability distribution for �,
the distribution is normalized over the possible bins
into which the actual � may fall.

Mendel and Sheridan’s model conveniently com-
bines issues of both individual calibration and depen-
dence, and it does so in capturing information about
the occurrences of actual outcomes in the (m � 1)n

array. In fact, this approach is perhaps most appropri-
ately termed joint calibration, because it produces
probability distributions that are based on a multivar-
iate version of the traditional single-expert calibra-
tion approach. The notion of joint calibration is also
discussed by Clemen (1986), who notes that Morris’s
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Bayesian aggregation paradigm can be viewed as a
joint-calibration exercise. In addition, Clemen (1985)
and Clemen and Murphy (1986) use a joint-calibra-
tion procedure similar in spirit to Mendel and Sheri-
dan to study the combination of meteorological fore-
casts of precipitation.

Many of the methods above require the estima-
tion of parameters of the likelihood function, and an
often unspoken assumption is that past data will be
used for such estimation. Although data-based meth-
ods might be viewed as an important part of the
scientific process, it is often the case in risk analysis
that past data are not available. In such situations,
the decision-maker or the risk-assessment team can
subjectively estimate the parameters (or assess prior
distributions for the parameters). This can be a diffi-
cult task, however; consider the assessment of the
elements of the covariance matrix in the normal
model or of the probabilities associated with each
cell in the (m � 1)n array in Mendel and Sheri-
dan’s model.

Some effort has been directed toward the devel-
opment of Bayesian aggregation methods that are
suitable for the use of subjective judgment in de-
termining the likelihood function. Clemen and Win-
kler (1993), for example, present a process for subjec-
tively combining point estimates from experts; the
approach is based on the sequential assessment of
conditional distributions among the experts’ fore-
casts, where the conditioning is specified in an influ-
ence diagram. Formal attention has also been given
to Bayesian models for situations in which the experts
provide only partial specifications of their probability
distributions (e.g., moments, fractiles) or the decision
maker is similarly unable to specify the likelihood
function fully (Genest & Schervish, 1985; West, 1992;
West & Crosse, 1992; Gelfand, Mallick, & Dey, 1995).
Bunn (1975) develops a model that considers only
which expert performs best on any given occasion
and uses a Bayesian approach to update weights in
a combination rule based on past performance.

Jouini and Clemen (1996) develop a method for
aggregating experts’ probability distributions in
which the multivariate distribution (likelihood func-
tion) is expressed as a function of the marginal distri-
butions. A copula function (e.g., Dall’Aglio et al.,
1991) provides the connections, including all aspects
of dependence, among the experts’ judgments as rep-
resented by the marginal distributions. For example,
suppose that expert i assesses a continuous density for
�, fi(�), with corresponding cumulative distribution
function Fi(�). Then Jouini and Clemen show that

under reasonable conditions, the decision maker’s
posterior distribution is

P(�� f1 , . . ., fn)

� c[1 � F1(�), . . ., 1 � Fn(�)] �
n

i�1

fi(�), (9)

where c represents the copula density function.
In the copula approach, judgments about indi-

vidual experts are entirely separate from judgments
about dependence. Standard approaches for calibrat-
ing individual experts (either data-based or subjec-
tive) can be used and involve only the marginal distri-
butions. On the other hand, judgments about
dependence are made separately and encoded into
the copula function. Regarding dependence, Jouini
and Clemen suggest the use of a member of the Ar-
chimedian class of copulas, all of which treat the
experts symmetrically in terms of dependence. If
more flexibility is needed, the copula that underlies
the multivariate normal distribution can be used
(Clemen & Reilly, 1999).

In other work involving the specification of
the likelihood function, Shlyakhter (1994) and Shly-
akhter et al. (1994) develop a model for adjusting
individual expert distributions to account for the
well-known phenomenon of overconfidence, and
they estimate the adjustment parameter for two dif-
ferent kinds of environmental risk variables. Ham-
mitt and Shlyakhter (1999) show the implications of
this model for combining probabilities.

In this section, we have discussed a number of
mathematical methods for combining experts’ proba-
bility distributions. A number of important issues
should be kept in mind when comparing these ap-
proaches and choosing an approach for a given appli-
cation. These issues include the type of information
that is available (e.g., whether full probability distri-
butions are given by the experts or just some partial
specifications of these distributions); the individuals
performing the aggregation of probabilities (e.g., the
risk assessment team, a single decision-maker or ana-
lyst, or some other set of individuals); the degree
of modeling to be undertaken (assessment of the
likelihood function, consideration of the quality of
the experts’ judgments); the form of the combination
rule (which could follow directly from modeling or
could be taken as a primitive, such as a weighted
average); the specification of parameters of the com-
bination rule (e.g., the weights); and the consideration
of simple vs. complex rules (e.g., simple averages
versus more complex models). The empirical results
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in Section 4 will shed some light on some of these
questions, and we will discuss the issues further in
Section 6.

3. BEHAVIORAL APPROACHES

Behavioral combination approaches require ex-
perts to interact in some fashion. Some possibilities
include face-to-face group meetings, interaction by
computer, or sharing of information in other ways.
The group may assess probabilities or forecasts, or
simply discuss relevant issues and ideas with only
informal judgmental assessment. Emphasis is some-
times placed on attempting to reach agreement, or
consensus, within the group of experts; at other times
it is simply placed on sharing of information and
having the experts learn from each other. The degree
to which the risk-assessment team is involved in struc-
turing and facilitating the expert interaction can vary.
Specific procedures (e.g., Delphi, Nominal Group
Technique) can be used, or the risk-assessment team
can design the interaction process to suit a particu-
lar application.

The simplest behavioral approach is to assemble
the experts and assign them the task of generating
a ‘‘group’’ probability distribution. Discussion and
debate can be wide-ranging, presumably resulting in
a thorough sharing of individual information. Ideally,
such sharing of information leads to a consensus, and
under certain circumstances agreement ‘‘should’’ be
reached (e.g., Aumann, 1976). In practice, though,
experts often do not agree. Any group probabilities
that arise from the discussion may require the experts
to negotiate and compromise in some way. In this
sense, the so-called consensus may not reflect any
one expert’s thoughts perfectly. Instead, it is a state-
ment that each expert is willing to accept for the sake
of the group appearing to speak with one voice.

Group interaction can suffer from many prob-
lems (e.g., see Janis & Mann, 1977). Some individuals
may tend to dominate the discussions, new ideas may
be discouraged, or the group may ignore important
information. The phenomenon of group polarization
may occur, in which a group tends to adopt a position
more extreme than its information warrants (Plous,
1993). Hogarth (1977) points out, however, that inter-
action processes need not be dysfunctional. Having
experienced analysts serve as facilitators for the group
can improve the process. For example, decision con-
ferencing (Phillips, 1984, 1987) is a particular ap-
proach to structuring group discussion for decision-

making and group probability assessment. The role of
facilitators is very important in decision conferencing,
and Phillips and Phillips (1990) claim that the main
role of a facilitator should be to control the process
and structure of the group interaction (thereby trying
to head off dysfunctional aspects of interaction), not
to contribute substantively to the content of the dis-
cussion.

One of the oldest approaches to structuring
group judgments, the Delphi method, requires indi-
rect interaction (Dalkey, 1969; Linstone & Turoff,
1975; Parenté & Anderson-Parenté, 1987). Although
different variations exist, experts typically make indi-
vidual judgments (in our case, assessments of proba-
bility distributions), after which judgments are shared
anonymously. Each expert may then revise his or
her probabilities, and the process may be repeated.
Ideally, the experts would agree after a few rounds,
but this rarely happens. At the end of the Delphi
rounds, the experts’ final probability distributions
typically are combined mathematically.

The Nominal Group Technique (Delbecq, Van
de Ven, & Gustafson, 1975) is a related behavioral ag-
gregation approach. Experts first assess their proba-
bility distributions individually and then present those
distributions to other group members. Group discus-
sion follows with the assistance of a facilitator, after
which the experts may revise their probabilities. As
with Delphi, the final probability distributions may re-
quire mathematical aggregation. Lock (1987) pro-
poses a similar behavioral approach that stresses care-
ful task definition and advocacy of alternative
perspectives.

A recently proposed aggregation method de-
scribed byKaplan (1990) is designed toaccount explic-
itly for the information available to the group. In
Kaplan’s approach, a facilitator/analyst first leads the
experts through a discussion of the available informa-
tion. The objective of this discussion is to determine
the ‘‘consensus body of evidence’’ for the variable of
interest. When consensus is reached regarding the rel-
evant information, the analyst proposes a probability
distribution, conditioned on the consensus body of ev-
idence. At this point, the analyst must obtain assur-
ance from the experts that the evidence has been inter-
preted correctly in arriving at the probability
distribution. Because different experts may interpret
the evidence in different ways, the ‘‘group judgment’’
may differ from the individual experts’ judgments and
may result from something like a negotiation process
among the experts.

Our discussion in this section has been brief, not
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because behavioral combination approaches are not
important but because they are, for the most part, not
a set of fixed procedures. Delphi, the Nominal Group
Technique, decision conferencing, and Kaplan’s ap-
proach are exceptions. There are, however, a number
of important issues relating to behavioral combina-
tion: the type of interaction (e.g., face-to-face, via com-
puter, anonymous); the nature of the interaction (e.g.,
sharing information on relevant issues, sharing proba-
bilities, trying to assess ‘‘group probabilities’’); the
possibility of individual reassessment after interac-
tion; and the role of the assessment team (e.g., as facili-
tators). Although the discussion of behavioral ap-
proaches is brief, the empirical evidence regarding
behavioral combination and related topics such as
group decision making is more extensive, as we shall
see in Section 4.

4. EMPIRICAL EVIDENCE

The various combining techniques discussed in
Sections 2 and 3 all have some intuitive appeal, and
some have a strong theoretical basis given that certain
assumptions are satisfied. The proof, of course, is in
the pudding. How do the methods perform in prac-
tice? Do the combination methods lead to ‘‘im-
proved’’ probability distributions? Do some appear
to perform better than others? Some evidence avail-
able from experimentation, analysis of various data
sets, and actual applications, including work on com-
bining forecasts that is relevant to combining proba-
bilities, is reviewed in this section.

4.1. Mathematical Versus Intuitive Aggregation

Before comparing different combination meth-
ods, we should step back and ask whether one should
bother with formal aggregation methods. Perhaps it
suffices for the decision-maker or the risk-assessment
team to look at the individual experts’ probability
distributions and to aggregate them intuitively, di-
rectly assessing a probability distribution in light of
the experts’ information.

Hogarth (1987, Ch. 3) discusses the difficulty
humans have in combining information from differ-
ent data sources. Although his discussion covers the
use of all kinds of information, his arguments apply
to the aggregation of expert opinion. Among other
phenomena, Hogarth shows how individuals tend to
ignore dependence among information sources, and

he relates this to Kahneman and Tversky’s (1972)
‘‘representativeness’’ heuristic. In a broad sense, Ho-
garth’s discussion is supported by psychological ex-
perimentation showing that expert judgments tend
to be less accurate than statistical models based on
criteria that the experts themselves claim to use.
Dawes, Faust, and Meehl (1989) provide a review of
this literature.

Clemen, Jones, and Winkler (1996) study the
aggregation of point forecasts. They use Winkler’s
(1981) normal model and Clemen and Winkler’s
(1993) conditional-distributions model, comparing
the probability distributions derived from these mod-
els with intuitively assessed probability distributions.
Although their sample size is small, the results sug-
gest that the mathematical methods perform some-
what better than intuitive assessment, and the authors
speculate that this is due to the structured nature of
the assessments required in the mathematical-aggre-
gation models.

4.2. Comparisons Among Mathematical Methods

Some evidence is available regarding the relative
performance of various mathematical aggregation
methods. In an early study, Staël von Holstein (1972)
studied averages of probabilities relating to stock
market prices. Most of the averages performed simi-
larly, with weights based on rankings of past perfor-
mance slightly better than the rest.

Seaver (1978) evaluated simple and weighted
averages of individual probabilities. The perfor-
mance of the different combining methods was simi-
lar, and Seaver’s conclusion was that simple combina-
tion procedures, such as an equally weighted average,
produces combined probabilities that perform as well
as those from more complex aggregation models. Fer-
rell (1985) reached the same conclusion in his review
of mathematical aggregation methods, and Clemen
and Winkler (1987) reported similar results in aggre-
gating precipitation probability forecasts.

In a follow-up study, Clemen and Winkler (1990)
studied the combination of precipitation forecasts us-
ing a wider variety of mathematical methods. One
of the more complex methods that was able to ac-
count for dependence among the forecasts performed
best. Although a simple average was not explicitly
considered, a weighted average that resulted in
weights for the two forecasts that were not widely
different performed almost as well as the more com-
plex scheme.
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Winkler and Poses (1993) report on the combi-
nation of experts’ probabilities in a medical setting.
For each patient in an intensive care unit, four indi-
viduals (an intern, a critical care fellow, a critical
care attending, and a primary attending physician)
assessed probabilities of survival. All possible combi-
nations (simple averages) of these four probabilities
were evaluated. The best combination turned out to
be an average of probabilities from the two physicians
who were simultaneously the most experienced and
the least similar, with one being an expert in critical
care and the other having the most knowledge about
the individual patient.

All of these results are consistent with the gen-
eral message that has been derived from the vast
empirical literature on the combination of point fore-
casts. That message is that, in general, simpler aggre-
gation methods perform better than more complex
methods. Clemen (1989) discusses this literature. In
some of these studies, taking into account the quality
of the expert information, especially regarding rela-
tive precision of forecasts, turns out to be valuable.

The above studies focus on the combination of
point forecasts or event probabilities, and mathemati-
cal methods studied have been either averages or
something more complex in which combination
weights were based on past data. Does the result
that simpler methods work better than more complex
methods carry over to the aggregation of probability
distributions, especially when the quality of the ex-
pert opinions must be judged subjectively? Little spe-
cific evidence appears to be available on this topic.
Clemen, Jones, and Winkler (1996) reported that
Winkler’s (1981) normal model and the more com-
plex conditional-distributions model (Clemen &
Winkler, 1993) performed at about the same level.

Even though little evidence exists on the perfor-
mance of combination methods for probability distri-
butions, do other kinds of evidence exist that might
shed light on the performance of the different kinds
of methods? The answer is a qualified ‘‘yes.’’ The
Bayesian approach to aggregating expert probabili-
ties can be viewed as an exercise in decomposition.
Rather than a decision maker holistically assessing a
probability distribution in light of expert reports, the
Bayesian approach decomposes the problem into one
of making assessments about expert judgments that
are then recomposed via Bayes Theorem. Thus, for
prospective evidence on the performance of Bayesian
approaches, we appeal to the growing literature on
the value of decomposing probability judgments into
smaller and more manageable assessment tasks. Rav-

inder, Kleinmuntz, and Dyer (1988) provide a theo-
retical argument for the superiority of decomposed
assessments. Wright, Saunders, and Ayton (1988),
though, found little difference between holistic and
decomposed probability assessments; on the other
hand, Hora, Dodd, and Hora (1993) provide empiri-
cal support for decomposition in probability assess-
ment. With regard to decomposition and the assess-
ment of point estimates, Armstrong, Denniston, and
Gordon (1975) and MacGregor, Lichtenstein, and
Slovic (1988) found that decomposition was valuable
in improving the accuracy of those estimates. Morgan
and Henrion (1990) review the empirical support for
decomposition in probability assessment, and Bunn
and Wright (1991) do the same for forecasting tasks
in general. A tentative conclusion is that, for situa-
tions in which the aggregation must be made on the
basis of subjective judgments, appropriate decompo-
sition of those judgments into reasonable tasks may
lead to better performance. Moreover, decomposi-
tion enables the use of different sets of experts for
different variables, thereby matching expertise to as-
sessment task.

4.3. Behavioral Approaches

Perhaps the best known results from the behav-
ioral group–judgment literature is group polariza-
tion, the tendency of groups to adopt more extreme
positions than would individual members. ‘‘Group-
think’’ (Janis, 1982) is an extreme example of this
phenomenon. According to Plous (1993), hundreds
of studies of group polarization have been performed
over the years, with the consistent conclusion that
after discussion, a group will typically advocate a
riskier course of action than they would if acting
individually or without discussion.

The results on group polarization would appear
to suggest caution when using behavioral combina-
tion methods. However, it is important to realize that
the results on group polarization apply primarily to
unstructured group discussions. It has been shown
that group polarization can be deterred by such mea-
sures as delaying commitment of the group, spreading
power among members, seeking additional informa-
tion, and encouraging conflict among members (see
Park, 1990). In the context of group probabilities, the
polarization results indicate that groups might tend
to be overconfident about their conclusions. Sniezek
(1992) reviews work on confidence assessment in
group decision-making and concludes that groups are
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more confident than individuals and that they appear
to be overconfident. In an experimental study of
group decision-making behavior, Innami (1994) finds
that the quality of group decisions increases to the
extent that group members exchange facts and rea-
sons (a ‘‘reasoning’’ orientation) and decreases to
the extent that group members stick to their positions
(a ‘‘positional’’ orientation), and that an intervention
that emphasizes a knowledge-based logical discussion
and consensual resolution of conflicts improves the
quality of group decisions.

Experimental conclusions with respect to group
judgment have been mixed. For example, a few stud-
ies on group-level judgment suggest caution. Myers
and Lamm (1975) report evidence that face-to-face
interaction in groups working on probability judg-
ments may lead to social pressures that are unrelated
to group members’ knowledge and abilities. Gustaf-
son et al. (1973), Fischer (1975), Gough (1975), and
Seaver (1978) found in their experiments that interac-
tion of any kind among experts led to increased over-
confidence and hence poorer calibration of group
probability judgments. More recently, Argote, Sea-
bright, and Dyer (1986) found that the representa-
tiveness heuristic is used more by groups than by
individuals, presumably leading to more biases (e.g.,
overconfidence) related to this heuristic. In a related
study, Tindale, Sheffey, and Filkins (1990) concluded
that groups committed the conjunction fallacy more
often than individuals. All of these results are gener-
ally consistent with the notion of group polarization.

A number of studies have examined the accuracy
of group judgments. In a review, Hastie (1986) con-
siders quantity estimation (comparable to point fore-
casting), problem solving, and answering almanac
questions, and Gigone and Hastie (1997) update this
review by considering relevant work that has ap-
peared in the intervening time. In general, groups
tend to perform better than the average individual,
but the best individual in a group often outperforms
the group as a whole. Looking only at quantity esti-
mation (most pertinent for risk-assessment studies),
the conclusion is that groups are only slightly (one-
eighth of a standard deviation) more accurate than
individuals on average. More recently, Sniezek and
Henry (1989, 1990) have produced experimental evi-
dence that the group’s advantage in quantitative esti-
mation may be somewhat greater than was reported
by Hastie.

Another review by Hill (1982), examining 50
years of research on decision-making, reported simi-
lar results. She found that group performance is typi-

cally better than the average group member, but not
as good as the best member. Einhorn, Hogarth, and
Klempner (1977) and Uecker (1982) report experi-
ments in which groups performed at the level of the
best individual member. Both cases used students as
subjects, and both allowed unlimited exchange of
information but required that the group reach a con-
sensus.

A related finding is that group accuracy often
depends on the rules used by the group to arrive at
a single judgment. Sniezek (1989) compared five
types of group-aggregation methods. Four were be-
havioral-aggregation methods, and the fifth was a
simple average of individual judgments. All four of
the behavioral methods were more accurate than the
average, but of those four, the best results by far
were obtained by the ‘‘dictator’’ rule, in which the
group selects on the basis of discussion a single indi-
vidual whose opinion the group adopts. In an interest-
ing twist, though, the chosen spokesperson always
modified his or her opinion to be closer to the group
average, thereby decreasing group accuracy slightly.
In this case, the subjects again were college students,
and the task was sales forecasting.

One of Sniezek’s five group techniques was Del-
phi, and her results were similar to earlier studies on
the accuracy of Delphi (e.g., Dalkey, 1969; Dalkey &
Brown, 1971). These studies showed that forecasts of
individuals converged and that the Delphi technique
performed slightly better than a similar procedure
with face-to-face open interaction groups. In a study
of bankers, Brockhoff (1975) found the same results
for almanac questions, but face-to-face interaction
provided better forecasts for economic forecasting.
More recent work on Delphi has led to mixed results;
Hastie (1986) and Parenté and Anderson-Parenté
(1987) review this literature. The conclusion appears
to be that Delphi has no clear advantage over other
behavioral combination methods.

4.4. Mathematical Versus Behavioral Aggregation

Most of the research comparing mathematical
and behavioral aggregation has focused on compari-
sons with a simple average of forecasts or probabili-
ties rather than with more complicated mathematical
combination methods. Results from these compari-
sons have been mixed. For example, for forecasting
college students’ grade-point averages, Rohrbaugh
(1979) found that behavioral aggregation worked bet-
ter than taking simple averages of individual group
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members’ forecasts. Hastie (1986), Hill (1982), and
Sniezek (1989) reached similar conclusions, as de-
scribed above. However, Lawrence, Edmundson, and
O’Connor (1986) reported that mathematical combi-
nation improved on the behavioral combination of
forecasts. In Flores and White’s (1989) experiment,
mathematical and behavioral combinations per-
formed at approximately the same level. Goodman
(1972) asked college students to assess likelihood ra-
tios in groups and individually; the behavioral combi-
nation showed slight improvement over the mechani-
cal combination.

Seaver (1978) asked student subjects to assess
discrete and continuous probability distributions for
almanac questions. Several different conditions were
used: individual assessment, Delphi, Nominal Group
Technique, free-form discussion, and two other ap-
proaches that structured information sharing and dis-
cussion. Both simple and weighted averages of the
individual probabilities were also calculated. The
conclusion was that interaction among the assessors
did not improve on the performance of the aggre-
gated probabilities, although the subjects did feel
more satisfied with the behavioral aggregation re-
sults.

Reagan-Cirincione (1994) used an intensive
group process intervention involving cognitive feed-
back and a computerized group support system for a
quantity estimation task. The results show this to be
the only study reviewed by Gigone and Hastie (1997)
for which group judgments are more accurate than a
mathematical average of the individual judgments. In
general, Gigone and Hastie (1997) conclude that the
evidence indicates that a simple average of individual
judgments tends to outperform group judgments.
Moreover, they discuss ways in which groups might
improve over mathematical combinations and con-
clude that ‘‘there is a limited collection of judgment
tasks in which groups have a legitimate opportunity to
outperform individual judgments’’ (p. 162).

5. CONCLUSION

We have reviewed a variety of methods for com-
bining probability distributions in risk analysis. The
empirical results reviewed in Section 4 suggest that
mathematical aggregation outperforms intuitive ag-
gregation and that mathematical and behavioral ap-
proaches tend to be similar in performance, with
mathematical rules having a slight edge. A compari-
son of behavioral approaches yields no clear-cut con-

clusions. As for mathematical combination methods,
simple combination rules (e.g., a simple average) tend
to perform quite well. More complex rules sometimes
outperform the simple rules, but they can be some-
what sensitive, leading to poor performance in some
instances. All of these conclusions should be qualified
by noting that they represent tendencies over a series
of different empirical studies, generally conducted in
an experimental setting as opposed to occurring in
the context of a real-world risk analysis. These studies
do not, unfortunately, directly assess the precise issue
that needs to be addressed. For the purpose of the
typical risk analysis in which probability distributions
are to be combined, but limited past data are avail-
able, the real question is, ‘‘What is the best way to
combine the judgments?’’ Thus, although we should
pay careful attention to available empirical results
and learn from them, we should think hard about
their generalizability to realistic risk-analysis applica-
tions.

Both the mathematical combination of probabil-
ities with some modeling and the use of interaction
among the experts have some intuitive appeal. It is
somewhat disappointing, therefore, to see that mod-
eling and behavioral approaches often provide results
inferior to simple combination rules. We feel a bit
like the investor who would like to believe that some
careful analysis of the stock market and some tips
from the ‘‘pros’’ should lead to high returns but finds
that buying a mutual fund which just represents a
stock market index such as the S & P 500 would
yield better returns. On the other hand, we should
remember that the simple combination rules do per-
form quite well, indicating that the use of multiple
experts and the combination of probabilities from
these experts can be beneficial. One message that
comes from the work on the combination of probabil-
ities is that, at a minimum, it is worthwhile to consult
multiple experts and combine their probabilities.

Another message is that further work is needed
on the development and evaluation of combination
methods. The challenge is to find modeling proce-
dures or behavioral approaches (or processes involv-
ing both modeling aspects and behavioral aspects)
that perform well enough to justify the extra cost
and effort that is associated with serious modeling
or expert interaction. On the behavioral side, Davis
(1992, p. 34) states: ‘‘The engineering of increases in
decision performance while maintaining [the advan-
tages of group decision making] is a proper challenge
for fundamental theory and research in applied psy-
chology.’’ Gigone and Hastie (1997, p. 166) echo this
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in their concluding comments: ‘‘The quality of group
decisions and judgments is an essential ingredient in
democratic institutions and societies, but research
on group judgment accuracy is stagnant. . . . Better
methods and analyses will help behavioral scientists,
engineers, and policymakers to design and select
group decision-making procedures that will increase
efficiency, justice, and social welfare.’’

Regarding mathematical combining procedures,
we believe that simple rules will always play an im-
portant role, because of their ease of use, robust
performance, and defensibility in public policy set-
tings where judgments about the quality of different
experts are eschewed. Simple rules do not, however,
allow explicit consideration of factors such as over-
confidence and dependence among experts. A model-
ing challenge is to develop mathematical approaches
that facilitate modeling and assessment, are robust
(e.g., avoid extreme situations such as highly negative
weights), and lead to improved performance. Chhib-
ber, Apostolakis, and Okrent (1994, p. 102) write as
follows: ‘‘The Bayesian aggregation tool is demon-
strably powerful, but it is not well understood . . .
Further studies to understand its behavior . . . need
to be undertaken to realize its full potential.’’ In
principle, the Bayesian approach allows for careful
control in adjusting for the quality of expert distribu-
tions, including overconfidence and dependence. It is
also worth noting that the normal and copula models
permit the symmetric treatment of the experts, in
which case simple combining rules fall out of these
models as special cases.

More generally, the process of combining proba-
bility distributions in risk analysis may well involve
both mathematical and behavioral aspects and should
be considered in the context of the overall process
for obtaining and utilizing expert judgment in a given
application (for discussions of this process, see the
references in Section 1). Important issues to consider
include the following.

● Selection of experts. Having dealt with the
combination of probabilities from experts in
this paper, we see natural implications for the
selection of experts whose probabilities are to
be combined. Experts who are very similar
(in modeling style, philosophy, access to data,
etc.) tend to provide redundant information,
and the high level of dependence means not
only minimal gains from aggregation but also
difficulties with some modeling approaches
due to multicollinearity and the extreme (very

large positive or negative) weights that can
result. Thus, heterogeneity among experts is
highly desirable. In terms of the number of
experts, Makridakis and Winkler (1983) and
Clemen and Winkler (1985) demonstrate the
diminishing marginal returns associated with
large numbers of experts. Their analyses, fur-
ther supported by Ferrell (1985), suggest using
three to five experts.

● Flexibility and process design. We believe that
there is no single, all-purpose combining rule
or combining process that should be used in all
situations. Rather, the design of the combining
process (as part of the overall expert judgment
process) should depend on the details of each
individual situation. This process design, con-
ducted by the decision-maker (or decision-
making body) in conjunction with the risk as-
sessment team, should take into account fac-
tors such as the nature and importance of the
uncertainties, the availability of appropriate
experts, past evidence available about the ex-
perts and about the quantities of interest, the
degree of uncertainty about quantities of inter-
est, the degree of disagreement among the ex-
perts, the costs of bringing experts together,
and a variety of other factors. We believe that
a carefully structured and documented process
is appropriate.

● The role of modeling versus rules. Risk analysis
applications involving combination have often
used simple combination rules, usually a sim-
ple average. Such simple rules are valuable
benchmarks, but careful consideration should
be given to modeling in order to include, in a
formal fashion, factors such as the quality of
the judgments from individual experts and the
dependence among experts. One possible sce-
nario is that the experts are judged to be ex-
changeable and their probabilities should be
treated symmetrically, but this should be a
conscious choice on the part of the risk assess-
ment team. The degree of modeling will vary
from case to case, ranging from fairly simple
modeling (e.g., unequal weights based on judg-
ments of relative precision) to more detailed
modeling (e.g., building a full copula model).
When little information is available about the
relative quality of and dependence among the
experts’ probabilities, a simple rule such as a
simple average is recommended.

● The role of interaction. This aspect of the com-
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bination process will also vary from case to
case, depending on such factors as the per-
ceived desirability of exchanging information
and the ease with which such information can
be exchanged. Evidence to date does not pro-
vide strong support for benefits of interaction
in the actual aggregation process, yet it has
considerable intuitive appeal and has been
used in risk analysis applications (e.g., EPRI,
1986; Hora & Iman, 1989; Winkler et al., 1995).
We feel that the jury is still out on the impact
of interaction on the quality of the resulting
combined probabilities and that any benefits
are most likely to come from exchanges of
information (possibly including individual ex-
perts’ probability distributions) as opposed to
forced consensus through group probability
assessments. This implies that mathematical
combination will still be needed after interac-
tion and individual probability assessment or
reassessment. Also, it is important that the
interaction process by carefully structured
with extensive facilitation (preferably by the
risk assessment team). We emphasize that our
conclusions here relate specifically to the ag-
gregation process; we believe that interaction
is valuable in ironing out differences in defini-
tions and assumptions, clarifying what is to be
forecast or assessed, and exchanging infor-
mation.

● The role of sensitivity analysis. It is helpful to
conduct a sensitivity analysis to investigate the
variation in the combined probabilities as pa-
rameters of combining models are varied. This
can help in decisions regarding the scope of
the modeling effort. A related note is that re-
porting the individual experts’ probabilities as
well as any combined probabilities provides
useful information about the range of opinions
in a given case as well as about the likely sensi-
tivity of combined probabilities to different
combining procedures.

● Role of the risk-assessment team. As should
be clear from the above discussion, the risk-
assessment team plays a very important role
in the combination of probability distributions
as well as in all other aspects of the expert
judgment process. With respect to mathemati-
cal combination, the team should perform any
modeling, make any assessments of expert
quality that are needed in the modeling pro-
cess, and choose the combination rule(s) to

be used. On the behavioral side, they should
structure any interaction and serve as facilita-
tors. In general, they are responsible for the
design, elicitation, and analysis aspects of the
combination process.

In summary, the combination of experts’ proba-
bility distributions in risk analysis is valuable for en-
capsulating the accumulated information for risk ana-
lysts and decision-makers and providing the current
state of expert opinion regarding important uncer-
tainties. Normatively and empirically, combining can
lead to improvements in the quality of probabilities.
More research is needed on the potential benefits of
different modeling approaches and the development
of mathematical combination rules. Likewise, contin-
ued research can lead to a better understanding of the
cognitive and social psychology of group judgments,
with the goal of further developing useful behavioral
aggregation procedures. The ability to use wisely in
practice both mathematical and behavioral aggrega-
tion methods, whether separately or in tandem, can
contribute greatly to the practice of risk analysis.
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