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Abstract

Linear pooling is by the far the most popular method for combining probability
forecasts. However, any nontrivial weighted average of two or more distinct, calibrated
probability forecasts is necessarily uncalibrated and lacks sharpness. In view of this,
linear pooling requires recalibration, even in the ideal case in which the individual
forecasts are calibrated. Toward this end, we propose a beta transformed linear opinion
pool (BLP) for the aggregation of probability forecasts from distinct, calibrated or
uncalibrated sources. The BLP method fits an optimal nonlinearly recalibrated forecast
combination, by compositing a beta transform and the traditional linear opinion pool.
The technique is illustrated in a simulation example and in a case study on statistical
and National Weather Service probability of precipitation forecasts.

Keywords: calibration, forecast combination, linear opinion pool, model averaging,
probability forecasting, reliability, resolution, sharpness

1 Introduction

Probabilistic forecasts take account of the uncertainty in a prediction, by taking the form
of a predictive probability distribution for a future quantity or event. The simplest case is
that of a future binary or dichotomous event, such as a recession versus no recession, or
rain versus no rain. In the binary case, a predictive probability distribution is simply an ex
ante probability for the event to happen. While the roots of probability forecasting can be
traced back to the 18th century, the transition to probability of precipitation forecasts by
the US National Weather Service in 1965 was perhaps the most influential and important
event in their development (Murphy 1998; Winkler and Jose 2008). In economics, the
Survey of Professional Forecasters has included probability variables since 1968 (Croushore
1993). Of course, there are many other important applications of probability forecasts,
including but not limited to medical diagnosis (Wilson et al. 1998; Pepe 2003), educational
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testing, and political and socio-economic foresight (Tetlock 2005). Arguably, a far-reaching
transdisciplinary transition to distributional forecasting is well under way (Gneiting 2008).

In many instances, multiple probability forecasts for the same event are available. In sur-
veys, economic experts might provide diverse probability assessments of a future recession.
Distinct numerical and/or statistical models might provide a collection of probability of
precipitation forecasts, and a group of physicians might assign individual survival probabil-
ities. In this type of situation, there is strong empirical evidence that combined probability
forecasts that draw an all the experts’ or models’ strengths result in improved predictive
performance. This is very much in the spirit of model averaging, which has primarily been
developed for the purpose of statistical inference (Hoeting et al. 1999).

Various ways of combining probability forecasts into a single aggregated forecast have been
proposed. Genest and Zidek (1986), Wallsten et al. (1997), Clemen and Winkler (1999, 2007)
and Primo et al. (2008) provide excellent reviews. In practice, most aggregation techniques
rely on a weighted linear combination of the individual probability forecasts, which is often
referred to as a linear opinion pool. Substantial empirical evidence attests to the benefits of
linear opinion pools, with successful applications ranging from meteorology (Sanders 1963;
Vislocky and Fritsch 1995; Baars and Mass 2005) to economics (Graham 1996), psychology
(Ariely et al. 2000), and medical diagnosis (Winkler and Poses 1993), among other fields.

The goal in probability forecasting is to maximize the sharpness of the forecasts subject
to calibration (Murphy and Winkler 1987; Gneiting, Balabdaoui and Raftery 2007). Cal-
ibration or reliability measures how close conditional event frequencies are to the forecast
probabilities. Sharpness describes how far away the forecasts are from the naive, climatolog-
ical baseline forecast, that is, the marginal event frequency (Gneiting et al. 2008; Winkler
and Jose 2008). The more extreme the forecast probabilities are, that is, the closer to the
most confident values of zero or one, the sharper the forecast. Strictly proper scoring rules
such as the Brier or quadratic score (Brier 1950; Selten 1998) and the logarithmic score
(Good 1952) provide summary measures of predictive performance that address calibration
and sharpness simultaneously (Gneiting and Raftery 2007).1

It is therefore critical that probability assessments are aggregated in ways that promote cal-
ibrated and sharp combined forecasts. In Section 2 we demonstrate a striking result, in that
any weighted linear combination of distinct, individually calibrated probability forecasts is
necessarily uncalibrated and lacks sharpness. In this light, linear opinion pools are subop-
timal, so in Section 3 we propose a nonlinear generalization, the beta-transformed linear
opinion pool (BLP). The BLP method fits an optimally recalibrated forecast combination,

1A scoring rule assigns a numerical score, S(x, y), to the probability forecast x ∈ [0, 1] and the binary
event y, where y = 1 if the event occurs and y = 0 otherwise. We consider scoring rules to be negatively
oriented penalties, that is, the smaller the better. A scoring rule is strictly proper if it encourages honest
assessments, that is, if

xS(x, 1) + (1 − x)S(x, 0) < xS(x′
, 1) + (1 − x)S(x′

, 0) for all 0 ≤ x 6= x
′ ≤ 1.

See Dawid (1986), Winkler (1996) and Gneiting and Raftery (2007) for reviews and discussion.
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by compositing a beta transform and the traditional linear opinion pool. Section 4 illustrates
the BLP method in a case study on statistical and National Weather Service probability of
precipitation forecasts at 29 major cities in the continental US. The BLP combined forecast
is calibrated and sharp and outperforms the individual and linearly combined forecasts. The
paper closes with a discussion in Section 5.

2 Some shortcomings of linearly combined probability

forecasts

The overarching message in this section is that linear opinion pools are generally uncal-
ibrated, even in the ideal case in which each individual source is calibrated. We give a
rigorous probabilistic version of this result in Theorem 2.1, which is then illustrated in a
simulation study.

2.1 Theoretical results

We work within a probabilistic framework which considers the joint distribution of the ran-
dom vector

(Y, p1, . . . , pk),

where Y ∈ {0, 1} is a binary or dichotomous event, and 0 ≤ p1, . . . , pk ≤ 1 are probability
forecasts that take values in the closed unit interval. This is akin to the setting in DeGroot
and Fienberg (1982, 1983) and Murphy and Winkler (1987), but considers an arbitrary
number, k, of individual probability forecasts, each of which is a random variable, with full
generality in the joint dependence structure. In this framework a probability forecast is any
random variable, p, that is measurable with respect to the σ-algebra generated by p1, . . . , pk,
with the linear opinion pool,

p = w1p1 + · · ·+ wkpk where w1, . . . , wk ≥ 0 and w1 + · · ·+ wk = 1, (1)

being one such example. The probability forecast p is calibrated for Y if2

P (Y = 1|p) = E (Y |p) = p almost surely.

From the basic properties of conditional expectations, it is immediate that if p is a calibrated
probability forecast then

Ep = EE (Y |p) = EY.

2This definition is in accordance with the economic, psychological, statistical and meteorological forecast-
ing literature and can be traced to Murphy and Winkler (1987) and Schervish (1989). It differs from the
game-theoretic approach to calibration that has been developed in a far-reaching, related strand of literature
(Dawid 1982; Foster and Vohra 1998; Lehrer 2001; Sandroni, Smorodinsky and Vohra 2003; Vovk and Shafer
2005; Al-Najjar and Weinstein 2008; Feinberg and Stewart 2008).
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This latter property can be thought of as a weak form of calibration, and we refer to it
as marginal consistency. It resembles the notion of marginal calibration for probabilistic
forecasts of continuous variables (Gneiting, Balabdaoui and Raftery 2007).

We are now in a position to state our key result. The proof is deferred to the Appendix.

Theorem 2.1. Suppose that p1, . . . , pk are calibrated for the binary event Y and such that

pi 6= pj with strictly positive probability for at least one pair i 6= j. Consider the linear

opinion pool,

p = w1p1 + · · · + wkpk,

where w1, . . . , wk > 0 and w1 + · · ·+ wk = 1. Let

q = P(Y = 1|p) = E(Y |p)

denote the recalibrated version of p, that is, the conditional probability of Y given p. Then

the following holds.

(a) The linear opinion pool p lacks calibration, in that q 6= p with strictly positive proba-

bility.

(b) The linear opinion pool p lacks sharpness, in that

E(p − p0)
2 < E(q − p0)

2 where p0 = Ep = Eq = EY.

In words, both p and q are marginally consistent, but on average p is closer to its

expectation, the naive climatological forecast p0, than its recalibrated version, q.

(c) The recalibrated forecast q is calibrated, that is, P(Y = 1|q) = q almost surely, and it

outperforms p, in that

ES(q, Y ) < ES(p, Y )

for every strictly proper scoring rule S.

The statement about the lack of calibration of the linear opinion pool in part (a) is our main
result.3 Part (b) concerns a lack of sharpness, which we express in terms of the expected
deviation from the climatological baseline probability, p0. For a sharp forecast, the forecast
probabilities are close to zero or one, so the larger this deviation the sharper the forecast
(Murphy and Winkler 1992; Gneiting et al. 2008; Winkler and Jose 2008).4 As a result,
the linear opinion pool is underconfident. Part (c) demonstrates the superiority of the
recalibrated forecast in terms of strictly proper scoring rules (Gneiting and Raftery 2007)

3A similar result that applies to the case of multiple density forecasts for a continuous quantity was proved
by Hora (2004). This uses a very different mode of calibration, and there is no apparent way of deducing
our result from Hora’s, or vice versa.

4It is readily seen that E(p − c)2 < E(q − c)2 irrespectively of the choice of the baseline probability, c.
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and is akin to Theorem 6.3 of Schervish (1989). Proper scoring rules address calibration and
sharpness simultaneously, so in view of parts (a) and (b) this is an unsurprising result.

We proceed to discuss related results in the literature. Theorem 2 of Wallsten and Diederich
(2001) considers the combination of expert probability judgements, assuming that the as-
sessments are conditionally independent and that each expert’s expressed (overt) opinion is
a monotone stochastic transform of a hidden (covert) opinion which is calibrated. Then the
simple average of the expert opinions becomes increasingly diagnostic of the future event as
the number of experts grows to infinity, roughly in the sense that if the average exceeds 1

2

the true conditional probability of the event converges to 1, and otherwise converges to 0.
In other words, the theoretical calibration curve becomes sigmoidal with a fixed point at
1

2
. In contrast to our Theorem 2.1, which is a finite sample result and does not make any

assumptions on the dependence structure, Wallsten and Diederich (2001) rely critically on
the asymptotic scenario and conditional independence.

Another related result is Theorem 4.1 of Genest and Schervish (1985), which adopts a
Bayesian point of view and derives a formula for the posterior opinion of a decision maker.
As Wallsten and Diederich (2001) note, the posterior opinion converges to 0 or 1 if the
individual judgements lie below or above 1

2
. This result also depends on the conditional

independence of the individual probability assessments.

Despite Theorem 2.1 being critical of the linear opinion tool, there is overwhelming empirical
evidence that linearly combined probability forecasts outperform individual forecasts. This is
not a contradiction and can readily be explained, by noting that linear opinion pools outper-
form individual forecasts, but are suboptimal themselves, and can potentially be improved
upon by using nonlinear recalibration methods.

2.2 Simulation study

We now illustrate our theoretical findings in a simulation study. First we describe a statistical
model that gives rise to a joint distribution for the binary event Y and probability forecasts
p1 and p2, which represent forecasters with access to independent sources of information.
Then we define linearly combined forecasts and assess calibration.

Specifically, let
p = Φ(a1 + a2),

where a1 ∼ N (0, 1) and a2 ∼ N (0, 2) are independent random variables and Φ denotes the
standard normal cumulative distribution function. Suppose that Y is a Bernoulli random
variable with conditional success probability

P(Y = 1| p) = E(Y | p) = p.

Forecaster 1 has access to a1 only. This assessor’s probability forecast p1 is the conditional
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Table 1: Maximum likelihood estimates of OLP and BLP parameters in the simulation
example, with standard errors in brackets.

Method w1 w2 α

OLP 0.246 (0.014) 0.754 (0.014)
BLP 0.519 (0.005) 0.481 (0.005) 9.55 (0.35)

event probability

p1 = P(Y = 1|a1) = E(Y |a1) = E(p|a1) = E [Φ(a1 + a2)|a1] = Φ

(
a1√
3

)

. (2)

The second forecaster has knowledge of source a2 only, whence probability forecast p2

becomes

p2 = P(Y = 1|a2) = Φ

(
a2√
2

)

. (3)

A detailed derivation of the final equality in (2) and (3) is given in the Appendix. Evidently,
p, p1 and p2 are calibrated.

We take p1 and p2 as the individual forecasts from which we form combinations, namely the
equally weighted linear opinion pool (ELP), that is, the equally weighted average of p1

and p2, and an optimally weighted linear opinion pool (OLP). The OLP weights for
p1 and p2 are estimated on a training sample of size 10,000, using the maximum likelihood
method and the special case of the log likelihood function (9) below, in which α = β = 1.
Table 1 shows the OLP estimates and their standard errors. The more resolved individual
forecast, p2, obtains a substantially higher OLP weight, w2, of about 3

4
.

In the simulation experiment, we consider an independent test sample of size 10,000 from
the joint distribution of Y , p1 and p2 and generate the combined ELP and OLP forecasts.
Figure 1 shows empirical calibration curves or reliability diagrams (Sanders 1963; Pocernich
2008) for the four types of forecasts, which plot the conditional empirical event frequency
versus the forecast probability. The red circles show the conditional empirical frequency; the
broken lines give pointwise 95% lower and upper critical values under the null hypothesis of
calibration, obtained with the bootstrap technique of Bröcker and Smith (2007). Significant
deviations from the diagonal suggest that a forecast is uncalibrated. The inset histograms
show the frequency distribution of the forecast probabilities and can be used diagnostically
to assess sharpness.

The calibration curves for the individual forecasts, p1 and p2, show that they are empiri-
cally well calibrated, and the inset histograms confirm that p2 is the more resolved, sharper
forecast, with forecast probabilities that are further away from the climatological event fre-
quency, p0 = 1

2
. The linearly pooled ELP and OLP forecasts are empirically uncalibrated.

The direction of departure is as anticipated, towards underconfidence, and the extent of the
lack of calibration is startling, even for the optimally weighted OLP forecast.
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Figure 1: Calibration curves and 95% bootstrap intervals under the null hypothesis of cal-
ibration for the individual and linearly combined forecasts in the simulation example. The
histograms show the empirical distribution of the forecast values over the unit interval.

3 Recalibration

We have seen that the linear opinion pool yields a suboptimal combined probability forecast,
in that it is uncalibrated even in the ideal case in which the individual sources are calibrated.
If the individual forecasts are uncalibrated, the need for recalibration typically is even more
pronounced. Before proposing a method that addresses these issues, by applying a recali-
bration transform to the linear opinion pool, we digress to discuss a theoretically optimal
approach to forecast aggregation.

We have chosen to work in a probabilistic setting that considers the joint distribution of the
binary event and the individual probability forecasts.5 In this framework, the theoretically

5Bayesian approaches may suggest other types of recalibration techniques. For example, Lindley (1982)

7



optimal combined forecast, p̂, is the conditional probability (CP), or conditional expectation
of the binary event Y , given the individual forecasts p1, . . . , pk, that is,

p̂ = P(Y = 1|p1, . . . , pk) = E(Y |p1, . . . , pk). (4)

By definition, this is the best approximation of the binary random variable Y in terms of
the individual probability forecasts, p1, . . . , pk, in the sense that E(p̂ − Y )2 ≤ E(p − Y )2 for
all functions p that are measurable with respect to the σ-algebra generated by p1, . . . , pk.
Hence, p̂ minimizes the expected Brier score and, indeed, the expectation of any proper
scoring rule S, in that

ES(p̂, Y ) = EE [S(p̂, Y )|p1, . . . , pk]

= E [ p̂S(p̂, 1) + (1 − p̂)S(p̂, 0)]

≤ E [pS(p̂, 1) + (1 − p)S(p̂, 0)]

= EE [S(p, Y )|p1, . . . , pk]

= ES(p, Y ),

with equality if and only if p = p̂ almost surely. Under the conditions of Theorem 2.1, the
conditional probability p̂ is a necessarily nonlinear function of the individual forecasts. For
example, in the simulation study in Section 2.2 there are two individual forecasts, p1 and p2,
and the conditional probability (4) equals

p̂ = P(Y = 1|p1, p2)

= P(Y = 1|a1, a2)

= Φ(a1 + a2)

= Φ(
√

3Φ−1(p1) +
√

2Φ−1(p2)). (5)

3.1 The beta-transformed linear opinion pool (BLP)

In the practice of forecasting, the functional form of the conditional probability (4) is un-
known and needs to be estimated from training data. Nonparametric approaches are feasible;
however, we prefer parsimonious, yet flexible parametric approximations. Specifically, our
preferred approach to aggregating individual probability forecasts, p1, . . . , pk, is to first form
a linear opinion pool, and then to apply a beta transform to achieve calibration. We call
this the beta-transformed linear opinion pool (BLP), which takes the form

p = Hα,β

(
k∑

i=1

wipi

)

, (6)

suggested a way of recalibrating probability judgements in a Bayesian setting. Clemen and Winkler (1987)
applied Lindley’s method to National Weather Service probability of precipitation forecasts and noted little
improvement over the individual sources.
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where w1, . . . , wk ≥ 0 and w1 + · · ·+ wk = 1, and

Hα,β(x) = B(α, β)−1

∫ x

0

tα−1(1 − t)β−1 dt for x ∈ [0, 1]

is the cumulative distribution function of the beta density with shape parameters α > 0 and
β > 0. Note that the BLP model nests the traditional linear opinion pool that arises in the
special case when α = β = 1. If furthermore w1 = · · · = wk = 1

k
we recover the equally

weighted linear opinion pool (ELP). While the use of the beta transform for the purpose
of calibration dates back at least to Graham (1996), the statistical model (6) that merges
the linear opinion pool with a parametric recalibration transformation appears to be new.
It applies very generally and can be used to aggregate calibrated as well as uncalibrated
sources.

In many cases, full generality in (6) may not be needed or desirable. For instance, it is often
useful to assume that the recalibration transform, Hα,β, satisfies

Hα,β(x) ≤ x for x ≤ x0 and Hα,β(x) ≥ x for x ≥ x0 (7)

for some x0 ∈ (0, 1). This can be enforced by putting conditions on α and β. For example,
if the individual forecasts are calibrated, Theorem 2.1 suggests that the linear opinion pool
is underconfident, in the sense that its calibration curve lies under the diagonal for small
forecast probabilities, and above the diagonal for high probabilities, with a fixed point at
some x0 ∈ (0, 1). The theoretical results of Wallsten and Diederich (2001) support the choice
of x0 = 1

2
, under which (7) can be enforced by requiring that

α = β ≥ 1. (8)

If we aim to address the hard-easy effect that has been described in the psychological liter-
ature (Lichtenstein, Fischhoff and Phillips 1982; Kynn 2008, p. 253) the fixed point in (7)
can be taken to be x0 = 3

4
.

We now describe how we go about parameter estimation for the BLP model in (6). Suppose
that y1, . . . , yn are binary observations in the training set. Let pi1, . . . , pin denote the respec-
tive individual probability forecasts, for sources i = 1, . . . , k. The aggregated BLP forecast
then takes the form

pt = Hα,β

(
k∑

i=1

wipit

)

for t = 1, . . . , n,

where the index ranges over the instances in the training set. Assuming independence, the
log likelihood function for the BLP model (6) can be expressed as

ℓ(w1, . . . , wk; α, β) =
n∑

t=1

(yt log pt + (1 − yt) log(1 − pt))

=

n∑

t=1

yt log Hα,β

(
k∑

i=1

wipit

)

+

n∑

t=1

(1 − yt) log

(

1 − Hα,β

(
k∑

i=1

wipit

))

. (9)
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We obtain maximum likelihood estimates of the weights w1, . . . , wk and the recalibration
parameters α and β by numerically optimizing the log likelihood function (9) under the
constraints that w1, . . . , wk ≥ 0, w1 + · · · + wk = 1, α > 0 and β > 0. As noted above, it
is often appropriate to enforce further constraints, with (8) being one such example. The
traditional, non-transformed linear opinion pool arises when α = β = 1. Estimated standard
errors can be obtained in the usual way, by inverting a numerical approximation to the
Hessian of the log likelihood function at the maximum likelihood estimates. The estimates
can also be interpreted as optimum score estimates based on the logarithmic scoring rule,
in the sense described by Gneiting and Raftery (2007, p. 375) and Elliott and Timmermann
(2008, p. 20). This latter interpretation does not rely on any assumption of independence.

3.2 Simulation study revisited

We return to the simulation study in Section 2.2 and fit the beta-transformed linear
opinion pool (BLP) to the individual probability forecasts, p1 and p2. Then we compare
to the theoretically optimal forecast, the conditional probability (CP) forecast (4) which
here has the closed form solution (5).

Recall that both p1 and p2 are calibrated, so we estimate the BLP model (6) under the
constraint in (8), that is, we assume that α = β ≥ 1. Table 1 shows maximum likelihood
estimates for the BLP parameters and compares to the respective OLP estimates. The
individual forecasts, p1 and p2, get approximately equal weights, much in contrast to the
OLP model. The estimate for the BLP recalibration parameter, α, is far from the identity
transform that arises when α = 1, reflecting the striking lack of calibration of the traditional
linear opinion pool.

Have we succeeded in our goal of approximating the theoretically optimal CP forecast (5)
by the estimated, nonlinearly aggregated BLP model (6)? The empirical calibration curve
for the BLP forecast in Figure 2 does not show any systematic departure from the diagonal,
and the inset histogram shows that it is much sharper than any of the individual or linearly
combined forecasts. A more detailed analysis reveals that if 0 < p1 = p2 < 1 the maximal
difference between the CP forecast and the fitted BLP model is 0.0215.

Table 2 shows the mean Brier or quadratic score and its reliability, resolution and uncertainty
components for the various forecasts (Murphy 1973; Dawid 1986). Suppose that the proba-
bility forecasts pt for the binary event yt, where t = 1, . . . , n, take discrete values fi ∈ [0, 1],
where i = 1, . . . , I. Let ni be the number of times that the forecast value fi occurs, so that
n = n1 + · · ·+ nI , and let qi be the respective empirical conditional event frequency, that is,
the ex post recalibrated forecast. Let

q̄ =
1

n

I∑

i=1

niqi =
1

n

n∑

t=1

yt
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Figure 2: Calibration curve and 95% bootstrap intervals under the null hypothesis of cali-
bration for the BLP forecast in the simulation example. The histogram shows the empirical
distribution of the forecast values over the unit interval.

denote the marginal event frequency. Then the mean Brier score,

BS =
1

n

n∑

t=1

(pt − yt)
2,

decomposes as

BS =
1

n

I∑

i=1

ni(fi − qi)
2

︸ ︷︷ ︸

REL

− 1

n

I∑

i=1

ni(qi − q̄)2

︸ ︷︷ ︸

RES

+ q̄ (1 − q̄)
︸ ︷︷ ︸

UNC

.

The reliability term (REL) quantifies calibration and is negatively oriented, that is, the
smaller the better. The resolution component (RES) equals the variance of the ex post
recalibrated forecast and is positively oriented. For a calibrated forecast, it quantifies sharp-
ness; for an uncalibrated forecast, it measures potential sharpness. As noted above, we
generally seek a forecast which is as sharp as possible subject to it being calibrated (Murphy
and Winkler 1987; Gneiting, Balabdaoui and Raftery 2007). The uncertainty term (UNC)
is computed from the observations alone and independent of the forecast.6

6If the probability forecast is a continuous variable, the decomposition depends on a binning of the
forecast values and is approximate only. It can be made exact by considering two additional components in
the decomposition, as recently proposed by Stephenson, Coelho and Jolliffe (2008). In our case, the extra
terms make very little difference, and we consider the classical decomposition only.
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Table 2: Mean Brier score (BS) and its reliability (REL), resolution (RES) and uncertainty
(UNC) components for the probability forecasts in the simulation example.

Forecast BS REL RES UNC

p1 0.2113 0.0003 0.0389 0.2500
p2 0.1685 0.0002 0.0816 0.2500

ELP 0.1590 0.0382 0.1291 0.2500
OLP 0.1563 0.0111 0.1048 0.2500
BLP 0.1199 0.0004 0.1305 0.2500

CP 0.1186 0.0004 0.1318 0.2500

From Table 2 we see that the linearly combined ELP and OLP forecasts have lower Brier
score than any of the individual forecasts. In both cases, the improvement stems from the
resolution component, which is high, because the ex post recalibrated forecast is sharp, even
though the forecast itself is uncalibrated and lacks sharpness, as reflected in Figure 1. The
BLP forecast is much better calibrated, and simultaneously more resolved, than the ELP and
OLP forecasts, resulting in a hugely improved Brier score. As anticipated, the theoretically
optimal CP forecast shows the lowest Brier score. However, the BLP forecast is a very close
competitor; it is equally well calibrated and nearly as sharp as the CP forecast.

4 Case study: Probability of precipitation forecasts

We turn to a data example on statistical and National Weather Service probability of pre-
cipitation forecasts in the continental US. With some one-third of the US economy being
weather sensitive, and severe weather causing billions of dollars in damage and hundreds
of deaths annually, there is a critical need for calibrated and sharp probabilistic weather
forecasts, to allow for optimal decision making under inherent uncertainty (Dutton 2002;
Regnier 2008).

Baars and Mass (2005) consider probability of precipitation forecasts for 29 meteorological
stations at major urban centers spread across the continental US. They compare the per-
formance of individual and linearly combined model output statistics (MOS) and National
Weather Service (NWS) forecasts, and conclude that a linear opinion pool of the machine
generated MOS forecasts is competitive or superior to the NWS forecast at nearly all loca-
tions. Here we consider the aggregate performance of individual and combined forecasts at
all 29 stations, based on the automated GMOS, EMOS and NMOS forecasts, and the
human generated, operational NWS forecast. The MOS probability forecasts are statisti-
cal forecasts that apply logistic regression techniques to the output of a numerical weather
prediction model and recent weather observations (Glahn and Lowry 1972; Wilks 2006).
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Figure 3: Calibration curves and 95% bootstrap intervals under the null hypothesis of cali-
bration for the four individual probability of precipitation forecasts in the test period. The
histograms show the empirical distribution of the forecast values over the unit interval.

The MOS forecasts are recorded in multiples of a hundredth; the NWS forecasts come in
multiples of a tenth, except that a forecast probability of 0.05 is issued occasionally.

We consider 2-days ahead probability of precipitation forecasts for the 12 hour term denoted
period 2 by Baars and Mass (2005), ranging from July 1, 2003 to March 3, 2008. This
includes but is not limited to the one year record studied by Baars and Mass (2005). We
use the first two years (July 1, 2003 to June 30, 2005) as training data, on which we fit OLP
and BLP models that apply at all stations simultaneously.7 The balance of the record (July
1, 2005 to March 3, 2008) is used as test data on which we evaluate the forecasts. All results
are aggregated over the test period and the 29 stations.

7Station-specific BLP fits might well lead to improved predictive performance. A detailed investigation
is beyond the scope of the paper and left for future research.
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Figure 3 shows calibration curves for the four individual forecasts over the test period. We
are in the desirable situation in which the calibration curves show only minor deviations
from the diagonal, and so we fit the BLP model (6) under the constraint (8). Hence, the
BLP model has a single additional recalibration parameter, α ≥ 1, when compared to the
traditional linear opinion pool.

4.1 Combining statistical forecasts

Following Baars and Mass (2005), we consider combined probability forecasts that use the
three statistical probability forecasts, namely the GMOS, EMOS and NMOS forecasts.
As previously, the equally weighted linear opinion pool (ELP) is obtained as the simple
average of the three forecasts. Table 3 shows maximum likelihood (ML) estimates for the
optimally weighted linear opinion pool (OLP) and the beta transformed linear
opinion pool (BLP), which we fit on the training data. For both methods, the GMOS
and EMOS weights are about equal and nearly reach 1

2
, with the NMOS weight being much

smaller. The ML estimate of the BLP recalibration parameter, α, is 1.48.

Reliability diagrams for the combined forecasts are shown in Figure 4. The calibration curve
for the OLP forecast deviates significantly from the diagonal; the effect is stronger than for
any of the individual forecasts, and the direction of the departure agrees with our theoretical
results, in that the linearly combined forecast is underconfident. The calibration curve for
the ELP forecast is very similar and so it is not shown here. The nonlinearly recalibrated
BLP forecast is empirically well calibrated and sharper than the OLP forecast.

Table 4 shows the Brier score and its reliability, resolution and uncertainty components for
the individual and combined forecasts. The BLP forecast performs the best, both in terms
of the Brier score, the reliability or calibration component, and the resolution component.
The improvement of the nonlinear BLP method over the linear OLP forecast is about the
same as that of the OLP forecast over the best individual forecast, the GMOS forecast.

4.2 Combining statistical and National Weather Service forecasts

We turn to combined probability forecasts that are based on all four individual sources,
now including the NWS forecast, in addition to the GMOS, EMOS and NMOS forecasts.
This possibility was not explored by Baars and Mass (2005), who aimed to compare the
automated MOS forecasts to the subjective, human generated NWS forecast.

Table 5 shows ML estimates for the OLP and BLP models, which we fit on the training
data. For both methods, the GMOS and EMOS forecasts receive weights that are nearly
equal, at about 0.37. The NWS forecast receives weights of 0.27 and 0.22, respectively; the
weights for the NMOS forecast are negligible. The ML estimate of the BLP recalibration
parameter, α, is 1.49.
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Table 3: Combined probability forecasts in the precipitation example, using the statistical
forecasts only. Maximum likelihood estimates for the OLP and BLP parameters from the
training period with standard errors in brackets.

Method GMOS EMOS NMOS α

OLP 0.485 (0.026) 0.465 (0.027) 0.050 (0.020)
BLP 0.462 (0.022) 0.447 (0.022) 0.091 (0.021) 1.48 (0.03)
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Figure 4: Calibration curves and 95% bootstrap intervals under the null hypothesis of cali-
bration for the OLP and BLP probability of precipitation forecasts in the test period, using
the statistical forecasts only. The histograms show the empirical distribution of the forecast
values over the unit interval.

Table 4: Mean Brier score (BS) and its reliability (REL), resolution (RES) and uncertainty
(UNC) components for individual and combined probability of precipitation forecasts in the
test period, using the statistical forecasts only.

Forecast BS REL RES UNC

GMOS 0.0816 0.0011 0.0735 0.1540
EMOS 0.0866 0.0011 0.0685 0.1540
NMOS 0.0932 0.0005 0.0612 0.1540

ELP 0.0803 0.0022 0.0759 0.1540
OLP 0.0799 0.0021 0.0764 0.1540
BLP 0.0781 0.0004 0.0764 0.1540
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Table 5: Same as Table 3 but now using all four individual forecasts, including the NWS
forecast.

Method GMOS EMOS NMOS NWS α

OLP 0.362 (0.031) 0.368 (0.030) 0.000 (0.026) 0.270 (0.032)
BLP 0.371 (0.024) 0.377 (0.023) 0.032 (0.022) 0.220 (0.024) 1.49 (0.03)
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Figure 5: Same as Figure 4 but now using all four individual forecasts, including the NWS
forecast.

Table 6: Same as Table 4 but now using all four individual forecasts, including the NWS
forecast.

Forecast BS REL RES UNC

GMOS 0.0816 0.0011 0.0735 0.1540
EMOS 0.0866 0.0011 0.0685 0.1540
NMOS 0.0932 0.0005 0.0612 0.1540
NWS 0.0829 0.0009 0.0721 0.1540

ELP 0.0800 0.0026 0.0770 0.1540
OLP 0.0789 0.0024 0.0778 0.1540
BLP 0.0770 0.0004 0.0777 0.1540
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Calibration curves for the OLP and BLP forecasts are shown in Figure 5. We see the now
familiar results, in that the linearly combined OLP forecast lacks calibration. The BLP
forecast is empirically well calibrated, and considerably sharper than the OLP forecast. The
Brier scores in Table 6 echo these results. The BLP forecast outperforms the OLP and ELP
forecasts, which perform better than any of the individual forecasts. If we compare to Table
4, we see that the combined probability forecasts benefit from the inclusion of the human
generated NWS forecast, with the improvement due to an increase in resolution.

5 Discussion

Our aim in this paper is to provide theoretical and applied guidance in combining prob-
ability forecasts from distinct, calibrated or uncalibrated sources. Historically, the linear
opinion pool has been the preferred method for doing this. Indeed, there is overwhelming
empirical evidence that linearly combined probability forecasts perform better than individ-
ual forecasts, and and our results make no exception. That said, our paper demonstrates
theoretically and empirically that the linear opinion pool is suboptimal, lacking both cali-
bration and sharpness. To address these shortcomings, we propose the use of the nonlinearly
recalibrated, beta transformed linear opinion pool (BLP) that nests the traditional, linearly
combined probability forecast.

Theorem 2.1 is our analytic key result; it shows that the linear opinion pool is uncalibrated,
even in the desirable case in which the individual probability forecasts are calibrated. This
is a finite sample result that does not make any restrictive assumptions about the joint
dependence structure of the individual forecasts, and complements the asymptotic results
of Wallsten and Diederich (2001) that rely on an assumption of conditional independence.
It would be of great interest to bridge the finite sample and asymptotic scenarios, and to
establish a more general result, roughly to the extent that linearly combined probability
forecasts are uncalibrated and underconfident, resulting in probability statements that are
closer to the naive climatological forecast than necessary. A result of this type could perhaps
be formulated for a general class of averaging operators and under a minimal assumption of
marginal consistency, in lieu of calibration.

Empirically, the shortcomings of the linear opinion pool have been well documented in
an interdisciplinary strand of literature that includes the works of Clemen and Winkler
(1987), Winkler and Poses (1993), Vislocky and Fritsch (1995), Ariely et al. (2000), Wallsten
and Diederich (2001) and Johnson et al. (2001). Despite their ubiquity, these issues have
frequently been overlooked, with some of our own work (Sloughter et al. 2007) being one
such example.8

With a view toward applied forecasting problems, we recommend a transition from the tra-
ditional linear opinion pool to the nonlinearly recalibrated, beta-transformed linear opinion

8Figure 7 of Sloughter et al. (2007) shows the typical S-shaped calibration curve for a linearly combined
probability forecast, even though the effect is comparably small.
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pool (BLP). The BLP model (6) has at most two, and typically only one, additional param-
eters when compared to the linear opinion pool, and it is easy to fit, using the maximum
likelihood method or related optimum score techniques. More general and more complex,
parametric or nonparametric approaches to the aggregation of probability forecasts, can
easily be envisioned, including but not limited to copula models (Nelsen 2006), and might
provide effective approximations to the hypothetical, ideally combined forecast, namely the
conditional probability (CP) forecast (4). However, more complex statistical models bear
the danger of overfitting, and the resulting gains in predictive performance, if any, are likely
to be incremental.
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Appendix: Mathematical details

Proof of Theorem 2.1

From the basic properties of Bernoulli random variables and conditional expectations,

P(Y = 1) = EY 2 = EY = EE [Y |p] = Ep = Eq,

which will be used repeatedly in what follows. We first prove part (a). For a contradiction,
suppose that p is calibrated, that is, p = q almost surely. Then we can condition on p to see
that

E(Y − p)2 = E [p(1 − p)]. (10)

We proceed to show that under the conditions of the theorem equality in (10) is violated.
Toward this end, note that

E (Y − p)2 = E

(
k∑

i=1

wi (Y − pi)

)2

=
k∑

i=1

k∑

j=1

wiwj E [(Y − pi)(Y − pj)]

=
k∑

i=1

k∑

j=1

wiwj E [Y − piY − pjY + pipj]

=
k∑

i=1

k∑

j=1

wiwj E [E(Y |pi) − E(piY |pi) − E(pjY |pj) + pipj]

=
k∑

i=1

k∑

j=1

wiwj E [pi − p2

i − p2

j + pipj]

=
k∑

i=1

k∑

j=1

wiwj E [pi(1 − pj)] −
k∑

i=1

k∑

j=1

wiwj E(pi − pj)
2

and

E [p(1 − p)] =

k∑

i=1

k∑

j=1

wiwj E [pi(1 − pj)],

so that

E(Y − p)2 = E [p(1 − p)] −
k∑

i=1

k∑

j=1

wiwj E(pi − pj)
2. (11)

The double sum on the right-hand side of (11) is strictly positive, whence (10) is violated,
for the desired contradiction.
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We now prove part (b). From (11) we see that E(Y − p)2 < E [ p(1 − p)]. A straightforward
conditioning argument shows that

E(Y − p)2 = E(Y − q)2 + E(q − p)2 > E [q(1 − q)].

Hence,
E [q(1 − q)] < E(Y − p)2 < E [p(1 − p)],

which implies that Ep2 < Eq2. From this, part (b) follows.

As for part (c),

ES(q, Y ) = EE [S(q, Y )|p]

= E [qS(q, 1) + (1 − q)S(q, 0)]

< E [qS(p, 1) + (1 − q)S(p, 0)]

= EE [S(p, Y )|p]

= ES(p, Y )

with the inequality being strict, because S is a negatively oriented strictly proper scoring
rule and q = E[Y |p] 6= p with positive probability. �

Details for (2) and (3)

The final equality in (2) stems from the fact that if X ∼ N (µ, σ2) then

EΦ(X) =

∫ ∞

−∞

Φ(x)
1

σ
φ

(
x − µ

σ

)

dx

=

∫ ∞

−∞

(∫ x

−∞

φ(y) dy

)
1

σ
φ

(
x − µ

σ

)

dx

=

∫

y≤x

φ(y)
1

σ
φ

(
x − µ

σ

)

dx dy

= P(Y ≤ X) = P(Y − X ≤ 0) = Φ

(
µ√

σ2 + 1

)

,

where φ denotes the standard normal density function and Y is standard normal and inde-
pendent of X, so that Y −X ∼ N (−µ, σ2 +1). The conditional distribution of a1 +a2 given
a1 is normal with mean a1 and variance 2, whence

E [Φ(a1 + a2)|a1] = Φ

(
a1√
3

)

.

An almost identical calculation applies to (3).
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